xref: /openbmc/linux/arch/sparc/kernel/unaligned_64.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * unaligned.c: Unaligned load/store trap handling with special
4  *              cases for the kernel to do them more quickly.
5  *
6  * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  */
9 
10 
11 #include <linux/jiffies.h>
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/extable.h>
16 #include <asm/asi.h>
17 #include <asm/ptrace.h>
18 #include <asm/pstate.h>
19 #include <asm/processor.h>
20 #include <linux/uaccess.h>
21 #include <linux/smp.h>
22 #include <linux/bitops.h>
23 #include <linux/perf_event.h>
24 #include <linux/ratelimit.h>
25 #include <linux/context_tracking.h>
26 #include <asm/fpumacro.h>
27 #include <asm/cacheflush.h>
28 #include <asm/setup.h>
29 
30 #include "entry.h"
31 #include "kernel.h"
32 
33 enum direction {
34 	load,    /* ld, ldd, ldh, ldsh */
35 	store,   /* st, std, sth, stsh */
36 	both,    /* Swap, ldstub, cas, ... */
37 	fpld,
38 	fpst,
39 	invalid,
40 };
41 
42 static inline enum direction decode_direction(unsigned int insn)
43 {
44 	unsigned long tmp = (insn >> 21) & 1;
45 
46 	if (!tmp)
47 		return load;
48 	else {
49 		switch ((insn>>19)&0xf) {
50 		case 15: /* swap* */
51 			return both;
52 		default:
53 			return store;
54 		}
55 	}
56 }
57 
58 /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
59 static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
60 {
61 	unsigned int tmp;
62 
63 	tmp = ((insn >> 19) & 0xf);
64 	if (tmp == 11 || tmp == 14) /* ldx/stx */
65 		return 8;
66 	tmp &= 3;
67 	if (!tmp)
68 		return 4;
69 	else if (tmp == 3)
70 		return 16;	/* ldd/std - Although it is actually 8 */
71 	else if (tmp == 2)
72 		return 2;
73 	else {
74 		printk("Impossible unaligned trap. insn=%08x\n", insn);
75 		die_if_kernel("Byte sized unaligned access?!?!", regs);
76 
77 		/* GCC should never warn that control reaches the end
78 		 * of this function without returning a value because
79 		 * die_if_kernel() is marked with attribute 'noreturn'.
80 		 * Alas, some versions do...
81 		 */
82 
83 		return 0;
84 	}
85 }
86 
87 static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
88 {
89 	if (insn & 0x800000) {
90 		if (insn & 0x2000)
91 			return (unsigned char)(regs->tstate >> 24);	/* %asi */
92 		else
93 			return (unsigned char)(insn >> 5);		/* imm_asi */
94 	} else
95 		return ASI_P;
96 }
97 
98 /* 0x400000 = signed, 0 = unsigned */
99 static inline int decode_signedness(unsigned int insn)
100 {
101 	return (insn & 0x400000);
102 }
103 
104 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
105 				       unsigned int rd, int from_kernel)
106 {
107 	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
108 		if (from_kernel != 0)
109 			__asm__ __volatile__("flushw");
110 		else
111 			flushw_user();
112 	}
113 }
114 
115 static inline long sign_extend_imm13(long imm)
116 {
117 	return imm << 51 >> 51;
118 }
119 
120 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
121 {
122 	unsigned long value, fp;
123 
124 	if (reg < 16)
125 		return (!reg ? 0 : regs->u_regs[reg]);
126 
127 	fp = regs->u_regs[UREG_FP];
128 
129 	if (regs->tstate & TSTATE_PRIV) {
130 		struct reg_window *win;
131 		win = (struct reg_window *)(fp + STACK_BIAS);
132 		value = win->locals[reg - 16];
133 	} else if (!test_thread_64bit_stack(fp)) {
134 		struct reg_window32 __user *win32;
135 		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
136 		get_user(value, &win32->locals[reg - 16]);
137 	} else {
138 		struct reg_window __user *win;
139 		win = (struct reg_window __user *)(fp + STACK_BIAS);
140 		get_user(value, &win->locals[reg - 16]);
141 	}
142 	return value;
143 }
144 
145 static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
146 {
147 	unsigned long fp;
148 
149 	if (reg < 16)
150 		return &regs->u_regs[reg];
151 
152 	fp = regs->u_regs[UREG_FP];
153 
154 	if (regs->tstate & TSTATE_PRIV) {
155 		struct reg_window *win;
156 		win = (struct reg_window *)(fp + STACK_BIAS);
157 		return &win->locals[reg - 16];
158 	} else if (!test_thread_64bit_stack(fp)) {
159 		struct reg_window32 *win32;
160 		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
161 		return (unsigned long *)&win32->locals[reg - 16];
162 	} else {
163 		struct reg_window *win;
164 		win = (struct reg_window *)(fp + STACK_BIAS);
165 		return &win->locals[reg - 16];
166 	}
167 }
168 
169 unsigned long compute_effective_address(struct pt_regs *regs,
170 					unsigned int insn, unsigned int rd)
171 {
