xref: /openbmc/linux/arch/sparc/kernel/traps_64.c (revision e0652f8b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* arch/sparc64/kernel/traps.c
3  *
4  * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
5  * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
6  */
7 
8 /*
9  * I like traps on v9, :))))
10  */
11 
12 #include <linux/extable.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/debug.h>
15 #include <linux/linkage.h>
16 #include <linux/kernel.h>
17 #include <linux/signal.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/kallsyms.h>
22 #include <linux/kdebug.h>
23 #include <linux/ftrace.h>
24 #include <linux/reboot.h>
25 #include <linux/gfp.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/smp.h>
29 #include <asm/delay.h>
30 #include <asm/ptrace.h>
31 #include <asm/oplib.h>
32 #include <asm/page.h>
33 #include <asm/unistd.h>
34 #include <linux/uaccess.h>
35 #include <asm/fpumacro.h>
36 #include <asm/lsu.h>
37 #include <asm/dcu.h>
38 #include <asm/estate.h>
39 #include <asm/chafsr.h>
40 #include <asm/sfafsr.h>
41 #include <asm/psrcompat.h>
42 #include <asm/processor.h>
43 #include <asm/timer.h>
44 #include <asm/head.h>
45 #include <asm/prom.h>
46 #include <asm/memctrl.h>
47 #include <asm/cacheflush.h>
48 #include <asm/setup.h>
49 
50 #include "entry.h"
51 #include "kernel.h"
52 #include "kstack.h"
53 
54 /* When an irrecoverable trap occurs at tl > 0, the trap entry
55  * code logs the trap state registers at every level in the trap
56  * stack.  It is found at (pt_regs + sizeof(pt_regs)) and the layout
57  * is as follows:
58  */
59 struct tl1_traplog {
60 	struct {
61 		unsigned long tstate;
62 		unsigned long tpc;
63 		unsigned long tnpc;
64 		unsigned long tt;
65 	} trapstack[4];
66 	unsigned long tl;
67 };
68 
69 static void dump_tl1_traplog(struct tl1_traplog *p)
70 {
71 	int i, limit;
72 
73 	printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
74 	       "dumping track stack.\n", p->tl);
75 
76 	limit = (tlb_type == hypervisor) ? 2 : 4;
77 	for (i = 0; i < limit; i++) {
78 		printk(KERN_EMERG
79 		       "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
80 		       "TNPC[%016lx] TT[%lx]\n",
81 		       i + 1,
82 		       p->trapstack[i].tstate, p->trapstack[i].tpc,
83 		       p->trapstack[i].tnpc, p->trapstack[i].tt);
84 		printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
85 	}
86 }
87 
88 void bad_trap(struct pt_regs *regs, long lvl)
89 {
90 	char buffer[36];
91 
92 	if (notify_die(DIE_TRAP, "bad trap", regs,
93 		       0, lvl, SIGTRAP) == NOTIFY_STOP)
94 		return;
95 
96 	if (lvl < 0x100) {
97 		sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
98 		die_if_kernel(buffer, regs);
99 	}
100 
101 	lvl -= 0x100;
102 	if (regs->tstate & TSTATE_PRIV) {
103 		sprintf(buffer, "Kernel bad sw trap %lx", lvl);
104 		die_if_kernel(buffer, regs);
105 	}
106 	if (test_thread_flag(TIF_32BIT)) {
107 		regs->tpc &= 0xffffffff;
108 		regs->tnpc &= 0xffffffff;
109 	}
110 	force_sig_fault(SIGILL, ILL_ILLTRP,
111 			(void __user *)regs->tpc, lvl);
112 }
113 
114 void bad_trap_tl1(struct pt_regs *regs, long lvl)
115 {
116 	char buffer[36];
117 
118 	if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
119 		       0, lvl, SIGTRAP) == NOTIFY_STOP)
120 		return;
121 
122 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
123 
124 	sprintf (buffer, "Bad trap %lx at tl>0", lvl);
125 	die_if_kernel (buffer, regs);
126 }
127 
128 #ifdef CONFIG_DEBUG_BUGVERBOSE
129 void do_BUG(const char *file, int line)
130 {
131 	bust_spinlocks(1);
132 	printk("kernel BUG at %s:%d!\n", file, line);
133 }
134 EXPORT_SYMBOL(do_BUG);
135 #endif
136 
137 static DEFINE_SPINLOCK(dimm_handler_lock);
138 static dimm_printer_t dimm_handler;
139 
140 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
141 {
142 	unsigned long flags;
143 	int ret = -ENODEV;
144 
145 	spin_lock_irqsave(&dimm_handler_lock, flags);
146 	if (dimm_handler) {
147 		ret = dimm_handler(synd_code, paddr, buf, buflen);
148 	} else if (tlb_type == spitfire) {
149 		if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
150 			ret = -EINVAL;
151 		else
152 			ret = 0;
153 	} else
154 		ret = -ENODEV;
155 	spin_unlock_irqrestore(&dimm_handler_lock, flags);
156 
157 	return ret;
158 }
159 
160 int register_dimm_printer(dimm_printer_t func)
161 {
162 	unsigned long flags;
163 	int ret = 0;
164 
165 	spin_lock_irqsave(&dimm_handler_lock, flags);
166 	if (!dimm_handler)
167 		dimm_handler = func;
168 	else
169 		ret = -EEXIST;
170 	spin_unlock_irqrestore(&dimm_handler_lock, flags);
171 
172 	return ret;
173 }
174 EXPORT_SYMBOL_GPL(register_dimm_printer);
175 
176 void unregister_dimm_printer(dimm_printer_t func)
177 {
178 	unsigned long flags;
179 
180 	spin_lock_irqsave(&dimm_handler_lock, flags);
181 	if (dimm_handler == func)
182 		dimm_handler = NULL;
183 	spin_unlock_irqrestore(&dimm_handler_lock, flags);
184 }
185 EXPORT_SYMBOL_GPL(unregister_dimm_printer);
186 
187 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
188 {
189 	enum ctx_state prev_state = exception_enter();
190 
191 	if (notify_die(DIE_TRAP, "instruction access exception", regs,
192 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
193 		goto out;
194 
195 	if (regs->tstate & TSTATE_PRIV) {
196 		printk("spitfire_insn_access_exception: SFSR[%016lx] "
197 		       "SFAR[%016lx], going.\n", sfsr, sfar);
198 		die_if_kernel("Iax", regs);
199 	}
200 	if (test_thread_flag(TIF_32BIT)) {
201 		regs->tpc &= 0xffffffff;
202 		regs->tnpc &= 0xffffffff;
203 	}
