xref: /openbmc/linux/arch/sparc/math-emu/math_32.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sparc/math-emu/math.c
4  *
5  * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk)
6  * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
7  * Copyright (C) 1999 David S. Miller (davem@redhat.com)
8  *
9  * This is a good place to start if you're trying to understand the
10  * emulation code, because it's pretty simple. What we do is
11  * essentially analyse the instruction to work out what the operation
12  * is and which registers are involved. We then execute the appropriate
13  * FXXXX function. [The floating point queue introduces a minor wrinkle;
14  * see below...]
15  * The fxxxxx.c files each emulate a single insn. They look relatively
16  * simple because the complexity is hidden away in an unholy tangle
17  * of preprocessor macros.
18  *
19  * The first layer of macros is single.h, double.h, quad.h. Generally
20  * these files define macros for working with floating point numbers
21  * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles,
22  * for instance. These macros are usually defined as calls to more
23  * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number
24  * of machine words required to store the given IEEE format is passed
25  * as a parameter. [double.h and co check the number of bits in a word
26  * and define FP_ADD_D & co appropriately].
27  * The generic macros are defined in op-common.h. This is where all
28  * the grotty stuff like handling NaNs is coded. To handle the possible
29  * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc()
30  * where wc is the 'number of machine words' parameter (here 2).
31  * These are defined in the third layer of macros: op-1.h, op-2.h
32  * and op-4.h. These handle operations on floating point numbers composed
33  * of 1,2 and 4 machine words respectively. [For example, on sparc64
34  * doubles are one machine word so macros in double.h eventually use
35  * constructs in op-1.h, but on sparc32 they use op-2.h definitions.]
36  * soft-fp.h is on the same level as op-common.h, and defines some
37  * macros which are independent of both word size and FP format.
38  * Finally, sfp-machine.h is the machine dependent part of the
39  * code: it defines the word size and what type a word is. It also
40  * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h
41  * provide several possible flavours of multiply algorithm, most
42  * of which require that you supply some form of asm or C primitive to
43  * do the actual multiply. (such asm primitives should be defined
44  * in sfp-machine.h too). udivmodti4.c is the same sort of thing.
45  *
46  * There may be some errors here because I'm working from a
47  * SPARC architecture manual V9, and what I really want is V8...
48  * Also, the insns which can generate exceptions seem to be a
49  * greater subset of the FPops than for V9 (for example, FCMPED
50  * has to be emulated on V8). So I think I'm going to have
51  * to emulate them all just to be on the safe side...
52  *
53  * Emulation routines originate from soft-fp package, which is
54  * part of glibc and has appropriate copyrights in it (allegedly).
55  *
56  * NB: on sparc int == long == 4 bytes, long long == 8 bytes.
57  * Most bits of the kernel seem to go for long rather than int,
58  * so we follow that practice...
59  */
60 
61 /* TODO:
62  * fpsave() saves the FP queue but fpload() doesn't reload it.
63  * Therefore when we context switch or change FPU ownership
64  * we have to check to see if the queue had anything in it and
65  * emulate it if it did. This is going to be a pain.
66  */
67 
68 #include <linux/types.h>
69 #include <linux/sched.h>
70 #include <linux/mm.h>
71 #include <linux/perf_event.h>
72 #include <linux/uaccess.h>
73 
74 #include "sfp-util_32.h"
75 #include <math-emu/soft-fp.h>
76 #include <math-emu/single.h>
77 #include <math-emu/double.h>
78 #include <math-emu/quad.h>
79 
80 #define FLOATFUNC(x) extern int x(void *,void *,void *)
81 
82 /* The Vn labels indicate what version of the SPARC architecture gas thinks
83  * each insn is. This is from the binutils source :->
84  */
85 /* quadword instructions */
86 #define FSQRTQ	0x02b		/* v8 */
87 #define FADDQ	0x043		/* v8 */
88 #define FSUBQ	0x047		/* v8 */
89 #define FMULQ	0x04b		/* v8 */
90 #define FDIVQ	0x04f		/* v8 */
91 #define FDMULQ	0x06e		/* v8 */
92 #define FQTOS	0x0c7		/* v8 */
93 #define FQTOD	0x0cb		/* v8 */
94 #define FITOQ	0x0cc		/* v8 */
95 #define FSTOQ	0x0cd		/* v8 */
96 #define FDTOQ	0x0ce		/* v8 */
97 #define FQTOI	0x0d3		/* v8 */
98 #define FCMPQ	0x053		/* v8 */
99 #define FCMPEQ	0x057		/* v8 */
