xref: /openbmc/linux/arch/sparc/kernel/unaligned_64.c (revision 07105202)
1 /*
2  * unaligned.c: Unaligned load/store trap handling with special
3  *              cases for the kernel to do them more quickly.
4  *
5  * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
6  * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 
10 #include <linux/jiffies.h>
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <asm/asi.h>
16 #include <asm/ptrace.h>
17 #include <asm/pstate.h>
18 #include <asm/processor.h>
19 #include <asm/system.h>
20 #include <asm/uaccess.h>
21 #include <linux/smp.h>
22 #include <linux/bitops.h>
23 #include <linux/perf_event.h>
24 #include <asm/fpumacro.h>
25 
26 enum direction {
27 	load,    /* ld, ldd, ldh, ldsh */
28 	store,   /* st, std, sth, stsh */
29 	both,    /* Swap, ldstub, cas, ... */
30 	fpld,
31 	fpst,
32 	invalid,
33 };
34 
35 static inline enum direction decode_direction(unsigned int insn)
36 {
37 	unsigned long tmp = (insn >> 21) & 1;
38 
39 	if (!tmp)
40 		return load;
41 	else {
42 		switch ((insn>>19)&0xf) {
43 		case 15: /* swap* */
44 			return both;
45 		default:
46 			return store;
47 		}
48 	}
49 }
50 
51 /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
52 static inline int decode_access_size(unsigned int insn)
53 {
54 	unsigned int tmp;
55 
56 	tmp = ((insn >> 19) & 0xf);
57 	if (tmp == 11 || tmp == 14) /* ldx/stx */
58 		return 8;
59 	tmp &= 3;
60 	if (!tmp)
61 		return 4;
62 	else if (tmp == 3)
63 		return 16;	/* ldd/std - Although it is actually 8 */
64 	else if (tmp == 2)
65 		return 2;
66 	else {
67 		printk("Impossible unaligned trap. insn=%08x\n", insn);
68 		die_if_kernel("Byte sized unaligned access?!?!", current_thread_info()->kregs);
69 
70 		/* GCC should never warn that control reaches the end
71 		 * of this function without returning a value because
72 		 * die_if_kernel() is marked with attribute 'noreturn'.
73 		 * Alas, some versions do...
74 		 */
75 
76 		return 0;
77 	}
78 }
79 
80 static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
81 {
82 	if (insn & 0x800000) {
83 		if (insn & 0x2000)
84 			return (unsigned char)(regs->tstate >> 24);	/* %asi */
85 		else
86 			return (unsigned char)(insn >> 5);		/* imm_asi */
87 	} else
88 		return ASI_P;
89 }
90 
91 /* 0x400000 = signed, 0 = unsigned */
92 static inline int decode_signedness(unsigned int insn)
93 {
94 	return (insn & 0x400000);
95 }
96 
97 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
98 				       unsigned int rd, int from_kernel)
99 {
100 	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
101 		if (from_kernel != 0)
102 			__asm__ __volatile__("flushw");
103 		else
104 			flushw_user();
105 	}
106 }
107 
108 static inline long sign_extend_imm13(long imm)
109 {
110 	return imm << 51 >> 51;
111 }
112 
113 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
114 {
115 	unsigned long value;
116 
117 	if (reg < 16)
118 		return (!reg ? 0 : regs->u_regs[reg]);
119 	if (regs->tstate & TSTATE_PRIV) {
120 		struct reg_window *win;
121 		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
122 		value = win->locals[reg - 16];
123 	} else if (test_thread_flag(TIF_32BIT)) {
124 		struct reg_window32 __user *win32;
125 		win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
126 		get_user(value, &win32->locals[reg - 16]);
127 	} else {
128 		struct reg_window __user *win;
129 		win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
130 		get_user(value, &win->locals[reg - 16]);
131 	}
132 	return value;
133 }
134 
135 static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
136 {
137 	if (reg < 16)
138 		return &regs->u_regs[reg];
139 	if (regs->tstate & TSTATE_PRIV) {
140 		struct reg_window *win;
141 		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
142 		return &win->locals[reg - 16];
143 	} else if (test_thread_flag(TIF_32BIT)) {
144 		struct reg_window32 *win32;
145 		win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
146 		return (unsigned long *)&win32->locals[reg - 16];
147 	} else {
148 		struct reg_window *win;
149 		win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
150 		return &win->locals[reg - 16];
151 	}
152 }
153 
154 unsigned long compute_effective_address(struct pt_regs *regs,
155 					unsigned int insn, unsigned int rd)
156 {
157 	unsigned int rs1 = (insn >> 14) & 0x1f;
158 	unsigned int rs2 = insn & 0x1f;
159 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
160 
161 	if (insn & 0x2000) {
162 		maybe_flush_windows(rs1, 0, rd, from_kernel);
163 		return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
164 	} else {
165 		maybe_flush_windows(rs1, rs2, rd, from_kernel);
166 		return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
167 	}
168 }
169 
170 /* This is just to make gcc think die_if_kernel does return... */
171 static void __used unaligned_panic(char *str, struct pt_regs *regs)
172 {
173 	die_if_kernel(str, regs);
174 }
175 
176 extern int do_int_load(unsigned long *dest_reg, int size,
177 		       unsigned long *saddr, int is_signed, int asi);
178 
179 extern int __do_int_store(unsigned long *dst_addr, int size,
180 			  unsigned long src_val, int asi);
181 
182 static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
183 			       struct pt_regs *regs, int asi, int orig_asi)
184 {
185 	unsigned long zero = 0;
186 	unsigned long *src_val_p = &zero;
187 	unsigned long src_val;
188 
189 	if (size == 16) {
190 		size = 8;
191 		zero = (((long)(reg_num ?