204 	force_sig_fault(SIGSEGV, SEGV_MAPERR,
205 			(void __user *)regs->tpc, 0);
206 out:
207 	exception_exit(prev_state);
208 }
209 
210 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
211 {
212 	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
213 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
214 		return;
215 
216 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
217 	spitfire_insn_access_exception(regs, sfsr, sfar);
218 }
219 
220 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
221 {
222 	unsigned short type = (type_ctx >> 16);
223 	unsigned short ctx  = (type_ctx & 0xffff);
224 
225 	if (notify_die(DIE_TRAP, "instruction access exception", regs,
226 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
227 		return;
228 
229 	if (regs->tstate & TSTATE_PRIV) {
230 		printk("sun4v_insn_access_exception: ADDR[%016lx] "
231 		       "CTX[%04x] TYPE[%04x], going.\n",
232 		       addr, ctx, type);
233 		die_if_kernel("Iax", regs);
234 	}
235 
236 	if (test_thread_flag(TIF_32BIT)) {
237 		regs->tpc &= 0xffffffff;
238 		regs->tnpc &= 0xffffffff;
239 	}
240 	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0);
241 }
242 
243 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
244 {
245 	if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
246 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
247 		return;
248 
249 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
250 	sun4v_insn_access_exception(regs, addr, type_ctx);
251 }
252 
253 bool is_no_fault_exception(struct pt_regs *regs)
254 {
255 	unsigned char asi;
256 	u32 insn;
257 
258 	if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT)
259 		return false;
260 
261 	/*
262 	 * Must do a little instruction decoding here in order to
263 	 * decide on a course of action. The bits of interest are:
264 	 *  insn[31:30] = op, where 3 indicates the load/store group
265 	 *  insn[24:19] = op3, which identifies individual opcodes
266 	 *  insn[13] indicates an immediate offset
267 	 *  op3[4]=1 identifies alternate space instructions
268 	 *  op3[5:4]=3 identifies floating point instructions
269 	 *  op3[2]=1 identifies stores
270 	 * See "Opcode Maps" in the appendix of any Sparc V9
271 	 * architecture spec for full details.
272 	 */
273 	if ((insn & 0xc0800000) == 0xc0800000) {    /* op=3, op3[4]=1   */
274 		if (insn & 0x2000)		    /* immediate offset */
275 			asi = (regs->tstate >> 24); /* saved %asi       */
276 		else
277 			asi = (insn >> 5);	    /* immediate asi    */
278 		if ((asi & 0xf6) == ASI_PNF) {
279 			if (insn & 0x200000)        /* op3[2], stores   */
280 				return false;
281 			if (insn & 0x1000000)       /* op3[5:4]=3 (fp)  */
282 				handle_ldf_stq(insn, regs);
283 			else
284 				handle_ld_nf(insn, regs);
285 			return true;
286 		}
287 	}
288 	return false;
289 }
290 
291 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
292 {
293 	enum ctx_state prev_state = exception_enter();
294 
295 	if (notify_die(DIE_TRAP, "data access exception", regs,
296 		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
297 		goto out;
298 
299 	if (regs->tstate & TSTATE_PRIV) {
300 		/* Test if this comes from uaccess places. */
301 		const struct exception_table_entry *entry;
302 
303 		entry = search_exception_tables(regs->tpc);
304 		if (entry) {
305 			/* Ouch, somebody is trying VM hole tricks on us... */
306 #ifdef DEBUG_EXCEPTIONS
307 			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
308 			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
309 			       regs->tpc, entry->fixup);
310 #endif
311 			regs->tpc = entry->fixup;
312 			regs->tnpc = regs->tpc + 4;
313 			goto out;
314 		}
315 		/* Shit... */
316 		printk("spitfire_data_access_exception: SFSR[%016lx] "
317 		       "SFAR[%016lx], going.\n", sfsr, sfar);
318 		die_if_kernel("Dax", regs);
319 	}
320 
321 	if (is_no_fault_exception(regs))
322 		return;
323 
324 	force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0);
325 out:
326 	exception_exit(prev_state);
327 }
328 
329 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
330 {
331 	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
332 		       0, 0x30, SIGTRAP) == NOTIFY_STOP)
333 		return;
334 
335 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
336 	spitfire_data_access_exception(regs, sfsr, sfar);
337 }
338 
339 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
340 {
341 	unsigned short type = (type_ctx >> 16);
342 	unsigned short ctx  = (type_ctx & 0xffff);
343 
344 	if (notify_die(DIE_TRAP, "data access exception", regs,
345 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
346 		return;
347 
348 	if (regs->tstate & TSTATE_PRIV) {
349 		/* Test if this comes from uaccess places. */
350 		const struct exception_table_entry *entry;
351 
352 		entry = search_exception_tables(regs->tpc);
353 		if (entry) {
354 			/* Ouch, somebody is trying VM hole tricks on us... */
355 #ifdef DEBUG_EXCEPTIONS
356 			printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
357 			printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
358 			       regs->tpc, entry->fixup);
359 #endif
360 			regs->tpc = entry->fixup;
361 			regs->tnpc = regs->tpc + 4;
362 			return;
363 		}
364 		printk("sun4v_data_access_exception: ADDR[%016lx] "
365 		       "CTX[%04x] TYPE[%04x], going.\n",
366 		       addr, ctx, type);
367 		die_if_kernel("Dax", regs);
368 	}
369 
370 	if (test_thread_flag(TIF_32BIT)) {
371 		regs->tpc &= 0xffffffff;
372 		regs->tnpc &= 0xffffffff;
373 	}
374 	if (is_no_fault_exception(regs))
375 		return;
376 
