xref: /openbmc/linux/arch/sparc/kernel/unaligned_64.c (revision 12eb4683)
1 /*
2  * unaligned.c: Unaligned load/store trap handling with special
3  *              cases for the kernel to do them more quickly.
4  *
5  * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
6  * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 
10 #include <linux/jiffies.h>
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <asm/asi.h>
16 #include <asm/ptrace.h>
17 #include <asm/pstate.h>
18 #include <asm/processor.h>
19 #include <asm/uaccess.h>
20 #include <linux/smp.h>
21 #include <linux/bitops.h>
22 #include <linux/perf_event.h>
23 #include <linux/ratelimit.h>
24 #include <linux/context_tracking.h>
25 #include <asm/fpumacro.h>
26 #include <asm/cacheflush.h>
27 
28 #include "entry.h"
29 
30 enum direction {
31 	load,    /* ld, ldd, ldh, ldsh */
32 	store,   /* st, std, sth, stsh */
33 	both,    /* Swap, ldstub, cas, ... */
34 	fpld,
35 	fpst,
36 	invalid,
37 };
38 
39 static inline enum direction decode_direction(unsigned int insn)
40 {
41 	unsigned long tmp = (insn >> 21) & 1;
42 
43 	if (!tmp)
44 		return load;
45 	else {
46 		switch ((insn>>19)&0xf) {
47 		case 15: /* swap* */
48 			return both;
49 		default:
50 			return store;
51 		}
52 	}
53 }
54 
55 /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
56 static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
57 {
58 	unsigned int tmp;
59 
60 	tmp = ((insn >> 19) & 0xf);
61 	if (tmp == 11 || tmp == 14) /* ldx/stx */
62 		return 8;
63 	tmp &= 3;
64 	if (!tmp)
65 		return 4;
66 	else if (tmp == 3)
67 		return 16;	/* ldd/std - Although it is actually 8 */
68 	else if (tmp == 2)
69 		return 2;
70 	else {
71 		printk("Impossible unaligned trap. insn=%08x\n", insn);
72 		die_if_kernel("Byte sized unaligned access?!?!", regs);
73 
74 		/* GCC should never warn that control reaches the end
75 		 * of this function without returning a value because
76 		 * die_if_kernel() is marked with attribute 'noreturn'.
77 		 * Alas, some versions do...
78 		 */
79 
80 		return 0;
81 	}
82 }
83 
84 static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
85 {
86 	if (insn & 0x800000) {
87 		if (insn & 0x2000)
88 			return (unsigned char)(regs->tstate >> 24);	/* %asi */
89 		else
90 			return (unsigned char)(insn >> 5);		/* imm_asi */
91 	} else
92 		return ASI_P;
93 }
94 
95 /* 0x400000 = signed, 0 = unsigned */
96 static inline int decode_signedness(unsigned int insn)
97 {
98 	return (insn & 0x400000);
99 }
100 
101 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
102 				       unsigned int rd, int from_kernel)
103 {
104 	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
105 		if (from_kernel != 0)
106 			__asm__ __volatile__("flushw");
107 		else
108 			flushw_user();
109 	}
110 }
111 
112 static inline long sign_extend_imm13(long imm)
113 {
114 	return imm << 51 >> 51;
115 }
116 
117 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
118 {
119 	unsigned long value, fp;
120 
121 	if (reg < 16)
122 		return (!reg ? 0 : regs->u_regs[reg]);
123 
124 	fp = regs->u_regs[UREG_FP];
125 
126 	if (regs->tstate & TSTATE_PRIV) {
127 		struct reg_window *win;
128 		win = (struct reg_window *)(fp + STACK_BIAS);
129 		value = win->locals[reg - 16];
130 	} else if (!test_thread_64bit_stack(fp)) {
131 		struct reg_window32 __user *win32;
132 		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
133 		get_user(value, &win32->locals[reg - 16]);
134 	} else {
135 		struct reg_window __user *win;
136 		win = (struct reg_window __user *)(fp + STACK_BIAS);
137 		get_user(value, &win->locals[reg - 16]);
138 	}
139 	return value;
140 }
141 
142 static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
143 {
144 	unsigned long fp;
145 
146 	if (reg < 16)
147 		return &regs->u_regs[reg];
148 
149 	fp = regs->u_regs[UREG_FP];
150 
151 	if (regs->tstate & TSTATE_PRIV) {
152 		struct reg_window *win;
153 		win = (struct reg_window *)(fp + STACK_BIAS);
154 		return &win->locals[reg - 16];
155 	} else if (!test_thread_64bit_stack(fp)) {
156 		struct reg_window32 *win32;
157 		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
158 		return (unsigned long *)&win32->locals[reg - 16];
159 	} else {
160 		struct reg_window *win;
161 		win = (struct reg_window *)(fp + STACK_BIAS);
162 		return &win->locals[reg - 16];
163 	}
164 }
165 
166 unsigned long compute_effective_address(struct pt_regs *regs,
167 					unsigned int insn, unsigned int rd)
