xref: /openbmc/linux/arch/sparc/kernel/unaligned_64.c (revision d0b73b48)
1 /*
2  * unaligned.c: Unaligned load/store trap handling with special
3  *              cases for the kernel to do them more quickly.
4  *
5  * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
6  * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 
10 #include <linux/jiffies.h>
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <asm/asi.h>
16 #include <asm/ptrace.h>
17 #include <asm/pstate.h>
18 #include <asm/processor.h>
19 #include <asm/uaccess.h>
20 #include <linux/smp.h>
21 #include <linux/bitops.h>
22 #include <linux/perf_event.h>
23 #include <linux/ratelimit.h>
24 #include <asm/fpumacro.h>
25 #include <asm/cacheflush.h>
26 
27 enum direction {
28 	load,    /* ld, ldd, ldh, ldsh */
29 	store,   /* st, std, sth, stsh */
30 	both,    /* Swap, ldstub, cas, ... */
31 	fpld,
32 	fpst,
33 	invalid,
34 };
35 
36 static inline enum direction decode_direction(unsigned int insn)
37 {
38 	unsigned long tmp = (insn >> 21) & 1;
39 
40 	if (!tmp)
41 		return load;
42 	else {
43 		switch ((insn>>19)&0xf) {
44 		case 15: /* swap* */
45 			return both;
46 		default:
47 			return store;
48 		}
49 	}
50 }
51 
52 /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
53 static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
54 {
55 	unsigned int tmp;
56 
57 	tmp = ((insn >> 19) & 0xf);
58 	if (tmp == 11 || tmp == 14) /* ldx/stx */
59 		return 8;
60 	tmp &= 3;
61 	if (!tmp)
62 		return 4;
63 	else if (tmp == 3)
64 		return 16;	/* ldd/std - Although it is actually 8 */
65 	else if (tmp == 2)
66 		return 2;
67 	else {
68 		printk("Impossible unaligned trap. insn=%08x\n", insn);
69 		die_if_kernel("Byte sized unaligned access?!?!", regs);
70 
71 		/* GCC should never warn that control reaches the end
72 		 * of this function without returning a value because
73 		 * die_if_kernel() is marked with attribute 'noreturn'.
74 		 * Alas, some versions do...
75 		 */
76 
77 		return 0;
78 	}
79 }
80 
81 static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
82 {
83 	if (insn & 0x800000) {
84 		if (insn & 0x2000)
85 			return (unsigned char)(regs->tstate >> 24);	/* %asi */
86 		else
87 			return (unsigned char)(insn >> 5);		/* imm_asi */
88 	} else
89 		return ASI_P;
90 }
91 
92 /* 0x400000 = signed, 0 = unsigned */
93 static inline int decode_signedness(unsigned int insn)
94 {
95 	return (insn & 0x400000);
96 }
97 
98 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
99 				       unsigned int rd, int from_kernel)
100 {
101 	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
102 		if (from_kernel != 0)
103 			__asm__ __volatile__("flushw");
104 		else
105 			flushw_user();
106 	}
107 }
108 
109 static inline long sign_extend_imm13(long imm)
110 {
111 	return imm << 51 >> 51;
112 }
113 
114 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
115 {
116 	unsigned long value, fp;
117 
118 	if (reg < 16)
119 		return (!reg ? 0 : regs->u_regs[reg]);
120 
121 	fp = regs->u_regs[UREG_FP];
122 
123 	if (regs->tstate & TSTATE_PRIV) {
124 		struct reg_window *win;
125 		win = (struct reg_window *)(fp + STACK_BIAS);
126 		value = win->locals[reg - 16];
127 	} else if (!test_thread_64bit_stack(fp)) {
128 		struct reg_window32 __user *win32;
129 		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
130 		get_user(value, &win32->locals[reg - 16]);
131 	} else {
132 		struct reg_window __user *win;
133 		win = (struct reg_window __user *)(fp + STACK_BIAS);
134 		get_user(value, &win->locals[reg - 16]);
135 	}
136 	return value;
137 }
138 
139 static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
140 {
141 	unsigned long fp;
142 
143 	if (reg < 16)
144 		return &regs->u_regs[reg];
145 
146 	fp = regs->u_regs[UREG_FP];
147 
148 	if (regs->tstate & TSTATE_PRIV) {
149 		struct reg_window *win;
150 		win = (struct reg_window *)(fp + STACK_BIAS);
151 		return &win->locals[reg - 16];
152 	} else if (!test_thread_64bit_stack(fp)) {
153 		struct reg_window32 *win32;
154 		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
155 		return (unsigned long *)&win32->locals[reg - 16];
156 	} else {
157 		struct reg_window *win;
158 		win = (struct reg_window *)(fp + STACK_BIAS);
159 		return &win->locals[reg - 16];
160 	}
161 }
162 
163 unsigned long compute_effective_address(struct pt_regs *regs,
164 					unsigned int insn, unsigned int rd)
165 {