377 	/* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV
378 	 * is vectored thorugh data access exception trap with fault type
379 	 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap.
380 	 * Accessing an address with invalid ASI for the address, for
381 	 * example setting an ADI tag on an address with ASI_MCD_PRIMARY
382 	 * when TTE.mcd is not set for the VA, is also vectored into
383 	 * kerbel by HV as data access exception with fault type set to
384 	 * HV_FAULT_TYPE_INV_ASI.
385 	 */
386 	switch (type) {
387 	case HV_FAULT_TYPE_INV_ASI:
388 		force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0);
389 		break;
390 	case HV_FAULT_TYPE_MCD_DIS:
391 		force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0);
392 		break;
393 	default:
394 		force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0);
395 		break;
396 	}
397 }
398 
399 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
400 {
401 	if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
402 		       0, 0x8, SIGTRAP) == NOTIFY_STOP)
403 		return;
404 
405 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
406 	sun4v_data_access_exception(regs, addr, type_ctx);
407 }
408 
409 #ifdef CONFIG_PCI
410 #include "pci_impl.h"
411 #endif
412 
413 /* When access exceptions happen, we must do this. */
414 static void spitfire_clean_and_reenable_l1_caches(void)
415 {
416 	unsigned long va;
417 
418 	if (tlb_type != spitfire)
419 		BUG();
420 
421 	/* Clean 'em. */
422 	for (va =  0; va < (PAGE_SIZE << 1); va += 32) {
423 		spitfire_put_icache_tag(va, 0x0);
424 		spitfire_put_dcache_tag(va, 0x0);
425 	}
426 
427 	/* Re-enable in LSU. */
428 	__asm__ __volatile__("flush %%g6\n\t"
429 			     "membar #Sync\n\t"
430 			     "stxa %0, [%%g0] %1\n\t"
431 			     "membar #Sync"
432 			     : /* no outputs */
433 			     : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
434 				    LSU_CONTROL_IM | LSU_CONTROL_DM),
435 			     "i" (ASI_LSU_CONTROL)
436 			     : "memory");
437 }
438 
439 static void spitfire_enable_estate_errors(void)
440 {
441 	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
442 			     "membar	#Sync"
443 			     : /* no outputs */
444 			     : "r" (ESTATE_ERR_ALL),
445 			       "i" (ASI_ESTATE_ERROR_EN));
446 }
447 
448 static char ecc_syndrome_table[] = {
449 	0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
450 	0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
451 	0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
452 	0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
453 	0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
454 	0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
455 	0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
456 	0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
457 	0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
458 	0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
459 	0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
460 	0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
461 	0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
462 	0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
463 	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
464 	0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
465 	0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
466 	0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
467 	0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
468 	0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
469 	0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
470 	0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
471 	0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
472 	0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
473 	0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
474 	0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
475 	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
476 	0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
477 	0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
478 	0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
479 	0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
480 	0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
481 };
482 
483 static char *syndrome_unknown = "<Unknown>";
484 
485 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
486 {
487 	unsigned short scode;
488 	char memmod_str[64], *p;
489 
490 	if (udbl & bit) {
491 		scode = ecc_syndrome_table[udbl & 0xff];
492 		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
493 			p = syndrome_unknown;
494 		else
495 			p = memmod_str;
496 		printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
497 		       "Memory Module \"%s\"\n",
498 		       smp_processor_id(), scode, p);
499 	}
500 
501 	if (udbh & bit) {
502 		scode = ecc_syndrome_table[udbh & 0xff];
503 		if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
504 			p = syndrome_unknown;
505 		else
506 			p = memmod_str;
507 		printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
508 		       "Memory Module \"%s\"\n",
509 		       smp_processor_id(), scode, p);
510 	}
511 
512 }
513 
514 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
515 {
516 
517 	printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
518 	       "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
519 	       smp_processor_id(), afsr, afar, udbl, udbh, tl1);
520 
521 	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
522 
523 	/* We always log it, even if someone is listening for this
524 	 * trap.