168 {
169 	unsigned int rs1 = (insn >> 14) & 0x1f;
170 	unsigned int rs2 = insn & 0x1f;
171 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
172 
173 	if (insn & 0x2000) {
174 		maybe_flush_windows(rs1, 0, rd, from_kernel);
175 		return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
176 	} else {
177 		maybe_flush_windows(rs1, rs2, rd, from_kernel);
178 		return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
179 	}
180 }
181 
182 /* This is just to make gcc think die_if_kernel does return... */
183 static void __used unaligned_panic(char *str, struct pt_regs *regs)
184 {
185 	die_if_kernel(str, regs);
186 }
187 
188 extern int do_int_load(unsigned long *dest_reg, int size,
189 		       unsigned long *saddr, int is_signed, int asi);
190 
191 extern int __do_int_store(unsigned long *dst_addr, int size,
192 			  unsigned long src_val, int asi);
193 
194 static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
195 			       struct pt_regs *regs, int asi, int orig_asi)
196 {
197 	unsigned long zero = 0;
198 	unsigned long *src_val_p = &zero;
199 	unsigned long src_val;
200 
201 	if (size == 16) {
202 		size = 8;
203 		zero = (((long)(reg_num ?
204 		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
205 			(unsigned)fetch_reg(reg_num + 1, regs);
206 	} else if (reg_num) {
207 		src_val_p = fetch_reg_addr(reg_num, regs);
208 	}
209 	src_val = *src_val_p;
210 	if (unlikely(asi != orig_asi)) {
211 		switch (size) {
212 		case 2:
213 			src_val = swab16(src_val);
214 			break;
215 		case 4:
216 			src_val = swab32(src_val);
217 			break;
218 		case 8:
219 			src_val = swab64(src_val);
220 			break;
221 		case 16:
222 		default:
223 			BUG();
224 			break;
225 		}
226 	}
227 	return __do_int_store(dst_addr, size, src_val, asi);
228 }
229 
230 static inline void advance(struct pt_regs *regs)
231 {
232 	regs->tpc   = regs->tnpc;
233 	regs->tnpc += 4;
234 	if (test_thread_flag(TIF_32BIT)) {
235 		regs->tpc &= 0xffffffff;
236 		regs->tnpc &= 0xffffffff;
237 	}
238 }
239 
240 static inline int floating_point_load_or_store_p(unsigned int insn)
241 {
242 	return (insn >> 24) & 1;
243 }
244 
245 static inline int ok_for_kernel(unsigned int insn)
246 {
247 	return !floating_point_load_or_store_p(insn);
248 }
249 
250 static void kernel_mna_trap_fault(int fixup_tstate_asi)
251 {
252 	struct pt_regs *regs = current_thread_info()->kern_una_regs;
253 	unsigned int insn = current_thread_info()->kern_una_insn;
254 	const struct exception_table_entry *entry;
255 
256 	entry = search_exception_tables(regs->tpc);
257 	if (!entry) {
258 		unsigned long address;
259 
260 		address = compute_effective_address(regs, insn,
261 						    ((insn >> 25) & 0x1f));
262         	if (address < PAGE_SIZE) {
263                 	printk(KERN_ALERT "Unable to handle kernel NULL "
264 			       "pointer dereference in mna handler");
265         	} else
266                 	printk(KERN_ALERT "Unable to handle kernel paging "
267 			       "request in mna handler");
268 	        printk(KERN_ALERT " at virtual address %016lx\n",address);
269 		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
270 			(current->mm ? CTX_HWBITS(current->mm->context) :
271 			CTX_HWBITS(current->active_mm->context)));
272 		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
273 			(current->mm ? (unsigned long) current->mm->pgd :
274 			(unsigned long) current->active_mm->pgd));
275 	        die_if_kernel("Oops", regs);
276 		/* Not reached */
277 	}
278 	regs->tpc = entry->fixup;
279 	regs->tnpc = regs->tpc + 4;
280 
281 	if (fixup_tstate_asi) {
282 		regs->tstate &= ~TSTATE_ASI;
283 		regs->tstate |= (ASI_AIUS << 24UL);
284 	}
285 }
286 
287 static void log_unaligned(struct pt_regs *regs)
288 {
289 	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
290 
291 	if (__ratelimit(&ratelimit)) {
292 		printk("Kernel unaligned access at TPC[%lx] %pS\n",
293 		       regs->tpc, (void *) regs->tpc);
294 	}
295 }
296 
297 asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
298 {
299 	enum direction dir = decode_direction(insn);
300 	int size = decode_access_size(regs, insn);
301 	int orig_asi, asi;
302 
303 	current_thread_info()->kern_una_regs = regs;
304 	current_thread_info()->kern_una_insn = insn;
305 
306 	orig_asi = asi = decode_asi(insn, regs);
307 
308 	/* If this is a {get,put}_user() on an unaligned userspace pointer,
309 	 * just signal a fault and do not log the event.