166 	unsigned int rs1 = (insn >> 14) & 0x1f;
167 	unsigned int rs2 = insn & 0x1f;
168 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
169 
170 	if (insn & 0x2000) {
171 		maybe_flush_windows(rs1, 0, rd, from_kernel);
172 		return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
173 	} else {
174 		maybe_flush_windows(rs1, rs2, rd, from_kernel);
175 		return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
176 	}
177 }
178 
179 /* This is just to make gcc think die_if_kernel does return... */
180 static void __used unaligned_panic(char *str, struct pt_regs *regs)
181 {
182 	die_if_kernel(str, regs);
183 }
184 
185 extern int do_int_load(unsigned long *dest_reg, int size,
186 		       unsigned long *saddr, int is_signed, int asi);
187 
188 extern int __do_int_store(unsigned long *dst_addr, int size,
189 			  unsigned long src_val, int asi);
190 
191 static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
192 			       struct pt_regs *regs, int asi, int orig_asi)
193 {
194 	unsigned long zero = 0;
195 	unsigned long *src_val_p = &zero;
196 	unsigned long src_val;
197 
198 	if (size == 16) {
199 		size = 8;
200 		zero = (((long)(reg_num ?
201 		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
202 			(unsigned)fetch_reg(reg_num + 1, regs);
203 	} else if (reg_num) {
204 		src_val_p = fetch_reg_addr(reg_num, regs);
205 	}
206 	src_val = *src_val_p;
207 	if (unlikely(asi != orig_asi)) {
208 		switch (size) {
209 		case 2:
210 			src_val = swab16(src_val);
211 			break;
212 		case 4:
213 			src_val = swab32(src_val);
214 			break;
215 		case 8:
216 			src_val = swab64(src_val);
217 			break;
218 		case 16:
219 		default:
220 			BUG();
221 			break;
222 		}
223 	}
224 	return __do_int_store(dst_addr, size, src_val, asi);
225 }
226 
227 static inline void advance(struct pt_regs *regs)
228 {
229 	regs->tpc   = regs->tnpc;
230 	regs->tnpc += 4;
231 	if (test_thread_flag(TIF_32BIT)) {
232 		regs->tpc &= 0xffffffff;
233 		regs->tnpc &= 0xffffffff;
234 	}
235 }
236 
237 static inline int floating_point_load_or_store_p(unsigned int insn)
238 {
239 	return (insn >> 24) & 1;
240 }
241 
242 static inline int ok_for_kernel(unsigned int insn)
243 {
244 	return !floating_point_load_or_store_p(insn);
245 }
246 
247 static void kernel_mna_trap_fault(int fixup_tstate_asi)
248 {
249 	struct pt_regs *regs = current_thread_info()->kern_una_regs;
250 	unsigned int insn = current_thread_info()->kern_una_insn;
251 	const struct exception_table_entry *entry;
252 
253 	entry = search_exception_tables(regs->tpc);
254 	if (!entry) {
255 		unsigned long address;
256 
257 		address = compute_effective_address(regs, insn,
258 						    ((insn >> 25) & 0x1f));
259         	if (address < PAGE_SIZE) {
260                 	printk(KERN_ALERT "Unable to handle kernel NULL "
261 			       "pointer dereference in mna handler");
262         	} else
263                 	printk(KERN_ALERT "Unable to handle kernel paging "
264 			       "request in mna handler");
265 	        printk(KERN_ALERT " at virtual address %016lx\n",address);
266 		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
267 			(current->mm ? CTX_HWBITS(current->mm->context) :
268 			CTX_HWBITS(current->active_mm->context)));
269 		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
270 			(current->mm ? (unsigned long) current->mm->pgd :
271 			(unsigned long) current->active_mm->pgd));
272 	        die_if_kernel("Oops", regs);
273 		/* Not reached */
274 	}
275 	regs->tpc = entry->fixup;
276 	regs->tnpc = regs->tpc + 4;
277 
278 	if (fixup_tstate_asi) {
279 		regs->tstate &= ~TSTATE_ASI;
280 		regs->tstate |= (ASI_AIUS << 24UL);
281 	}
282 }
283 
284 static void log_unaligned(struct pt_regs *regs)
285 {
286 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
287 
288 	if (__ratelimit(&ratelimit)) {
289 		printk("Kernel unaligned access at TPC[%lx] %pS\n",
290 		       regs->tpc, (void *) regs->tpc);
291 	}
292 }
293 
294 asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
295 {
296 	enum direction dir = decode_direction(insn);
297 	int size = decode_access_size(regs, insn);
298 	int orig_asi, asi;
299 
300 	current_thread_info()->kern_una_regs = regs;
301 	current_thread_info()->kern_una_insn = insn;
302 
303 	orig_asi = asi = decode_asi(insn, regs);
304 
305 	/* If this is a {get,put}_user() on an unaligned userspace pointer,
306 	 * just signal a fault and do not log the event.