525 	 */
526 	notify_die(DIE_TRAP, "Correctable ECC Error", regs,
527 		   0, TRAP_TYPE_CEE, SIGTRAP);
528 
529 	/* The Correctable ECC Error trap does not disable I/D caches.  So
530 	 * we only have to restore the ESTATE Error Enable register.
531 	 */
532 	spitfire_enable_estate_errors();
533 }
534 
535 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
536 {
537 	printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
538 	       "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
539 	       smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
540 
541 	/* XXX add more human friendly logging of the error status
542 	 * XXX as is implemented for cheetah
543 	 */
544 
545 	spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
546 
547 	/* We always log it, even if someone is listening for this
548 	 * trap.
549 	 */
550 	notify_die(DIE_TRAP, "Uncorrectable Error", regs,
551 		   0, tt, SIGTRAP);
552 
553 	if (regs->tstate & TSTATE_PRIV) {
554 		if (tl1)
555 			dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
556 		die_if_kernel("UE", regs);
557 	}
558 
559 	/* XXX need more intelligent processing here, such as is implemented
560 	 * XXX for cheetah errors, in fact if the E-cache still holds the
561 	 * XXX line with bad parity this will loop
562 	 */
563 
564 	spitfire_clean_and_reenable_l1_caches();
565 	spitfire_enable_estate_errors();
566 
567 	if (test_thread_flag(TIF_32BIT)) {
568 		regs->tpc &= 0xffffffff;
569 		regs->tnpc &= 0xffffffff;
570 	}
571 	force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0);
572 }
573 
574 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
575 {
576 	unsigned long afsr, tt, udbh, udbl;
577 	int tl1;
578 
579 	afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
580 	tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
581 	tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
582 	udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
583 	udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
584 
585 #ifdef CONFIG_PCI
586 	if (tt == TRAP_TYPE_DAE &&
587 	    pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
588 		spitfire_clean_and_reenable_l1_caches();
589 		spitfire_enable_estate_errors();
590 
591 		pci_poke_faulted = 1;
592 		regs->tnpc = regs->tpc + 4;
593 		return;
594 	}
595 #endif
596 
597 	if (afsr & SFAFSR_UE)
598 		spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
599 
600 	if (tt == TRAP_TYPE_CEE) {
601 		/* Handle the case where we took a CEE trap, but ACK'd
602 		 * only the UE state in the UDB error registers.
603 		 */
604 		if (afsr & SFAFSR_UE) {
605 			if (udbh & UDBE_CE) {
606 				__asm__ __volatile__(
607 					"stxa	%0, [%1] %2\n\t"
608 					"membar	#Sync"
609 					: /* no outputs */
610 					: "r" (udbh & UDBE_CE),
611 					  "r" (0x0), "i" (ASI_UDB_ERROR_W));
612 			}
613 			if (udbl & UDBE_CE) {
614 				__asm__ __volatile__(
615 					"stxa	%0, [%1] %2\n\t"
616 					"membar	#Sync"
617 					: /* no outputs */
618 					: "r" (udbl & UDBE_CE),
619 					  "r" (0x18), "i" (ASI_UDB_ERROR_W));
620 			}
621 		}
622 
623 		spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
624 	}
625 }
626 
627 int cheetah_pcache_forced_on;
628 
629 void cheetah_enable_pcache(void)
630 {
631 	unsigned long dcr;
632 
633 	printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
634 	       smp_processor_id());
635 
636 	__asm__ __volatile__("ldxa [%%g0] %1, %0"
637 			     : "=r" (dcr)
638 			     : "i" (ASI_DCU_CONTROL_REG));
639 	dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
640 	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
641 			     "membar #Sync"
642 			     : /* no outputs */
643 			     : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
644 }
645 
646 /* Cheetah error trap handling. */
647 static unsigned long ecache_flush_physbase;
648 static unsigned long ecache_flush_linesize;
649 static unsigned long ecache_flush_size;
650 
651 /* This table is ordered in priority of errors and matches the
652  * AFAR overwrite policy as well.