100 /* single/double instructions (subnormal): should all work */
101 #define FSQRTS	0x029		/* v7 */
102 #define FSQRTD	0x02a		/* v7 */
103 #define FADDS	0x041		/* v6 */
104 #define FADDD	0x042		/* v6 */
105 #define FSUBS	0x045		/* v6 */
106 #define FSUBD	0x046		/* v6 */
107 #define FMULS	0x049		/* v6 */
108 #define FMULD	0x04a		/* v6 */
109 #define FDIVS	0x04d		/* v6 */
110 #define FDIVD	0x04e		/* v6 */
111 #define FSMULD	0x069		/* v6 */
112 #define FDTOS	0x0c6		/* v6 */
113 #define FSTOD	0x0c9		/* v6 */
114 #define FSTOI	0x0d1		/* v6 */
115 #define FDTOI	0x0d2		/* v6 */
116 #define FABSS	0x009		/* v6 */
117 #define FCMPS	0x051		/* v6 */
118 #define FCMPES	0x055		/* v6 */
119 #define FCMPD	0x052		/* v6 */
120 #define FCMPED	0x056		/* v6 */
121 #define FMOVS	0x001		/* v6 */
122 #define FNEGS	0x005		/* v6 */
123 #define FITOS	0x0c4		/* v6 */
124 #define FITOD	0x0c8		/* v6 */
125 
126 #define FSR_TEM_SHIFT	23UL
127 #define FSR_TEM_MASK	(0x1fUL << FSR_TEM_SHIFT)
128 #define FSR_AEXC_SHIFT	5UL
129 #define FSR_AEXC_MASK	(0x1fUL << FSR_AEXC_SHIFT)
130 #define FSR_CEXC_SHIFT	0UL
131 #define FSR_CEXC_MASK	(0x1fUL << FSR_CEXC_SHIFT)
132 
133 static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs);
134 
135 /* Unlike the Sparc64 version (which has a struct fpustate), we
136  * pass the taskstruct corresponding to the task which currently owns the
137  * FPU. This is partly because we don't have the fpustate struct and
138  * partly because the task owning the FPU isn't always current (as is
139  * the case for the Sparc64 port). This is probably SMP-related...
140  * This function returns 1 if all queued insns were emulated successfully.
141  * The test for unimplemented FPop in kernel mode has been moved into
142  * kernel/traps.c for simplicity.
143  */
144 int do_mathemu(struct pt_regs *regs, struct task_struct *fpt)
145 {
146 	/* regs->pc isn't necessarily the PC at which the offending insn is sitting.
147 	 * The FPU maintains a queue of FPops which cause traps.
148 	 * When it hits an instruction that requires that the trapped op succeeded
149 	 * (usually because it reads a reg. that the trapped op wrote) then it
150 	 * causes this exception. We need to emulate all the insns on the queue
151 	 * and then allow the op to proceed.
152 	 * This code should also handle the case where the trap was precise,
153 	 * in which case the queue length is zero and regs->pc points at the
154 	 * single FPop to be emulated. (this case is untested, though :->)
155 	 * You'll need this case if you want to be able to emulate all FPops
156 	 * because the FPU either doesn't exist or has been software-disabled.
157 	 * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it
158 	 * might sound because the Ultra does funky things with a superscalar
159 	 * architecture.]
160 	 */
161 
162 	/* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */
163 
164 	int i;
165 	int retcode = 0;                               /* assume all succeed */
166 	unsigned long insn;
167 
168 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
169 
170 #ifdef DEBUG_MATHEMU
171 	printk("In do_mathemu()... pc is %08lx\n", regs->pc);
172 	printk("fpqdepth is %ld\n", fpt->thread.fpqdepth);
173 	for (i = 0; i < fpt->thread.fpqdepth; i++)
174 		printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn,
175 		       (unsigned long)fpt->thread.fpqueue[i].insn_addr);
176 #endif
177 
178 	if (fpt->thread.fpqdepth == 0) {                   /* no queue, guilty insn is at regs->pc */
179 #ifdef DEBUG_MATHEMU
180 		printk("precise trap at %08lx\n", regs->pc);
181 #endif
182 		if (!get_user(insn, (u32 __user *) regs->pc)) {
183 			retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs);
184 			if (retcode) {
185 				/* in this case we need to fix up PC & nPC */
186 				regs->pc = regs->npc;
187 				regs->npc += 4;
188 			}
189 		}
190 		return retcode;
191 	}
192 
193 	/* Normal case: need to empty the queue... */
194 	for (i = 0; i < fpt->thread.fpqdepth; i++) {
195 		retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs);
196 		if (!retcode)                               /* insn failed, no point doing any more */
197 			break;
198 	}
199 	/* Now empty the queue and clear the queue_not_empty flag */
200 	if (retcode)
201 		fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK);
202 	else
203 		fpt->thread.fsr &= ~0x3000;
204 	fpt->thread.fpqdepth = 0;
205 
206 	return retcode;
207 }
208 
209 /* All routines returning an exception to raise should detect
210  * such exceptions _before_ rounding to be consistent with
211  * the behavior of the hardware in the implemented cases
212  * (and thus with the recommendations in the V9 architecture
213  * manual).