192 		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
193 			(unsigned)fetch_reg(reg_num + 1, regs);
194 	} else if (reg_num) {
195 		src_val_p = fetch_reg_addr(reg_num, regs);
196 	}
197 	src_val = *src_val_p;
198 	if (unlikely(asi != orig_asi)) {
199 		switch (size) {
200 		case 2:
201 			src_val = swab16(src_val);
202 			break;
203 		case 4:
204 			src_val = swab32(src_val);
205 			break;
206 		case 8:
207 			src_val = swab64(src_val);
208 			break;
209 		case 16:
210 		default:
211 			BUG();
212 			break;
213 		};
214 	}
215 	return __do_int_store(dst_addr, size, src_val, asi);
216 }
217 
218 static inline void advance(struct pt_regs *regs)
219 {
220 	regs->tpc   = regs->tnpc;
221 	regs->tnpc += 4;
222 	if (test_thread_flag(TIF_32BIT)) {
223 		regs->tpc &= 0xffffffff;
224 		regs->tnpc &= 0xffffffff;
225 	}
226 }
227 
228 static inline int floating_point_load_or_store_p(unsigned int insn)
229 {
230 	return (insn >> 24) & 1;
231 }
232 
233 static inline int ok_for_kernel(unsigned int insn)
234 {
235 	return !floating_point_load_or_store_p(insn);
236 }
237 
238 static void kernel_mna_trap_fault(int fixup_tstate_asi)
239 {
240 	struct pt_regs *regs = current_thread_info()->kern_una_regs;
241 	unsigned int insn = current_thread_info()->kern_una_insn;
242 	const struct exception_table_entry *entry;
243 
244 	entry = search_exception_tables(regs->tpc);
245 	if (!entry) {
246 		unsigned long address;
247 
248 		address = compute_effective_address(regs, insn,
249 						    ((insn >> 25) & 0x1f));
250         	if (address < PAGE_SIZE) {
251                 	printk(KERN_ALERT "Unable to handle kernel NULL "
252 			       "pointer dereference in mna handler");
253         	} else
254                 	printk(KERN_ALERT "Unable to handle kernel paging "
255 			       "request in mna handler");
256 	        printk(KERN_ALERT " at virtual address %016lx\n",address);
257 		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
258 			(current->mm ? CTX_HWBITS(current->mm->context) :
259 			CTX_HWBITS(current->active_mm->context)));
260 		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
261 			(current->mm ? (unsigned long) current->mm->pgd :
262 			(unsigned long) current->active_mm->pgd));
263 	        die_if_kernel("Oops", regs);
264 		/* Not reached */
265 	}
266 	regs->tpc = entry->fixup;
267 	regs->tnpc = regs->tpc + 4;
268 
269 	if (fixup_tstate_asi) {
270 		regs->tstate &= ~TSTATE_ASI;
271 		regs->tstate |= (ASI_AIUS << 24UL);
272 	}
273 }
274 
275 static void log_unaligned(struct pt_regs *regs)
276 {
277 	static unsigned long count, last_time;
278 
279 	if (time_after(jiffies, last_time + 5 * HZ))
280 		count = 0;
281 	if (count < 5) {
282 		last_time = jiffies;
283 		count++;
284 		printk("Kernel unaligned access at TPC[%lx] %pS\n",
285 		       regs->tpc, (void *) regs->tpc);
286 	}
287 }
288 
289 asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
290 {
291 	enum direction dir = decode_direction(insn);
292 	int size = decode_access_size(insn);
293 	int orig_asi, asi;
294 
295 	current_thread_info()->kern_una_regs = regs;
296 	current_thread_info()->kern_una_insn = insn;
297 
298 	orig_asi = asi = decode_asi(insn, regs);
299 
300 	/* If this is a {get,put}_user() on an unaligned userspace pointer,
301 	 * just signal a fault and do not log the event.