172 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
173 	unsigned int rs1 = (insn >> 14) & 0x1f;
174 	unsigned int rs2 = insn & 0x1f;
175 	unsigned long addr;
176 
177 	if (insn & 0x2000) {
178 		maybe_flush_windows(rs1, 0, rd, from_kernel);
179 		addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
180 	} else {
181 		maybe_flush_windows(rs1, rs2, rd, from_kernel);
182 		addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
183 	}
184 
185 	if (!from_kernel && test_thread_flag(TIF_32BIT))
186 		addr &= 0xffffffff;
187 
188 	return addr;
189 }
190 
191 /* This is just to make gcc think die_if_kernel does return... */
192 static void __used unaligned_panic(char *str, struct pt_regs *regs)
193 {
194 	die_if_kernel(str, regs);
195 }
196 
197 extern int do_int_load(unsigned long *dest_reg, int size,
198 		       unsigned long *saddr, int is_signed, int asi);
199 
200 extern int __do_int_store(unsigned long *dst_addr, int size,
201 			  unsigned long src_val, int asi);
202 
203 static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
204 			       struct pt_regs *regs, int asi, int orig_asi)
205 {
206 	unsigned long zero = 0;
207 	unsigned long *src_val_p = &zero;
208 	unsigned long src_val;
209 
210 	if (size == 16) {
211 		size = 8;
212 		zero = (((long)(reg_num ?
213 		        (unsigned int)fetch_reg(reg_num, regs) : 0)) << 32) |
214 			(unsigned int)fetch_reg(reg_num + 1, regs);
215 	} else if (reg_num) {
216 		src_val_p = fetch_reg_addr(reg_num, regs);
217 	}
218 	src_val = *src_val_p;
219 	if (unlikely(asi != orig_asi)) {
220 		switch (size) {
221 		case 2:
222 			src_val = swab16(src_val);
223 			break;
224 		case 4:
225 			src_val = swab32(src_val);
226 			break;
227 		case 8:
228 			src_val = swab64(src_val);
229 			break;
230 		case 16:
231 		default:
232 			BUG();
233 			break;
234 		}
235 	}
236 	return __do_int_store(dst_addr, size, src_val, asi);
237 }
238 
239 static inline void advance(struct pt_regs *regs)
240 {
241 	regs->tpc   = regs->tnpc;
242 	regs->tnpc += 4;
243 	if (test_thread_flag(TIF_32BIT)) {
244 		regs->tpc &= 0xffffffff;
245 		regs->tnpc &= 0xffffffff;
246 	}
247 }
248 
249 static inline int floating_point_load_or_store_p(unsigned int insn)
250 {
251 	return (insn >> 24) & 1;
252 }
253 
254 static inline int ok_for_kernel(unsigned int insn)
255 {
256 	return !floating_point_load_or_store_p(insn);
257 }
258 
259 static void kernel_mna_trap_fault(int fixup_tstate_asi)
260 {
261 	struct pt_regs *regs = current_thread_info()->kern_una_regs;
262 	unsigned int insn = current_thread_info()->kern_una_insn;
263 	const struct exception_table_entry *entry;
264 
265 	entry = search_exception_tables(regs->tpc);
266 	if (!entry) {
267 		unsigned long address;
268 
269 		address = compute_effective_address(regs, insn,
270 						    ((insn >> 25) & 0x1f));
271         	if (address < PAGE_SIZE) {
272                 	printk(KERN_ALERT "Unable to handle kernel NULL "
273 			       "pointer dereference in mna handler");
274         	} else
275                 	printk(KERN_ALERT "Unable to handle kernel paging "
276 			       "request in mna handler");
277 	        printk(KERN_ALERT " at virtual address %016lx\n",address);
278 		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
279 			(current->mm ? CTX_HWBITS(current->mm->context) :
280 			CTX_HWBITS(current->active_mm->context)));
281 		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
282 			(current->mm ? (unsigned long) current->mm->pgd :
283 			(unsigned long) current->active_mm->pgd));
284 	        die_if_kernel("Oops", regs);
285 		/* Not reached */
286 	}
287 	regs->tpc = entry->fixup;
288 	regs->tnpc = regs->tpc + 4;
289 
290 	if (fixup_tstate_asi) {
291 		regs->tstate &= ~TSTATE_ASI;
292 		regs->tstate |= (ASI_AIUS << 24UL);
293 	}
294 }
295 
296 static void log_unaligned(struct pt_regs *regs)
297 {
298 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
299 
300 	if (__ratelimit(&ratelimit)) {
301 		printk("Kernel unaligned access at TPC[%lx] %pS\n",
302 		       regs->tpc, (void *) regs->tpc);
303 	}
304 }
305 
306 asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
307 {
308 	enum direction dir = decode_direction(insn);
309 	int size = decode_access_size(regs, insn);
310 	int orig_asi, asi;
311 
312 	current_thread_info()->kern_una_regs = regs;
313 	current_thread_info()->kern_una_insn = insn;
314 
315 	orig_asi = asi = decode_asi(insn, regs);
316 
317 	/* If this is a {get,put}_user() on an unaligned userspace pointer,
318 	 * just signal a fault and do not log the event.