307 	 */
308 	if (asi == ASI_AIUS) {
309 		kernel_mna_trap_fault(0);
310 		return;
311 	}
312 
313 	log_unaligned(regs);
314 
315 	if (!ok_for_kernel(insn) || dir == both) {
316 		printk("Unsupported unaligned load/store trap for kernel "
317 		       "at <%016lx>.\n", regs->tpc);
318 		unaligned_panic("Kernel does fpu/atomic "
319 				"unaligned load/store.", regs);
320 
321 		kernel_mna_trap_fault(0);
322 	} else {
323 		unsigned long addr, *reg_addr;
324 		int err;
325 
326 		addr = compute_effective_address(regs, insn,
327 						 ((insn >> 25) & 0x1f));
328 		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
329 		switch (asi) {
330 		case ASI_NL:
331 		case ASI_AIUPL:
332 		case ASI_AIUSL:
333 		case ASI_PL:
334 		case ASI_SL:
335 		case ASI_PNFL:
336 		case ASI_SNFL:
337 			asi &= ~0x08;
338 			break;
339 		}
340 		switch (dir) {
341 		case load:
342 			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
343 			err = do_int_load(reg_addr, size,
344 					  (unsigned long *) addr,
345 					  decode_signedness(insn), asi);
346 			if (likely(!err) && unlikely(asi != orig_asi)) {
347 				unsigned long val_in = *reg_addr;
348 				switch (size) {
349 				case 2:
350 					val_in = swab16(val_in);
351 					break;
352 				case 4:
353 					val_in = swab32(val_in);
354 					break;
355 				case 8:
356 					val_in = swab64(val_in);
357 					break;
358 				case 16:
359 				default:
360 					BUG();
361 					break;
362 				}
363 				*reg_addr = val_in;
364 			}
365 			break;
366 
367 		case store:
368 			err = do_int_store(((insn>>25)&0x1f), size,
369 					   (unsigned long *) addr, regs,
370 					   asi, orig_asi);
371 			break;
372 
373 		default:
374 			panic("Impossible kernel unaligned trap.");
375 			/* Not reached... */
376 		}
377 		if (unlikely(err))
378 			kernel_mna_trap_fault(1);
379 		else
380 			advance(regs);
381 	}
382 }
383 
384 int handle_popc(u32 insn, struct pt_regs *regs)
385 {
386 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
387 	int ret, rd = ((insn >> 25) & 0x1f);
388 	u64 value;
389 
390 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
391 	if (insn & 0x2000) {
392 		maybe_flush_windows(0, 0, rd, from_kernel);
393 		value = sign_extend_imm13(insn);
394 	} else {
395 		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
396 		value = fetch_reg(insn & 0x1f, regs);
397 	}
398 	ret = hweight64(value);
399 	if (rd < 16) {
400 		if (rd)
401 			regs->u_regs[rd] = ret;
402 	} else {
403 		unsigned long fp = regs->u_regs[UREG_FP];
404 
405 		if (!test_thread_64bit_stack(fp)) {
406 			struct reg_window32 __user *win32;
407 			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
408 			put_user(ret, &win32->locals[rd - 16]);
409 		} else {
410 			struct reg_window __user *win;
411 			win = (struct reg_window __user *)(fp + STACK_BIAS);
412 			put_user(ret, &win->locals[rd - 16]);
413 		}
414 	}
415 	advance(regs);
416 	return 1;
417 }
418 
419 extern void do_fpother(struct pt_regs *regs);
420 extern void do_privact(struct pt_regs *regs);
421 extern void spitfire_data_access_exception(struct pt_regs *regs,
422 					   unsigned long sfsr,
423 					   unsigned long sfar);
424 extern void sun4v_data_access_exception(struct pt_regs *regs,
425 					unsigned long addr,
426 					unsigned long type_ctx);
427 
428 int handle_ldf_stq(u32 insn, struct pt_regs *regs)
429 {
430 	unsigned long addr = compute_effective_address(regs, insn, 0);
431 	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
432 	struct fpustate *f = FPUSTATE;
433 	int asi = decode_asi(insn, regs);
434 	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
435 
436 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
437 