653  */
654 
655 struct afsr_error_table {
656 	unsigned long mask;
657 	const char *name;
658 };
659 
660 static const char CHAFSR_PERR_msg[] =
661 	"System interface protocol error";
662 static const char CHAFSR_IERR_msg[] =
663 	"Internal processor error";
664 static const char CHAFSR_ISAP_msg[] =
665 	"System request parity error on incoming address";
666 static const char CHAFSR_UCU_msg[] =
667 	"Uncorrectable E-cache ECC error for ifetch/data";
668 static const char CHAFSR_UCC_msg[] =
669 	"SW Correctable E-cache ECC error for ifetch/data";
670 static const char CHAFSR_UE_msg[] =
671 	"Uncorrectable system bus data ECC error for read";
672 static const char CHAFSR_EDU_msg[] =
673 	"Uncorrectable E-cache ECC error for stmerge/blkld";
674 static const char CHAFSR_EMU_msg[] =
675 	"Uncorrectable system bus MTAG error";
676 static const char CHAFSR_WDU_msg[] =
677 	"Uncorrectable E-cache ECC error for writeback";
678 static const char CHAFSR_CPU_msg[] =
679 	"Uncorrectable ECC error for copyout";
680 static const char CHAFSR_CE_msg[] =
681 	"HW corrected system bus data ECC error for read";
682 static const char CHAFSR_EDC_msg[] =
683 	"HW corrected E-cache ECC error for stmerge/blkld";
684 static const char CHAFSR_EMC_msg[] =
685 	"HW corrected system bus MTAG ECC error";
686 static const char CHAFSR_WDC_msg[] =
687 	"HW corrected E-cache ECC error for writeback";
688 static const char CHAFSR_CPC_msg[] =
689 	"HW corrected ECC error for copyout";
690 static const char CHAFSR_TO_msg[] =
691 	"Unmapped error from system bus";
692 static const char CHAFSR_BERR_msg[] =
693 	"Bus error response from system bus";
694 static const char CHAFSR_IVC_msg[] =
695 	"HW corrected system bus data ECC error for ivec read";
696 static const char CHAFSR_IVU_msg[] =
697 	"Uncorrectable system bus data ECC error for ivec read";
698 static struct afsr_error_table __cheetah_error_table[] = {
699 	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
700 	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
701 	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
702 	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
703 	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
704 	{	CHAFSR_UE,	CHAFSR_UE_msg		},
705 	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
706 	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
707 	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
708 	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
709 	{	CHAFSR_CE,	CHAFSR_CE_msg		},
710 	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
711 	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
712 	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
713 	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
714 	{	CHAFSR_TO,	CHAFSR_TO_msg		},
715 	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
716 	/* These two do not update the AFAR. */
717 	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
718 	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
719 	{	0,		NULL			},
720 };
721 static const char CHPAFSR_DTO_msg[] =
722 	"System bus unmapped error for prefetch/storequeue-read";
723 static const char CHPAFSR_DBERR_msg[] =
724 	"System bus error for prefetch/storequeue-read";
725 static const char CHPAFSR_THCE_msg[] =
726 	"Hardware corrected E-cache Tag ECC error";
727 static const char CHPAFSR_TSCE_msg[] =
728 	"SW handled correctable E-cache Tag ECC error";
729 static const char CHPAFSR_TUE_msg[] =
730 	"Uncorrectable E-cache Tag ECC error";
731 static const char CHPAFSR_DUE_msg[] =
732 	"System bus uncorrectable data ECC error due to prefetch/store-fill";
733 static struct afsr_error_table __cheetah_plus_error_table[] = {
734 	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
735 	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
736 	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
737 	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
738 	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
739 	{	CHAFSR_UE,	CHAFSR_UE_msg		},
740 	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
741 	{	CHAFSR_EMU,	CHAFSR_EMU_msg		},
742 	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
743 	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
744 	{	CHAFSR_CE,	CHAFSR_CE_msg		},
745 	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
746 	{	CHAFSR_EMC,	CHAFSR_EMC_msg		},
747 	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
748 	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
749 	{	CHAFSR_TO,	CHAFSR_TO_msg		},
750 	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
751 	{	CHPAFSR_DTO,	CHPAFSR_DTO_msg		},
752 	{	CHPAFSR_DBERR,	CHPAFSR_DBERR_msg	},
753 	{	CHPAFSR_THCE,	CHPAFSR_THCE_msg	},
754 	{	CHPAFSR_TSCE,	CHPAFSR_TSCE_msg	},
755 	{	CHPAFSR_TUE,	CHPAFSR_TUE_msg		},
756 	{	CHPAFSR_DUE,	CHPAFSR_DUE_msg		},
757 	/* These two do not update the AFAR. */
758 	{	CHAFSR_IVC,	CHAFSR_IVC_msg		},
759 	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
760 	{	0,		NULL			},
761 };
762 static const char JPAFSR_JETO_msg[] =
763 	"System interface protocol error, hw timeout caused";
764 static const char JPAFSR_SCE_msg[] =
765 	"Parity error on system snoop results";
766 static const char JPAFSR_JEIC_msg[] =