319 	 */
320 	if (asi == ASI_AIUS) {
321 		kernel_mna_trap_fault(0);
322 		return;
323 	}
324 
325 	log_unaligned(regs);
326 
327 	if (!ok_for_kernel(insn) || dir == both) {
328 		printk("Unsupported unaligned load/store trap for kernel "
329 		       "at <%016lx>.\n", regs->tpc);
330 		unaligned_panic("Kernel does fpu/atomic "
331 				"unaligned load/store.", regs);
332 
333 		kernel_mna_trap_fault(0);
334 	} else {
335 		unsigned long addr, *reg_addr;
336 		int err;
337 
338 		addr = compute_effective_address(regs, insn,
339 						 ((insn >> 25) & 0x1f));
340 		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
341 		switch (asi) {
342 		case ASI_NL:
343 		case ASI_AIUPL:
344 		case ASI_AIUSL:
345 		case ASI_PL:
346 		case ASI_SL:
347 		case ASI_PNFL:
348 		case ASI_SNFL:
349 			asi &= ~0x08;
350 			break;
351 		}
352 		switch (dir) {
353 		case load:
354 			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
355 			err = do_int_load(reg_addr, size,
356 					  (unsigned long *) addr,
357 					  decode_signedness(insn), asi);
358 			if (likely(!err) && unlikely(asi != orig_asi)) {
359 				unsigned long val_in = *reg_addr;
360 				switch (size) {
361 				case 2:
362 					val_in = swab16(val_in);
363 					break;
364 				case 4:
365 					val_in = swab32(val_in);
366 					break;
367 				case 8:
368 					val_in = swab64(val_in);
369 					break;
370 				case 16:
371 				default:
372 					BUG();
373 					break;
374 				}
375 				*reg_addr = val_in;
376 			}
377 			break;
378 
379 		case store:
380 			err = do_int_store(((insn>>25)&0x1f), size,
381 					   (unsigned long *) addr, regs,
382 					   asi, orig_asi);
383 			break;
384 
385 		default:
386 			panic("Impossible kernel unaligned trap.");
387 			/* Not reached... */
388 		}
389 		if (unlikely(err))
390 			kernel_mna_trap_fault(1);
391 		else
392 			advance(regs);
393 	}
394 }
395 
396 int handle_popc(u32 insn, struct pt_regs *regs)
397 {
398 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
399 	int ret, rd = ((insn >> 25) & 0x1f);
400 	u64 value;
401 
402 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
403 	if (insn & 0x2000) {
404 		maybe_flush_windows(0, 0, rd, from_kernel);
405 		value = sign_extend_imm13(insn);
406 	} else {
407 		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
408 		value = fetch_reg(insn & 0x1f, regs);
409 	}
410 	ret = hweight64(value);
411 	if (rd < 16) {
412 		if (rd)
413 			regs->u_regs[rd] = ret;
414 	} else {
415 		unsigned long fp = regs->u_regs[UREG_FP];
416 
417 		if (!test_thread_64bit_stack(fp)) {
418 			struct reg_window32 __user *win32;
419 			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
420 			put_user(ret, &win32->locals[rd - 16]);
421 		} else {
422 			struct reg_window __user *win;
423 			win = (struct reg_window __user *)(fp + STACK_BIAS);
424 			put_user(ret, &win->locals[rd - 16]);
425 		}
426 	}
427 	advance(regs);
428 	return 1;
429 }
430 
431 extern void do_fpother(struct pt_regs *regs);
432 extern void do_privact(struct pt_regs *regs);
433 extern void sun4v_data_access_exception(struct pt_regs *regs,
434 					unsigned long addr,
435 					unsigned long type_ctx);
436 
437 int handle_ldf_stq(u32 insn, struct pt_regs *regs)
438 {
439 	unsigned long addr = compute_effective_address(regs, insn, 0);
440 	int freg;
441 	struct fpustate *f = FPUSTATE;
442 	int asi = decode_asi(insn, regs);
443 	int flag;
444 
445 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
446 
447 	save_and_clear_fpu();
448 	current_thread_info()->xfsr[0] &= ~0x1c000;
449 	if (insn & 0x200000) {
450 		/* STQ */
451 		u64 first = 0, second = 0;
452 
453 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
454 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
455 		if (freg & 3) {