302 	 */
303 	if (asi == ASI_AIUS) {
304 		kernel_mna_trap_fault(0);
305 		return;
306 	}
307 
308 	log_unaligned(regs);
309 
310 	if (!ok_for_kernel(insn) || dir == both) {
311 		printk("Unsupported unaligned load/store trap for kernel "
312 		       "at <%016lx>.\n", regs->tpc);
313 		unaligned_panic("Kernel does fpu/atomic "
314 				"unaligned load/store.", regs);
315 
316 		kernel_mna_trap_fault(0);
317 	} else {
318 		unsigned long addr, *reg_addr;
319 		int err;
320 
321 		addr = compute_effective_address(regs, insn,
322 						 ((insn >> 25) & 0x1f));
323 		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, addr);
324 		switch (asi) {
325 		case ASI_NL:
326 		case ASI_AIUPL:
327 		case ASI_AIUSL:
328 		case ASI_PL:
329 		case ASI_SL:
330 		case ASI_PNFL:
331 		case ASI_SNFL:
332 			asi &= ~0x08;
333 			break;
334 		};
335 		switch (dir) {
336 		case load:
337 			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
338 			err = do_int_load(reg_addr, size,
339 					  (unsigned long *) addr,
340 					  decode_signedness(insn), asi);
341 			if (likely(!err) && unlikely(asi != orig_asi)) {
342 				unsigned long val_in = *reg_addr;
343 				switch (size) {
344 				case 2:
345 					val_in = swab16(val_in);
346 					break;
347 				case 4:
348 					val_in = swab32(val_in);
349 					break;
350 				case 8:
351 					val_in = swab64(val_in);
352 					break;
353 				case 16:
354 				default:
355 					BUG();
356 					break;
357 				};
358 				*reg_addr = val_in;
359 			}
360 			break;
361 
362 		case store:
363 			err = do_int_store(((insn>>25)&0x1f), size,
364 					   (unsigned long *) addr, regs,
365 					   asi, orig_asi);
366 			break;
367 
368 		default:
369 			panic("Impossible kernel unaligned trap.");
370 			/* Not reached... */
371 		}
372 		if (unlikely(err))
373 			kernel_mna_trap_fault(1);
374 		else
375 			advance(regs);
376 	}
377 }
378 
379 static char popc_helper[] = {
380 0, 1, 1, 2, 1, 2, 2, 3,
381 1, 2, 2, 3, 2, 3, 3, 4,
382 };
383 
384 int handle_popc(u32 insn, struct pt_regs *regs)
385 {
386 	u64 value;
387 	int ret, i, rd = ((insn >> 25) & 0x1f);
388 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
389 
390 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
391 	if (insn & 0x2000) {
392 		maybe_flush_windows(0, 0, rd, from_kernel);
393 		value = sign_extend_imm13(insn);
394 	} else {
395 		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
396 		value = fetch_reg(insn & 0x1f, regs);
397 	}
398 	for (ret = 0, i = 0; i < 16; i++) {
399 		ret += popc_helper[value & 0xf];
400 		value >>= 4;
401 	}
402 	if (rd < 16) {
403 		if (rd)
404 			regs->u_regs[rd] = ret;
405 	} else {
406 		if (test_thread_flag(TIF_32BIT)) {
407 			struct reg_window32 __user *win32;
408 			win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
409 			put_user(ret, &win32->locals[rd - 16]);
410 		} else {
411 			struct reg_window __user *win;
412 			win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
413 			put_user(ret, &win->locals[rd - 16]);
414 		}
415 	}
416 	advance(regs);
417 	return 1;
418 }
419 
420 extern void do_fpother(struct pt_regs *regs);
421 extern void do_privact(struct pt_regs *regs);
422 extern void spitfire_data_access_exception(struct pt_regs *regs,
423 					   unsigned long sfsr,
424 					   unsigned long sfar);
425 extern void sun4v_data_access_exception(struct pt_regs *regs,
426 					unsigned long addr,
427 					unsigned long type_ctx);
428 
429 int handle_ldf_stq(u32 insn, struct pt_regs *regs)
430 {
431 	unsigned long addr = compute_effective_address(regs, insn, 0);
432 	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
433 	struct fpustate *f = FPUSTATE;
434 	int asi = decode_asi(insn, regs);
435 	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