438 	save_and_clear_fpu();
439 	current_thread_info()->xfsr[0] &= ~0x1c000;
440 	if (freg & 3) {
441 		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
442 		do_fpother(regs);
443 		return 0;
444 	}
445 	if (insn & 0x200000) {
446 		/* STQ */
447 		u64 first = 0, second = 0;
448 
449 		if (current_thread_info()->fpsaved[0] & flag) {
450 			first = *(u64 *)&f->regs[freg];
451 			second = *(u64 *)&f->regs[freg+2];
452 		}
453 		if (asi < 0x80) {
454 			do_privact(regs);
455 			return 1;
456 		}
457 		switch (asi) {
458 		case ASI_P:
459 		case ASI_S: break;
460 		case ASI_PL:
461 		case ASI_SL:
462 			{
463 				/* Need to convert endians */
464 				u64 tmp = __swab64p(&first);
465 
466 				first = __swab64p(&second);
467 				second = tmp;
468 				break;
469 			}
470 		default:
471 			if (tlb_type == hypervisor)
472 				sun4v_data_access_exception(regs, addr, 0);
473 			else
474 				spitfire_data_access_exception(regs, 0, addr);
475 			return 1;
476 		}
477 		if (put_user (first >> 32, (u32 __user *)addr) ||
478 		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
479 		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
480 		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
481 			if (tlb_type == hypervisor)
482 				sun4v_data_access_exception(regs, addr, 0);
483 			else
484 				spitfire_data_access_exception(regs, 0, addr);
485 		    	return 1;
486 		}
487 	} else {
488 		/* LDF, LDDF, LDQF */
489 		u32 data[4] __attribute__ ((aligned(8)));
490 		int size, i;
491 		int err;
492 
493 		if (asi < 0x80) {
494 			do_privact(regs);
495 			return 1;
496 		} else if (asi > ASI_SNFL) {
497 			if (tlb_type == hypervisor)
498 				sun4v_data_access_exception(regs, addr, 0);
499 			else
500 				spitfire_data_access_exception(regs, 0, addr);
501 			return 1;
502 		}
503 		switch (insn & 0x180000) {
504 		case 0x000000: size = 1; break;
505 		case 0x100000: size = 4; break;
506 		default: size = 2; break;
507 		}
508 		for (i = 0; i < size; i++)
509 			data[i] = 0;
510 
511 		err = get_user (data[0], (u32 __user *) addr);
512 		if (!err) {
513 			for (i = 1; i < size; i++)
514 				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
515 		}
516 		if (err && !(asi & 0x2 /* NF */)) {
517 			if (tlb_type == hypervisor)
518 				sun4v_data_access_exception(regs, addr, 0);
519 			else
520 				spitfire_data_access_exception(regs, 0, addr);
521 			return 1;
522 		}
523 		if (asi & 0x8) /* Little */ {
524 			u64 tmp;
525 
526 			switch (size) {
527 			case 1: data[0] = le32_to_cpup(data + 0); break;
528 			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
529 				break;
530 			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
531 				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
532 				*(u64 *)(data + 2) = tmp;
533 				break;
534 			}
535 		}
536 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
537 			current_thread_info()->fpsaved[0] = FPRS_FEF;
538 			current_thread_info()->gsr[0] = 0;
539 		}
540 		if (!(current_thread_info()->fpsaved[0] & flag)) {
541 			if (freg < 32)
542 				memset(f->regs, 0, 32*sizeof(u32));
543 			else
544 				memset(f->regs+32, 0, 32*sizeof(u32));
545 		}
546 		memcpy(f->regs + freg, data, size * 4);
547 		current_thread_info()->fpsaved[0] |= flag;
548 	}
549 	advance(regs);
550 	return 1;
551 }
552 
553 void handle_ld_nf(u32 insn, struct pt_regs *regs)
554 {
555 	int rd = ((insn >> 25) & 0x1f);
556 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
557 	unsigned long *reg;
558 
559 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
560 
561 	maybe_flush_windows(0, 0, rd, from_kernel);
562 	reg = fetch_reg_addr(rd, regs);
563 	if (from_kernel || rd < 16) {
564 		reg[0] = 0;