767 	"System interface protocol error, illegal command detected";
768 static const char JPAFSR_JEIT_msg[] =
769 	"System interface protocol error, illegal ADTYPE detected";
770 static const char JPAFSR_OM_msg[] =
771 	"Out of range memory error has occurred";
772 static const char JPAFSR_ETP_msg[] =
773 	"Parity error on L2 cache tag SRAM";
774 static const char JPAFSR_UMS_msg[] =
775 	"Error due to unsupported store";
776 static const char JPAFSR_RUE_msg[] =
777 	"Uncorrectable ECC error from remote cache/memory";
778 static const char JPAFSR_RCE_msg[] =
779 	"Correctable ECC error from remote cache/memory";
780 static const char JPAFSR_BP_msg[] =
781 	"JBUS parity error on returned read data";
782 static const char JPAFSR_WBP_msg[] =
783 	"JBUS parity error on data for writeback or block store";
784 static const char JPAFSR_FRC_msg[] =
785 	"Foreign read to DRAM incurring correctable ECC error";
786 static const char JPAFSR_FRU_msg[] =
787 	"Foreign read to DRAM incurring uncorrectable ECC error";
788 static struct afsr_error_table __jalapeno_error_table[] = {
789 	{	JPAFSR_JETO,	JPAFSR_JETO_msg		},
790 	{	JPAFSR_SCE,	JPAFSR_SCE_msg		},
791 	{	JPAFSR_JEIC,	JPAFSR_JEIC_msg		},
792 	{	JPAFSR_JEIT,	JPAFSR_JEIT_msg		},
793 	{	CHAFSR_PERR,	CHAFSR_PERR_msg		},
794 	{	CHAFSR_IERR,	CHAFSR_IERR_msg		},
795 	{	CHAFSR_ISAP,	CHAFSR_ISAP_msg		},
796 	{	CHAFSR_UCU,	CHAFSR_UCU_msg		},
797 	{	CHAFSR_UCC,	CHAFSR_UCC_msg		},
798 	{	CHAFSR_UE,	CHAFSR_UE_msg		},
799 	{	CHAFSR_EDU,	CHAFSR_EDU_msg		},
800 	{	JPAFSR_OM,	JPAFSR_OM_msg		},
801 	{	CHAFSR_WDU,	CHAFSR_WDU_msg		},
802 	{	CHAFSR_CPU,	CHAFSR_CPU_msg		},
803 	{	CHAFSR_CE,	CHAFSR_CE_msg		},
804 	{	CHAFSR_EDC,	CHAFSR_EDC_msg		},
805 	{	JPAFSR_ETP,	JPAFSR_ETP_msg		},
806 	{	CHAFSR_WDC,	CHAFSR_WDC_msg		},
807 	{	CHAFSR_CPC,	CHAFSR_CPC_msg		},
808 	{	CHAFSR_TO,	CHAFSR_TO_msg		},
809 	{	CHAFSR_BERR,	CHAFSR_BERR_msg		},
810 	{	JPAFSR_UMS,	JPAFSR_UMS_msg		},
811 	{	JPAFSR_RUE,	JPAFSR_RUE_msg		},
812 	{	JPAFSR_RCE,	JPAFSR_RCE_msg		},
813 	{	JPAFSR_BP,	JPAFSR_BP_msg		},
814 	{	JPAFSR_WBP,	JPAFSR_WBP_msg		},
815 	{	JPAFSR_FRC,	JPAFSR_FRC_msg		},
816 	{	JPAFSR_FRU,	JPAFSR_FRU_msg		},
817 	/* These two do not update the AFAR. */
818 	{	CHAFSR_IVU,	CHAFSR_IVU_msg		},
819 	{	0,		NULL			},
820 };
821 static struct afsr_error_table *cheetah_error_table;
822 static unsigned long cheetah_afsr_errors;
823 
824 struct cheetah_err_info *cheetah_error_log;
825 
826 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
827 {
828 	struct cheetah_err_info *p;
829 	int cpu = smp_processor_id();
830 
831 	if (!cheetah_error_log)
832 		return NULL;
833 
834 	p = cheetah_error_log + (cpu * 2);
835 	if ((afsr & CHAFSR_TL1) != 0UL)
836 		p++;
837 
838 	return p;
839 }
840 
841 extern unsigned int tl0_icpe[], tl1_icpe[];
842 extern unsigned int tl0_dcpe[], tl1_dcpe[];
843 extern unsigned int tl0_fecc[], tl1_fecc[];
844 extern unsigned int tl0_cee[], tl1_cee[];
845 extern unsigned int tl0_iae[], tl1_iae[];
846 extern unsigned int tl0_dae[], tl1_dae[];
847 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
848 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
849 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
850 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
851 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
852 
853 void __init cheetah_ecache_flush_init(void)
854 {
855 	unsigned long largest_size, smallest_linesize, order, ver;
856 	int i, sz;
857 
858 	/* Scan all cpu device tree nodes, note two values:
859 	 * 1) largest E-cache size
860 	 * 2) smallest E-cache line size
861 	 */
862 	largest_size = 0UL;
863 	smallest_linesize = ~0UL;
864 
865 	for (i = 0; i < NR_CPUS; i++) {
866 		unsigned long val;
867 
868 		val = cpu_data(i).ecache_size;
869 		if (!val)
870 			continue;
871 
872 		if (val > largest_size)
873 			largest_size = val;
874 
875 		val = cpu_data(i).ecache_line_size;
876 		if (val < smallest_linesize)
877 			smallest_linesize = val;
878 
879 	}
880 
881 	if (largest_size == 0UL || smallest_linesize == ~0UL) {
882 		prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
883 			    "parameters.\n");
884 		prom_halt();
885 	}
886 
887 	ecache_flush_size = (2 * largest_size);
888 	ecache_flush_linesize = smallest_linesize;
889 
890 	ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
891 
892 	if (ecache_flush_physbase == ~0UL) {
893 		prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
894 			    "contiguous physical memory.\n",
895 			    ecache_flush_size);
896 		prom_halt();
897 	}
898 
899 	/* Now allocate error trap reporting scoreboard. */
900 	sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
901 	for (order = 0; order < MAX_ORDER; order++) {
902 		if ((PAGE_SIZE << order) >= sz)
903 			break;
904 	}
905 	cheetah_error_log = (struct cheetah_err_info *)
906 		__get_free_pages(GFP_KERNEL, order);
907 	if (!cheetah_error_log) {
908 		prom_printf("cheetah_ecache_flush_init: Failed to allocate "
909 			    "error logging scoreboard (%d bytes).\n", sz);
910 		prom_halt();
911 	}
912 	memset(cheetah_error_log, 0, PAGE_SIZE << order);
913 
914 	/* Mark all AFSRs as invalid so that the trap handler will
915 	 * log new new information there.