310 	 */
311 	if (asi == ASI_AIUS) {
312 		kernel_mna_trap_fault(0);
313 		return;
314 	}
315 
316 	log_unaligned(regs);
317 
318 	if (!ok_for_kernel(insn) || dir == both) {
319 		printk("Unsupported unaligned load/store trap for kernel "
320 		       "at <%016lx>.\n", regs->tpc);
321 		unaligned_panic("Kernel does fpu/atomic "
322 				"unaligned load/store.", regs);
323 
324 		kernel_mna_trap_fault(0);
325 	} else {
326 		unsigned long addr, *reg_addr;
327 		int err;
328 
329 		addr = compute_effective_address(regs, insn,
330 						 ((insn >> 25) & 0x1f));
331 		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
332 		switch (asi) {
333 		case ASI_NL:
334 		case ASI_AIUPL:
335 		case ASI_AIUSL:
336 		case ASI_PL:
337 		case ASI_SL:
338 		case ASI_PNFL:
339 		case ASI_SNFL:
340 			asi &= ~0x08;
341 			break;
342 		}
343 		switch (dir) {
344 		case load:
345 			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
346 			err = do_int_load(reg_addr, size,
347 					  (unsigned long *) addr,
348 					  decode_signedness(insn), asi);
349 			if (likely(!err) && unlikely(asi != orig_asi)) {
350 				unsigned long val_in = *reg_addr;
351 				switch (size) {
352 				case 2:
353 					val_in = swab16(val_in);
354 					break;
355 				case 4:
356 					val_in = swab32(val_in);
357 					break;
358 				case 8:
359 					val_in = swab64(val_in);
360 					break;
361 				case 16:
362 				default:
363 					BUG();
364 					break;
365 				}
366 				*reg_addr = val_in;
367 			}
368 			break;
369 
370 		case store:
371 			err = do_int_store(((insn>>25)&0x1f), size,
372 					   (unsigned long *) addr, regs,
373 					   asi, orig_asi);
374 			break;
375 
376 		default:
377 			panic("Impossible kernel unaligned trap.");
378 			/* Not reached... */
379 		}
380 		if (unlikely(err))
381 			kernel_mna_trap_fault(1);
382 		else
383 			advance(regs);
384 	}
385 }
386 
387 int handle_popc(u32 insn, struct pt_regs *regs)
388 {
389 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
390 	int ret, rd = ((insn >> 25) & 0x1f);
391 	u64 value;
392 
393 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
394 	if (insn & 0x2000) {
395 		maybe_flush_windows(0, 0, rd, from_kernel);
396 		value = sign_extend_imm13(insn);
397 	} else {
398 		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
399 		value = fetch_reg(insn & 0x1f, regs);
400 	}
401 	ret = hweight64(value);
402 	if (rd < 16) {
403 		if (rd)
404 			regs->u_regs[rd] = ret;
405 	} else {
406 		unsigned long fp = regs->u_regs[UREG_FP];
407 
408 		if (!test_thread_64bit_stack(fp)) {
409 			struct reg_window32 __user *win32;
410 			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
411 			put_user(ret, &win32->locals[rd - 16]);
412 		} else {
413 			struct reg_window __user *win;
414 			win = (struct reg_window __user *)(fp + STACK_BIAS);
415 			put_user(ret, &win->locals[rd - 16]);
416 		}
417 	}
418 	advance(regs);
419 	return 1;
420 }
421 
422 extern void do_fpother(struct pt_regs *regs);
423 extern void do_privact(struct pt_regs *regs);
424 extern void sun4v_data_access_exception(struct pt_regs *regs,
425 					unsigned long addr,
426 					unsigned long type_ctx);
427 
428 int handle_ldf_stq(u32 insn, struct pt_regs *regs)
429 {
430 	unsigned long addr = compute_effective_address(regs, insn, 0);
431 	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
432 	struct fpustate *f = FPUSTATE;
433 	int asi = decode_asi(insn, regs);
434 	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
435 
436 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
437 
438 	save_and_clear_fpu();
439 	current_thread_info()->xfsr[0] &= ~0x1c000;
440 	if (freg & 3) {
441 		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