565 		if ((insn & 0x780000) == 0x180000)
566 			reg[1] = 0;
567 	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
568 		put_user(0, (int __user *) reg);
569 		if ((insn & 0x780000) == 0x180000)
570 			put_user(0, ((int __user *) reg) + 1);
571 	} else {
572 		put_user(0, (unsigned long __user *) reg);
573 		if ((insn & 0x780000) == 0x180000)
574 			put_user(0, (unsigned long __user *) reg + 1);
575 	}
576 	advance(regs);
577 }
578 
579 void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
580 {
581 	unsigned long pc = regs->tpc;
582 	unsigned long tstate = regs->tstate;
583 	u32 insn;
584 	u64 value;
585 	u8 freg;
586 	int flag;
587 	struct fpustate *f = FPUSTATE;
588 
589 	if (tstate & TSTATE_PRIV)
590 		die_if_kernel("lddfmna from kernel", regs);
591 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
592 	if (test_thread_flag(TIF_32BIT))
593 		pc = (u32)pc;
594 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
595 		int asi = decode_asi(insn, regs);
596 		u32 first, second;
597 		int err;
598 
599 		if ((asi > ASI_SNFL) ||
600 		    (asi < ASI_P))
601 			goto daex;
602 		first = second = 0;
603 		err = get_user(first, (u32 __user *)sfar);
604 		if (!err)
605 			err = get_user(second, (u32 __user *)(sfar + 4));
606 		if (err) {
607 			if (!(asi & 0x2))
608 				goto daex;
609 			first = second = 0;
610 		}
611 		save_and_clear_fpu();
612 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
613 		value = (((u64)first) << 32) | second;
614 		if (asi & 0x8) /* Little */
615 			value = __swab64p(&value);
616 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
617 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
618 			current_thread_info()->fpsaved[0] = FPRS_FEF;
619 			current_thread_info()->gsr[0] = 0;
620 		}
621 		if (!(current_thread_info()->fpsaved[0] & flag)) {
622 			if (freg < 32)
623 				memset(f->regs, 0, 32*sizeof(u32));
624 			else
625 				memset(f->regs+32, 0, 32*sizeof(u32));
626 		}
627 		*(u64 *)(f->regs + freg) = value;
628 		current_thread_info()->fpsaved[0] |= flag;
629 	} else {
630 daex:
631 		if (tlb_type == hypervisor)
632 			sun4v_data_access_exception(regs, sfar, sfsr);
633 		else
634 			spitfire_data_access_exception(regs, sfsr, sfar);
635 		return;
636 	}
637 	advance(regs);
638 }
639 
640 void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
641 {
642 	unsigned long pc = regs->tpc;
643 	unsigned long tstate = regs->tstate;
644 	u32 insn;
645 	u64 value;
646 	u8 freg;
647 	int flag;
648 	struct fpustate *f = FPUSTATE;
649 
650 	if (tstate & TSTATE_PRIV)
651 		die_if_kernel("stdfmna from kernel", regs);
652 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
653 	if (test_thread_flag(TIF_32BIT))
654 		pc = (u32)pc;
655 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
656 		int asi = decode_asi(insn, regs);
657 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
658 		value = 0;
659 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
660 		if ((asi > ASI_SNFL) ||
661 		    (asi < ASI_P))
662 			goto daex;
663 		save_and_clear_fpu();
664 		if (current_thread_info()->fpsaved[0] & flag)
665 			value = *(u64 *)&f->regs[freg];
666 		switch (asi) {
667 		case ASI_P:
668 		case ASI_S: break;
669 		case ASI_PL:
670 		case ASI_SL:
671 			value = __swab64p(&value); break;
672 		default: goto daex;
673 		}
674 		if (put_user (value >> 32, (u32 __user *) sfar) ||
675 		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
676 			goto daex;
677 	} else {
678 daex:
679 		if (tlb_type == hypervisor)
680 			sun4v_data_access_exception(regs, sfar, sfsr);
681 		else
682 			spitfire_data_access_exception(regs, sfsr, sfar);
683 		return;
684 	}
685 	advance(regs);
686 }
687