456 			current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
457 			do_fpother(regs);
458 			return 0;
459 		}
460 		if (current_thread_info()->fpsaved[0] & flag) {
461 			first = *(u64 *)&f->regs[freg];
462 			second = *(u64 *)&f->regs[freg+2];
463 		}
464 		if (asi < 0x80) {
465 			do_privact(regs);
466 			return 1;
467 		}
468 		switch (asi) {
469 		case ASI_P:
470 		case ASI_S: break;
471 		case ASI_PL:
472 		case ASI_SL:
473 			{
474 				/* Need to convert endians */
475 				u64 tmp = __swab64p(&first);
476 
477 				first = __swab64p(&second);
478 				second = tmp;
479 				break;
480 			}
481 		default:
482 			if (tlb_type == hypervisor)
483 				sun4v_data_access_exception(regs, addr, 0);
484 			else
485 				spitfire_data_access_exception(regs, 0, addr);
486 			return 1;
487 		}
488 		if (put_user (first >> 32, (u32 __user *)addr) ||
489 		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
490 		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
491 		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
492 			if (tlb_type == hypervisor)
493 				sun4v_data_access_exception(regs, addr, 0);
494 			else
495 				spitfire_data_access_exception(regs, 0, addr);
496 		    	return 1;
497 		}
498 	} else {
499 		/* LDF, LDDF, LDQF */
500 		u32 data[4] __attribute__ ((aligned(8)));
501 		int size, i;
502 		int err;
503 
504 		if (asi < 0x80) {
505 			do_privact(regs);
506 			return 1;
507 		} else if (asi > ASI_SNFL) {
508 			if (tlb_type == hypervisor)
509 				sun4v_data_access_exception(regs, addr, 0);
510 			else
511 				spitfire_data_access_exception(regs, 0, addr);
512 			return 1;
513 		}
514 		switch (insn & 0x180000) {
515 		case 0x000000: size = 1; break;
516 		case 0x100000: size = 4; break;
517 		default: size = 2; break;
518 		}
519 		if (size == 1)
520 			freg = (insn >> 25) & 0x1f;
521 		else
522 			freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
523 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
524 
525 		for (i = 0; i < size; i++)
526 			data[i] = 0;
527 
528 		err = get_user (data[0], (u32 __user *) addr);
529 		if (!err) {
530 			for (i = 1; i < size; i++)
531 				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
532 		}
533 		if (err && !(asi & 0x2 /* NF */)) {
534 			if (tlb_type == hypervisor)
535 				sun4v_data_access_exception(regs, addr, 0);
536 			else
537 				spitfire_data_access_exception(regs, 0, addr);
538 			return 1;
539 		}
540 		if (asi & 0x8) /* Little */ {
541 			u64 tmp;
542 
543 			switch (size) {
544 			case 1: data[0] = le32_to_cpup(data + 0); break;
545 			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
546 				break;
547 			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
548 				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
549 				*(u64 *)(data + 2) = tmp;
550 				break;
551 			}
552 		}
553 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
554 			current_thread_info()->fpsaved[0] = FPRS_FEF;
555 			current_thread_info()->gsr[0] = 0;
556 		}
557 		if (!(current_thread_info()->fpsaved[0] & flag)) {
558 			if (freg < 32)
559 				memset(f->regs, 0, 32*sizeof(u32));
560 			else
561 				memset(f->regs+32, 0, 32*sizeof(u32));
562 		}
563 		memcpy(f->regs + freg, data, size * 4);
564 		current_thread_info()->fpsaved[0] |= flag;
565 	}
566 	advance(regs);
567 	return 1;
568 }
569 
570 void handle_ld_nf(u32 insn, struct pt_regs *regs)
571 {
572 	int rd = ((insn >> 25) & 0x1f);
573 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
574 	unsigned long *reg;
575 
576 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
577 
578 	maybe_flush_windows(0, 0, rd, from_kernel);
579 	reg = fetch_reg_addr(rd, regs);
580 	if (from_kernel || rd < 16) {
581 		reg[0] = 0;
582 		if ((insn & 0x780000) == 0x180000)
583 			reg[1] = 0;
584 	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