436 
437 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
438 
439 	save_and_clear_fpu();
440 	current_thread_info()->xfsr[0] &= ~0x1c000;
441 	if (freg & 3) {
442 		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
443 		do_fpother(regs);
444 		return 0;
445 	}
446 	if (insn & 0x200000) {
447 		/* STQ */
448 		u64 first = 0, second = 0;
449 
450 		if (current_thread_info()->fpsaved[0] & flag) {
451 			first = *(u64 *)&f->regs[freg];
452 			second = *(u64 *)&f->regs[freg+2];
453 		}
454 		if (asi < 0x80) {
455 			do_privact(regs);
456 			return 1;
457 		}
458 		switch (asi) {
459 		case ASI_P:
460 		case ASI_S: break;
461 		case ASI_PL:
462 		case ASI_SL:
463 			{
464 				/* Need to convert endians */
465 				u64 tmp = __swab64p(&first);
466 
467 				first = __swab64p(&second);
468 				second = tmp;
469 				break;
470 			}
471 		default:
472 			if (tlb_type == hypervisor)
473 				sun4v_data_access_exception(regs, addr, 0);
474 			else
475 				spitfire_data_access_exception(regs, 0, addr);
476 			return 1;
477 		}
478 		if (put_user (first >> 32, (u32 __user *)addr) ||
479 		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
480 		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
481 		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
482 			if (tlb_type == hypervisor)
483 				sun4v_data_access_exception(regs, addr, 0);
484 			else
485 				spitfire_data_access_exception(regs, 0, addr);
486 		    	return 1;
487 		}
488 	} else {
489 		/* LDF, LDDF, LDQF */
490 		u32 data[4] __attribute__ ((aligned(8)));
491 		int size, i;
492 		int err;
493 
494 		if (asi < 0x80) {
495 			do_privact(regs);
496 			return 1;
497 		} else if (asi > ASI_SNFL) {
498 			if (tlb_type == hypervisor)
499 				sun4v_data_access_exception(regs, addr, 0);
500 			else
501 				spitfire_data_access_exception(regs, 0, addr);
502 			return 1;
503 		}
504 		switch (insn & 0x180000) {
505 		case 0x000000: size = 1; break;
506 		case 0x100000: size = 4; break;
507 		default: size = 2; break;
508 		}
509 		for (i = 0; i < size; i++)
510 			data[i] = 0;
511 
512 		err = get_user (data[0], (u32 __user *) addr);
513 		if (!err) {
514 			for (i = 1; i < size; i++)
515 				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
516 		}
517 		if (err && !(asi & 0x2 /* NF */)) {
518 			if (tlb_type == hypervisor)
519 				sun4v_data_access_exception(regs, addr, 0);
520 			else
521 				spitfire_data_access_exception(regs, 0, addr);
522 			return 1;
523 		}
524 		if (asi & 0x8) /* Little */ {
525 			u64 tmp;
526 
527 			switch (size) {
528 			case 1: data[0] = le32_to_cpup(data + 0); break;
529 			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
530 				break;
531 			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
532 				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
533 				*(u64 *)(data + 2) = tmp;
534 				break;
535 			}
536 		}
537 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
538 			current_thread_info()->fpsaved[0] = FPRS_FEF;
539 			current_thread_info()->gsr[0] = 0;
540 		}
541 		if (!(current_thread_info()->fpsaved[0] & flag)) {
542 			if (freg < 32)
543 				memset(f->regs, 0, 32*sizeof(u32));
544 			else
545 				memset(f->regs+32, 0, 32*sizeof(u32));
546 		}
547 		memcpy(f->regs + freg, data, size * 4);
548 		current_thread_info()->fpsaved[0] |= flag;
549 	}
550 	advance(regs);
551 	return 1;
552 }
553 
554 void handle_ld_nf(u32 insn, struct pt_regs *regs)
555 {
556 	int rd = ((insn >> 25) & 0x1f);
557 	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
558 	unsigned long *reg;
559 
560 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
561 
562 	maybe_flush_windows(0, 0, rd, from_kernel);
563 	reg = fetch_reg_addr(rd, regs);
564 	if (from_kernel || rd < 16) {