214  *
215  * We return 0 if a SIGFPE should be sent, 1 otherwise.
216  */
217 static inline int record_exception(unsigned long *pfsr, int eflag)
218 {
219 	unsigned long fsr = *pfsr;
220 	int would_trap;
221 
222 	/* Determine if this exception would have generated a trap. */
223 	would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
224 
225 	/* If trapping, we only want to signal one bit. */
226 	if (would_trap != 0) {
227 		eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
228 		if ((eflag & (eflag - 1)) != 0) {
229 			if (eflag & FP_EX_INVALID)
230 				eflag = FP_EX_INVALID;
231 			else if (eflag & FP_EX_OVERFLOW)
232 				eflag = FP_EX_OVERFLOW;
233 			else if (eflag & FP_EX_UNDERFLOW)
234 				eflag = FP_EX_UNDERFLOW;
235 			else if (eflag & FP_EX_DIVZERO)
236 				eflag = FP_EX_DIVZERO;
237 			else if (eflag & FP_EX_INEXACT)
238 				eflag = FP_EX_INEXACT;
239 		}
240 	}
241 
242 	/* Set CEXC, here is the rule:
243 	 *
244 	 *    In general all FPU ops will set one and only one
245 	 *    bit in the CEXC field, this is always the case
246 	 *    when the IEEE exception trap is enabled in TEM.
247 	 */
248 	fsr &= ~(FSR_CEXC_MASK);
249 	fsr |= ((long)eflag << FSR_CEXC_SHIFT);
250 
251 	/* Set the AEXC field, rule is:
252 	 *
253 	 *    If a trap would not be generated, the
254 	 *    CEXC just generated is OR'd into the
255 	 *    existing value of AEXC.
256 	 */
257 	if (would_trap == 0)
258 		fsr |= ((long)eflag << FSR_AEXC_SHIFT);
259 
260 	/* If trapping, indicate fault trap type IEEE. */
261 	if (would_trap != 0)
262 		fsr |= (1UL << 14);
263 
264 	*pfsr = fsr;
265 
266 	return (would_trap ? 0 : 1);
267 }
268 
269 typedef union {
270 	u32 s;
271 	u64 d;
272 	u64 q[2];
273 } *argp;
274 
275 static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs)
276 {
277 	/* Emulate the given insn, updating fsr and fregs appropriately. */
278 	int type = 0;
279 	/* r is rd, b is rs2 and a is rs1. The *u arg tells
280 	   whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
281 	   non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
282 #define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6)
283 	int freg;
284 	argp rs1 = NULL, rs2 = NULL, rd = NULL;
285 	FP_DECL_EX;
286 	FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
287 	FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
288 	FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
289 	int IR;
290 	long fsr;
291 
292 #ifdef DEBUG_MATHEMU
293 	printk("In do_mathemu(), emulating %08lx\n", insn);
294 #endif
295 
296 	if ((insn & 0xc1f80000) == 0x81a00000)	/* FPOP1 */ {
297 		switch ((insn >> 5) & 0x1ff) {
298 		case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
299 		case FADDQ:
300 		case FSUBQ:
301 		case FMULQ:
302 		case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
303 		case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
304 		case FQTOS: TYPE(3,1,1,3,1,0,0); break;
305 		case FQTOD: TYPE(3,2,1,3,1,0,0); break;
306 		case FITOQ: TYPE(3,3,1,1,0,0,0); break;
307 		case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
308 		case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
309 		case FQTOI: TYPE(3,1,0,3,1,0,0); break;
310 		case FSQRTS: TYPE(2,1,1,1,1,0,0); break;
311 		case FSQRTD: TYPE(2,2,1,2,1,0,0); break;
312 		case FADDD:
313 		case FSUBD:
314 		case FMULD:
315 		case FDIVD: TYPE(2,2,1,2,1,2,1); break;
316 		case FADDS:
317 		case FSUBS:
318 		case FMULS:
319 		case FDIVS: TYPE(2,1,1,1,1,1,1); break;
320 		case FSMULD: TYPE(2,2,1,1,1,1,1); break;
321 		case FDTOS: TYPE(2,1,1,2,1,0,0); break;
322 		case FSTOD: TYPE(2,2,1,1,1,0,0); break;
323 		case FSTOI: TYPE(2,1,0,1,1,0,0); break;
324 		case FDTOI: TYPE(2,1,0,2,1,0,0); break;
325 		case FITOS: TYPE(2,1,1,1,0,0,0); break;
326 		case FITOD: TYPE(2,2,1,1,0,0,0); break;
327 		case FMOVS:
328 		case FABSS:
329 		case FNEGS: TYPE(2,1,0,1,0,0,0); break;
330 		}
331 	} else if ((insn & 0xc1f80000) == 0x81a80000)	/* FPOP2 */ {
332 		switch ((insn >> 5) & 0x1ff) {
333 		case FCMPS: TYPE(3,0,0,1,1,1,1); break;
334 		case FCMPES: TYPE(3,0,0,1,1,1,1); break;
335 		case FCMPD: TYPE(3,0,0,2,1,2,1); break;
336 		case FCMPED: TYPE(3,0,0,2,1,2,1); break;
337 		case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
338 		case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
339 		}
340 	}
341 
342 	if (!type) {	/* oops, didn't recognise that FPop */
343 #ifdef DEBUG_MATHEMU
344 		printk("attempt to emulate unrecognised FPop!\n");
345 #endif
346 		return 0;
347 	}
348 
349 	/* Decode the registers to be used */
350 	freg = (*pfsr >> 14) & 0xf;
351 
352 	*pfsr &= ~0x1c000;				/* clear the traptype bits */
353 
354 	freg = ((insn >> 14) & 0x1f);
355 	switch (type & 0x3) {				/* is rs1 single, double or quad? */
356 	case 3:
357 		if (freg & 3) {				/* quadwords must have bits 4&5 of the */
358 							/* encoded reg. number set to zero. */
359 			*pfsr |= (6 << 14);
360 			return 0;			/* simulate invalid_fp_register exception */
361 		}
362 		fallthrough;
363 	case 2:
364 		if (freg & 1) {				/* doublewords must have bit 5 zeroed */
365 			*pfsr |= (6 << 14);
366 			return 0;
367 		}
368 	}
369 	rs1 = (argp)&fregs[freg];
370 	switch (type & 0x7) {
371 	case 7: FP_UNPACK_QP (QA, rs1); break;
372 	case 6: FP_UNPACK_DP (DA, rs1); break;
373 	case 5: FP_UNPACK_SP (SA, rs1); break;
374 	}
375 	freg = (insn & 0x1f);
376 	switch ((type >> 3) & 0x3) {			/* same again for rs2 */
377 	case 3:
378 		if (freg & 3) {				/* quadwords must have bits 4&5 of the */
379 							/* encoded reg. number set to zero. */
380 			*pfsr |= (6 << 14);
381 			return 0;			/* simulate invalid_fp_register exception */
382 		}
383 		fallthrough;
384 	case 2:
385 		if (freg & 1) {				/* doublewords must have bit 5 zeroed */
386 			*pfsr |= (6 << 14);
387 			return 0;
388 		}
389 	}
390 	rs2 = (argp)&fregs[freg];
391 	switch ((type >> 3) & 0x7) {
392 	case 7: FP_UNPACK_QP (QB, rs2); break;
393 	case 6: FP_UNPACK_DP (DB, rs2); break;
394 	case 5: FP_UNPACK_SP (SB, rs2); break;
395 	}
396 	freg = ((insn >> 25) & 0x1f);
397 	switch ((type >> 6) & 0x3) {			/* and finally rd. This one's a bit different */
398 	case 0:						/* dest is fcc. (this must be FCMPQ or FCMPEQ) */
399 		if (freg) {				/* V8 has only one set of condition codes, so */
400 							/* anything but 0 in the rd field is an error */
401 			*pfsr |= (6 << 14);		/* (should probably flag as invalid opcode */
402 			return 0;			/* but SIGFPE will do :-> ) */
403 		}
404 		break;
405 	case 3:
406 		if (freg & 3) {				/* quadwords must have bits 4&5 of the */
407 							/* encoded reg. number set to zero. */
408 			*pfsr |= (6 << 14);
409 			return 0;			/* simulate invalid_fp_register exception */
410 		}
411 		fallthrough;
412 	case 2:
413 		if (freg & 1) {				/* doublewords must have bit 5 zeroed */
414 			*pfsr |= (6 << 14);
415 			return 0;
416 		}
417 		fallthrough;
418 	case 1:
419 		rd = (void *)&fregs[freg];