916 	 */
917 	for (i = 0; i < 2 * NR_CPUS; i++)
918 		cheetah_error_log[i].afsr = CHAFSR_INVALID;
919 
920 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
921 	if ((ver >> 32) == __JALAPENO_ID ||
922 	    (ver >> 32) == __SERRANO_ID) {
923 		cheetah_error_table = &__jalapeno_error_table[0];
924 		cheetah_afsr_errors = JPAFSR_ERRORS;
925 	} else if ((ver >> 32) == 0x003e0015) {
926 		cheetah_error_table = &__cheetah_plus_error_table[0];
927 		cheetah_afsr_errors = CHPAFSR_ERRORS;
928 	} else {
929 		cheetah_error_table = &__cheetah_error_table[0];
930 		cheetah_afsr_errors = CHAFSR_ERRORS;
931 	}
932 
933 	/* Now patch trap tables. */
934 	memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
935 	memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
936 	memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
937 	memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
938 	memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
939 	memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
940 	memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
941 	memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
942 	if (tlb_type == cheetah_plus) {
943 		memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
944 		memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
945 		memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
946 		memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
947 	}
948 	flushi(PAGE_OFFSET);
949 }
950 
951 static void cheetah_flush_ecache(void)
952 {
953 	unsigned long flush_base = ecache_flush_physbase;
954 	unsigned long flush_linesize = ecache_flush_linesize;
955 	unsigned long flush_size = ecache_flush_size;
956 
957 	__asm__ __volatile__("1: subcc	%0, %4, %0\n\t"
958 			     "   bne,pt	%%xcc, 1b\n\t"
959 			     "    ldxa	[%2 + %0] %3, %%g0\n\t"
960 			     : "=&r" (flush_size)
961 			     : "0" (flush_size), "r" (flush_base),
962 			       "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
963 }
964 
965 static void cheetah_flush_ecache_line(unsigned long physaddr)
966 {
967 	unsigned long alias;
968 
969 	physaddr &= ~(8UL - 1UL);
970 	physaddr = (ecache_flush_physbase +
971 		    (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
972 	alias = physaddr + (ecache_flush_size >> 1UL);
973 	__asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
974 			     "ldxa [%1] %2, %%g0\n\t"
975 			     "membar #Sync"
976 			     : /* no outputs */
977 			     : "r" (physaddr), "r" (alias),
978 			       "i" (ASI_PHYS_USE_EC));
979 }
980 
981 /* Unfortunately, the diagnostic access to the I-cache tags we need to
982  * use to clear the thing interferes with I-cache coherency transactions.
983  *
984  * So we must only flush the I-cache when it is disabled.
985  */
986 static void __cheetah_flush_icache(void)
987 {
988 	unsigned int icache_size, icache_line_size;
989 	unsigned long addr;
990 
991 	icache_size = local_cpu_data().icache_size;
992 	icache_line_size = local_cpu_data().icache_line_size;
993 
994 	/* Clear the valid bits in all the tags. */
995 	for (addr = 0; addr < icache_size; addr += icache_line_size) {
996 		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
997 				     "membar #Sync"
998 				     : /* no outputs */
999 				     : "r" (addr | (2 << 3)),
1000 				       "i" (ASI_IC_TAG));
1001 	}
1002 }
1003 
1004 static void cheetah_flush_icache(void)
1005 {
1006 	unsigned long dcu_save;
1007 
1008 	/* Save current DCU, disable I-cache. */
1009 	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1010 			     "or %0, %2, %%g1\n\t"
1011 			     "stxa %%g1, [%%g0] %1\n\t"
1012 			     "membar #Sync"
1013 			     : "=r" (dcu_save)
1014 			     : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
1015 			     : "g1");
1016 
1017 	__cheetah_flush_icache();
1018 
1019 	/* Restore DCU register */
1020 	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1021 			     "membar #Sync"
1022 			     : /* no outputs */
1023 			     : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
1024 }
1025 
1026 static void cheetah_flush_dcache(void)
1027 {
1028 	unsigned int dcache_size, dcache_line_size;
1029 	unsigned long addr;
1030 
1031 	dcache_size = local_cpu_data().dcache_size;
1032 	dcache_line_size = local_cpu_data().dcache_line_size;
1033 
1034 	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1035 		__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1036 				     "membar #Sync"
1037 				     : /* no outputs */
1038 				     : "r" (addr), "i" (ASI_DCACHE_TAG));
1039 	}
1040 }
1041 
1042 /* In order to make the even parity correct we must do two things.