585 		put_user(0, (int __user *) reg);
586 		if ((insn & 0x780000) == 0x180000)
587 			put_user(0, ((int __user *) reg) + 1);
588 	} else {
589 		put_user(0, (unsigned long __user *) reg);
590 		if ((insn & 0x780000) == 0x180000)
591 			put_user(0, (unsigned long __user *) reg + 1);
592 	}
593 	advance(regs);
594 }
595 
596 void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
597 {
598 	enum ctx_state prev_state = exception_enter();
599 	unsigned long pc = regs->tpc;
600 	unsigned long tstate = regs->tstate;
601 	u32 insn;
602 	u64 value;
603 	u8 freg;
604 	int flag;
605 	struct fpustate *f = FPUSTATE;
606 
607 	if (tstate & TSTATE_PRIV)
608 		die_if_kernel("lddfmna from kernel", regs);
609 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
610 	if (test_thread_flag(TIF_32BIT))
611 		pc = (u32)pc;
612 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
613 		int asi = decode_asi(insn, regs);
614 		u32 first, second;
615 		int err;
616 
617 		if ((asi > ASI_SNFL) ||
618 		    (asi < ASI_P))
619 			goto daex;
620 		first = second = 0;
621 		err = get_user(first, (u32 __user *)sfar);
622 		if (!err)
623 			err = get_user(second, (u32 __user *)(sfar + 4));
624 		if (err) {
625 			if (!(asi & 0x2))
626 				goto daex;
627 			first = second = 0;
628 		}
629 		save_and_clear_fpu();
630 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
631 		value = (((u64)first) << 32) | second;
632 		if (asi & 0x8) /* Little */
633 			value = __swab64p(&value);
634 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
635 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
636 			current_thread_info()->fpsaved[0] = FPRS_FEF;
637 			current_thread_info()->gsr[0] = 0;
638 		}
639 		if (!(current_thread_info()->fpsaved[0] & flag)) {
640 			if (freg < 32)
641 				memset(f->regs, 0, 32*sizeof(u32));
642 			else
643 				memset(f->regs+32, 0, 32*sizeof(u32));
644 		}
645 		*(u64 *)(f->regs + freg) = value;
646 		current_thread_info()->fpsaved[0] |= flag;
647 	} else {
648 daex:
649 		if (tlb_type == hypervisor)
650 			sun4v_data_access_exception(regs, sfar, sfsr);
651 		else
652 			spitfire_data_access_exception(regs, sfsr, sfar);
653 		goto out;
654 	}
655 	advance(regs);
656 out:
657 	exception_exit(prev_state);
658 }
659 
660 void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
661 {
662 	enum ctx_state prev_state = exception_enter();
663 	unsigned long pc = regs->tpc;
664 	unsigned long tstate = regs->tstate;
665 	u32 insn;
666 	u64 value;
667 	u8 freg;
668 	int flag;
669 	struct fpustate *f = FPUSTATE;
670 
671 	if (tstate & TSTATE_PRIV)
672 		die_if_kernel("stdfmna from kernel", regs);
673 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
674 	if (test_thread_flag(TIF_32BIT))
675 		pc = (u32)pc;
676 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
677 		int asi = decode_asi(insn, regs);
678 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
679 		value = 0;
680 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
681 		if ((asi > ASI_SNFL) ||
682 		    (asi < ASI_P))
683 			goto daex;
684 		save_and_clear_fpu();
685 		if (current_thread_info()->fpsaved[0] & flag)
686 			value = *(u64 *)&f->regs[freg];
687 		switch (asi) {
688 		case ASI_P:
689 		case ASI_S: break;
690 		case ASI_PL:
691 		case ASI_SL:
692 			value = __swab64p(&value); break;
693 		default: goto daex;
694 		}
695 		if (put_user (value >> 32, (u32 __user *) sfar) ||
696 		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
697 			goto daex;
698 	} else {
699 daex:
700 		if (tlb_type == hypervisor)
701 			sun4v_data_access_exception(regs, sfar, sfsr);
702 		else
703 			spitfire_data_access_exception(regs, sfsr, sfar);
704 		goto out;
705 	}
706 	advance(regs);
707 out:
708 	exception_exit(prev_state);
709 }
710