442 		do_fpother(regs);
443 		return 0;
444 	}
445 	if (insn & 0x200000) {
446 		/* STQ */
447 		u64 first = 0, second = 0;
448 
449 		if (current_thread_info()->fpsaved[0] & flag) {
450 			first = *(u64 *)&f->regs[freg];
451 			second = *(u64 *)&f->regs[freg+2];
452 		}
453 		if (asi < 0x80) {
454 			do_privact(regs);
455 			return 1;
456 		}
457 		switch (asi) {
458 		case ASI_P:
459 		case ASI_S: break;
460 		case ASI_PL:
461 		case ASI_SL:
462 			{
463 				/* Need to convert endians */
464 				u64 tmp = __swab64p(&first);
465 
466 				first = __swab64p(&second);
467 				second = tmp;
468 				break;
469 			}
470 		default:
471 			if (tlb_type == hypervisor)
472 				sun4v_data_access_exception(regs, addr, 0);
473 			else
474 				spitfire_data_access_exception(regs, 0, addr);
475 			return 1;
476 		}
477 		if (put_user (first >> 32, (u32 __user *)addr) ||
478 		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
479 		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
480 		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
481 			if (tlb_type == hypervisor)
482 				sun4v_data_access_exception(regs, addr, 0);
483 			else
484 				spitfire_data_access_exception(regs, 0, addr);
485 		    	return 1;
486 		}
487 	} else {
488 		/* LDF, LDDF, LDQF */
489 		u32 data[4] __attribute__ ((aligned(8)));
490 		int size, i;
491 		int err;
492 
493 		if (asi < 0x80) {
494 			do_privact(regs);
495 			return 1;
496 		} else if (asi > ASI_SNFL) {
497 			if (tlb_type == hypervisor)
498 				sun4v_data_access_exception(regs, addr, 0);
499 			else
500 				spitfire_data_access_exception(regs, 0, addr);
501 			return 1;
502 		}
503 		switch (insn & 0x180000) {
504 		case 0x000000: size = 1; break;
505 		case 0x100000: size = 4; break;
506 		default: size = 2; break;
507 		}
508 		for (i = 0; i < size; i++)
509 			data[i] = 0;
510 
511 		err = get_user (data[0], (u32 __user *) addr);
512 		if (!err) {
513 			for (i = 1; i < size; i++)
514 				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
515 		}
516 		if (err && !(asi & 0x2 /* NF */)) {
517 			if (tlb_type == hypervisor)
518 				sun4v_data_access_exception(regs, addr, 0);
519 			else
520 				spitfire_data_access_exception(regs, 0, addr);
521 			return 1;
522 		}
523 		if (asi & 0x8) /* Little */ {
524 			u64 tmp;
525 
526 			switch (size) {
527 			case 1: data[0] = le32_to_cpup(data + 0); break;
528 			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
529 				break;
530 			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
531 				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
532 				*(u64 *)(data + 2) = tmp;
533 				break;
534 			}
535 		}
536 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
537 			current_thread_info()->fpsaved[0] = FPRS_FEF;
538 			current_thread_info()->gsr[0] = 0;
539 		}
540 		if (!(current_thread_info()->fpsaved[0] & flag)) {
541 			if (freg < 32)
542 				memset(f->regs, 0, 32*sizeof(u32));
543 			else
544 				memset(f->regs+32, 0, 32*sizeof(u32));
545 		}
546 		memcpy(f->regs + freg, data, size * 4);
547 		current_thread_info()->fpsaved[0] |= flag;
548 	}
549 	advance(regs);
550 	return 1;
551 }
552 
553 void handle_ld_nf(u32 insn, struct pt_regs *regs)
554 {
555 	int rd = ((insn >> 25) & 0x1f);
556 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
557 	unsigned long *reg;
558 
559 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
560 
561 	maybe_flush_windows(0, 0, rd, from_kernel);
562 	reg = fetch_reg_addr(rd, regs);
563 	if (from_kernel || rd < 16) {
564 		reg[0] = 0;
565 		if ((insn & 0x780000) == 0x180000)
566 			reg[1] = 0;
567 	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
568 		put_user(0, (int __user *) reg);