420 		break;
421 	}
422 #ifdef DEBUG_MATHEMU
423 	printk("executing insn...\n");
424 #endif
425 	/* do the Right Thing */
426 	switch ((insn >> 5) & 0x1ff) {
427 	/* + */
428 	case FADDS: FP_ADD_S (SR, SA, SB); break;
429 	case FADDD: FP_ADD_D (DR, DA, DB); break;
430 	case FADDQ: FP_ADD_Q (QR, QA, QB); break;
431 	/* - */
432 	case FSUBS: FP_SUB_S (SR, SA, SB); break;
433 	case FSUBD: FP_SUB_D (DR, DA, DB); break;
434 	case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
435 	/* * */
436 	case FMULS: FP_MUL_S (SR, SA, SB); break;
437 	case FSMULD: FP_CONV (D, S, 2, 1, DA, SA);
438 		     FP_CONV (D, S, 2, 1, DB, SB);
439 	case FMULD: FP_MUL_D (DR, DA, DB); break;
440 	case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA);
441 		     FP_CONV (Q, D, 4, 2, QB, DB);
442 	case FMULQ: FP_MUL_Q (QR, QA, QB); break;
443 	/* / */
444 	case FDIVS: FP_DIV_S (SR, SA, SB); break;
445 	case FDIVD: FP_DIV_D (DR, DA, DB); break;
446 	case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
447 	/* sqrt */
448 	case FSQRTS: FP_SQRT_S (SR, SB); break;
449 	case FSQRTD: FP_SQRT_D (DR, DB); break;
450 	case FSQRTQ: FP_SQRT_Q (QR, QB); break;
451 	/* mov */
452 	case FMOVS: rd->s = rs2->s; break;
453 	case FABSS: rd->s = rs2->s & 0x7fffffff; break;
454 	case FNEGS: rd->s = rs2->s ^ 0x80000000; break;
455 	/* float to int */
456 	case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
457 	case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
458 	case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
459 	/* int to float */
460 	case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
461 	case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
462 	case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
463 	/* float to float */
464 	case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break;
465 	case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break;
466 	case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break;
467 	case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break;
468 	case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break;
469 	case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break;
470 	/* comparison */
471 	case FCMPS:
472 	case FCMPES:
473 		FP_CMP_S(IR, SB, SA, 3);
474 		if (IR == 3 &&
475 		    (((insn >> 5) & 0x1ff) == FCMPES ||
476 		     FP_ISSIGNAN_S(SA) ||
477 		     FP_ISSIGNAN_S(SB)))
478 			FP_SET_EXCEPTION (FP_EX_INVALID);
479 		break;
480 	case FCMPD:
481 	case FCMPED:
482 		FP_CMP_D(IR, DB, DA, 3);
483 		if (IR == 3 &&
484 		    (((insn >> 5) & 0x1ff) == FCMPED ||
485 		     FP_ISSIGNAN_D(DA) ||
486 		     FP_ISSIGNAN_D(DB)))
487 			FP_SET_EXCEPTION (FP_EX_INVALID);
488 		break;
489 	case FCMPQ:
490 	case FCMPEQ:
491 		FP_CMP_Q(IR, QB, QA, 3);
492 		if (IR == 3 &&
493 		    (((insn >> 5) & 0x1ff) == FCMPEQ ||
494 		     FP_ISSIGNAN_Q(QA) ||
495 		     FP_ISSIGNAN_Q(QB)))
496 			FP_SET_EXCEPTION (FP_EX_INVALID);
497 	}
498 	if (!FP_INHIBIT_RESULTS) {
499 		switch ((type >> 6) & 0x7) {
500 		case 0: fsr = *pfsr;
501 			if (IR == -1) IR = 2;
502 			/* fcc is always fcc0 */
503 			fsr &= ~0xc00; fsr |= (IR << 10);
504 			*pfsr = fsr;
505 			break;
506 		case 1: rd->s = IR; break;
507 		case 5: FP_PACK_SP (rd, SR); break;
508 		case 6: FP_PACK_DP (rd, DR); break;
509 		case 7: FP_PACK_QP (rd, QR); break;
510 		}
511 	}
512 	if (_fex == 0)
513 		return 1;				/* success! */
514 	return record_exception(pfsr, _fex);
515 }
516