565 		reg[0] = 0;
566 		if ((insn & 0x780000) == 0x180000)
567 			reg[1] = 0;
568 	} else if (test_thread_flag(TIF_32BIT)) {
569 		put_user(0, (int __user *) reg);
570 		if ((insn & 0x780000) == 0x180000)
571 			put_user(0, ((int __user *) reg) + 1);
572 	} else {
573 		put_user(0, (unsigned long __user *) reg);
574 		if ((insn & 0x780000) == 0x180000)
575 			put_user(0, (unsigned long __user *) reg + 1);
576 	}
577 	advance(regs);
578 }
579 
580 void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
581 {
582 	unsigned long pc = regs->tpc;
583 	unsigned long tstate = regs->tstate;
584 	u32 insn;
585 	u64 value;
586 	u8 freg;
587 	int flag;
588 	struct fpustate *f = FPUSTATE;
589 
590 	if (tstate & TSTATE_PRIV)
591 		die_if_kernel("lddfmna from kernel", regs);
592 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
593 	if (test_thread_flag(TIF_32BIT))
594 		pc = (u32)pc;
595 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
596 		int asi = decode_asi(insn, regs);
597 		u32 first, second;
598 		int err;
599 
600 		if ((asi > ASI_SNFL) ||
601 		    (asi < ASI_P))
602 			goto daex;
603 		first = second = 0;
604 		err = get_user(first, (u32 __user *)sfar);
605 		if (!err)
606 			err = get_user(second, (u32 __user *)(sfar + 4));
607 		if (err) {
608 			if (!(asi & 0x2))
609 				goto daex;
610 			first = second = 0;
611 		}
612 		save_and_clear_fpu();
613 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
614 		value = (((u64)first) << 32) | second;
615 		if (asi & 0x8) /* Little */
616 			value = __swab64p(&value);
617 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
618 		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
619 			current_thread_info()->fpsaved[0] = FPRS_FEF;
620 			current_thread_info()->gsr[0] = 0;
621 		}
622 		if (!(current_thread_info()->fpsaved[0] & flag)) {
623 			if (freg < 32)
624 				memset(f->regs, 0, 32*sizeof(u32));
625 			else
626 				memset(f->regs+32, 0, 32*sizeof(u32));
627 		}
628 		*(u64 *)(f->regs + freg) = value;
629 		current_thread_info()->fpsaved[0] |= flag;
630 	} else {
631 daex:
632 		if (tlb_type == hypervisor)
633 			sun4v_data_access_exception(regs, sfar, sfsr);
634 		else
635 			spitfire_data_access_exception(regs, sfsr, sfar);
636 		return;
637 	}
638 	advance(regs);
639 	return;
640 }
641 
642 void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
643 {
644 	unsigned long pc = regs->tpc;
645 	unsigned long tstate = regs->tstate;
646 	u32 insn;
647 	u64 value;
648 	u8 freg;
649 	int flag;
650 	struct fpustate *f = FPUSTATE;
651 
652 	if (tstate & TSTATE_PRIV)
653 		die_if_kernel("stdfmna from kernel", regs);
654 	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
655 	if (test_thread_flag(TIF_32BIT))
656 		pc = (u32)pc;
657 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
658 		int asi = decode_asi(insn, regs);
659 		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
660 		value = 0;
661 		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
662 		if ((asi > ASI_SNFL) ||
663 		    (asi < ASI_P))
664 			goto daex;
665 		save_and_clear_fpu();
666 		if (current_thread_info()->fpsaved[0] & flag)
667 			value = *(u64 *)&f->regs[freg];
668 		switch (asi) {
669 		case ASI_P:
670 		case ASI_S: break;
671 		case ASI_PL:
672 		case ASI_SL:
673 			value = __swab64p(&value); break;
674 		default: goto daex;
675 		}
676 		if (put_user (value >> 32, (u32 __user *) sfar) ||
677 		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
678 			goto daex;
679 	} else {
680 daex:
681 		if (tlb_type == hypervisor)
682 			sun4v_data_access_exception(regs, sfar, sfsr);
683 		else
684 			spitfire_data_access_exception(regs, sfsr, sfar);
685 		return;
686 	}
687 	advance(regs);
688 	return;
689 }
690