569 		if ((insn & 0x780000) == 0x180000)
570 			put_user(0, ((int __user *) reg) + 1);
571 	} else {
572 		put_user(0, (unsigned long __user *) reg);
573 		if ((insn & 0x780000) == 0x180000)
574 			put_user(0, (unsigned long __user *) reg + 1);
575 	}
576 	advance(regs);
577 }
578 
579 void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
580 {
581 	enum ctx_state prev_state = exception_enter();
582 	unsigned long pc = regs->tpc;
583 	unsigned long tstate = regs->tstate;
584 	u32 insn;
585 	u64 value;
586 	u8 freg;
587 	int flag;
588 	struct fpustate *f = FPUSTATE;
589 
590 	if (tstate & TSTATE_PRIV)
591 		die_if_kernel("lddfmna from kernel", regs);
592 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
593 	if (test_thread_flag(TIF_32BIT))
594 		pc = (u32)pc;
595 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
596 		int asi = decode_asi(insn, regs);
597 		u32 first, second;
598 		int err;
599 
600 		if ((asi > ASI_SNFL) ||
601 		    (asi < ASI_P))
602 			goto daex;
603 		first = second = 0;
604 		err = get_user(first, (u32 __user *)sfar);
605 		if (!err)
606 			err = get_user(second, (u32 __user *)(sfar + 4));
607 		if (err) {
608 			if (!(asi & 0x2))
609 				goto daex;
610 			first = second = 0;
611 		}
612 		save_and_clear_fpu();
613 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
614 		value = (((u64)first) << 32) | second;
615 		if (asi & 0x8) /* Little */
616 			value = __swab64p(&value);
617 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
618 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
619 			current_thread_info()->fpsaved[0] = FPRS_FEF;
620 			current_thread_info()->gsr[0] = 0;
621 		}
622 		if (!(current_thread_info()->fpsaved[0] & flag)) {
623 			if (freg < 32)
624 				memset(f->regs, 0, 32*sizeof(u32));
625 			else
626 				memset(f->regs+32, 0, 32*sizeof(u32));
627 		}
628 		*(u64 *)(f->regs + freg) = value;
629 		current_thread_info()->fpsaved[0] |= flag;
630 	} else {
631 daex:
632 		if (tlb_type == hypervisor)
633 			sun4v_data_access_exception(regs, sfar, sfsr);
634 		else
635 			spitfire_data_access_exception(regs, sfsr, sfar);
636 		goto out;
637 	}
638 	advance(regs);
639 out:
640 	exception_exit(prev_state);
641 }
642 
643 void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
644 {
645 	enum ctx_state prev_state = exception_enter();
646 	unsigned long pc = regs->tpc;
647 	unsigned long tstate = regs->tstate;
648 	u32 insn;
649 	u64 value;
650 	u8 freg;
651 	int flag;
652 	struct fpustate *f = FPUSTATE;
653 
654 	if (tstate & TSTATE_PRIV)
655 		die_if_kernel("stdfmna from kernel", regs);
656 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
657 	if (test_thread_flag(TIF_32BIT))
658 		pc = (u32)pc;
659 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
660 		int asi = decode_asi(insn, regs);
661 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
662 		value = 0;
663 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
664 		if ((asi > ASI_SNFL) ||
665 		    (asi < ASI_P))
666 			goto daex;
667 		save_and_clear_fpu();
668 		if (current_thread_info()->fpsaved[0] & flag)
669 			value = *(u64 *)&f->regs[freg];
670 		switch (asi) {
671 		case ASI_P:
672 		case ASI_S: break;
673 		case ASI_PL:
674 		case ASI_SL:
675 			value = __swab64p(&value); break;
676 		default: goto daex;
677 		}
678 		if (put_user (value >> 32, (u32 __user *) sfar) ||
679 		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
680 			goto daex;
681 	} else {
682 daex:
683 		if (tlb_type == hypervisor)
684 			sun4v_data_access_exception(regs, sfar, sfsr);
685 		else
686 			spitfire_data_access_exception(regs, sfsr, sfar);
687 		goto out;
688 	}
689 	advance(regs);
690 out:
691 	exception_exit(prev_state);
692 }
693