1043  * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1044  * Next, we clear out all 32-bytes of data for that line.  Data of
1045  * all-zero + tag parity value of zero == correct parity.
1046  */
1047 static void cheetah_plus_zap_dcache_parity(void)
1048 {
1049 	unsigned int dcache_size, dcache_line_size;
1050 	unsigned long addr;
1051 
1052 	dcache_size = local_cpu_data().dcache_size;
1053 	dcache_line_size = local_cpu_data().dcache_line_size;
1054 
1055 	for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1056 		unsigned long tag = (addr >> 14);
1057 		unsigned long line;
1058 
1059 		__asm__ __volatile__("membar	#Sync\n\t"
1060 				     "stxa	%0, [%1] %2\n\t"
1061 				     "membar	#Sync"
1062 				     : /* no outputs */
1063 				     : "r" (tag), "r" (addr),
1064 				       "i" (ASI_DCACHE_UTAG));
1065 		for (line = addr; line < addr + dcache_line_size; line += 8)
1066 			__asm__ __volatile__("membar	#Sync\n\t"
1067 					     "stxa	%%g0, [%0] %1\n\t"
1068 					     "membar	#Sync"
1069 					     : /* no outputs */
1070 					     : "r" (line),
1071 					       "i" (ASI_DCACHE_DATA));
1072 	}
1073 }
1074 
1075 /* Conversion tables used to frob Cheetah AFSR syndrome values into
1076  * something palatable to the memory controller driver get_unumber
1077  * routine.
1078  */
1079 #define MT0	137
1080 #define MT1	138
1081 #define MT2	139
1082 #define NONE	254
1083 #define MTC0	140
1084 #define MTC1	141
1085 #define MTC2	142
1086 #define MTC3	143
1087 #define C0	128
1088 #define C1	129
1089 #define C2	130
1090 #define C3	131
1091 #define C4	132
1092 #define C5	133
1093 #define C6	134
1094 #define C7	135
1095 #define C8	136
1096 #define M2	144
1097 #define M3	145
1098 #define M4	146
1099 #define M	147
1100 static unsigned char cheetah_ecc_syntab[] = {
1101 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1102 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1103 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1104 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1105 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1106 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1107 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1108 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1109 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1110 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1111 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1112 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1113 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1114 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1115 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1116 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1117 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1118 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1119 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1120 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1121 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1122 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1123 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1124 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1125 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1126 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1127 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1128 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1129 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1130 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1131 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1132 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1133 };
1134 static unsigned char cheetah_mtag_syntab[] = {
1135        NONE, MTC0,
1136        MTC1, NONE,
1137        MTC2, NONE,
1138        NONE, MT0,
1139        MTC3, NONE,
1140        NONE, MT1,
1141        NONE, MT2,
1142        NONE, NONE
1143 };
1144 
1145 /* Return the highest priority error conditon mentioned. */
1146 static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1147 {
1148 	unsigned long tmp = 0;
1149 	int i;
1150 
1151 	for (i = 0; cheetah_error_table[i].mask; i++) {
1152 		if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1153 			return tmp;
1154 	}
1155 	return tmp;
1156 }
1157 
1158 static const char *cheetah_get_string(unsigned long bit)
1159 {
1160 	int i;
1161 
1162 	for (i = 0; cheetah_error_table[i].mask; i++) {
1163 		if ((bit & cheetah_error_table[i].mask) != 0UL)
1164 			return cheetah_error_table[i].name;
1165 	}
1166 	return "???";
1167 }
1168 
1169 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1170 			       unsigned long afsr, unsigned long afar, int recoverable)
1171 {
1172 	unsigned long hipri;
1173 	char unum[256];
1174 
1175 	printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1176 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1177 	       afsr, afar,
1178 	       (afsr & CHAFSR_TL1) ? 1 : 0);
1179 	printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1180 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1181 	       regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1182 	printk("%s" "ERROR(%d): ",
1183 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1184 	printk("TPC<%pS>\n", (void *) regs->tpc);
1185 	printk("%s" "ERROR(%d): M_SYND(%lx),  E_SYND(%lx)%s%s\n",
1186 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1187 	       (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1188 	       (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1189 	       (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1190 	       (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1191 	hipri = cheetah_get_hipri(afsr);
1192 	printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1193 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1194 	       hipri, cheetah_get_string(hipri));
1195 
1196 	/* Try to get unumber if relevant. */
1197 #define ESYND_ERRORS	(CHAFSR_IVC | CHAFSR_IVU | \
1198 			 CHAFSR_CPC | CHAFSR_CPU | \
1199 			 CHAFSR_UE  | CHAFSR_CE  | \
1200 			 CHAFSR_EDC | CHAFSR_EDU  | \
1201 			 CHAFSR_UCC | CHAFSR_UCU  | \
1202 			 CHAFSR_WDU | CHAFSR_WDC)
1203 #define MSYND_ERRORS	(CHAFSR_EMC | CHAFSR_EMU)
1204 	if (afsr & ESYND_ERRORS) {
1205 		int syndrome;
1206 		int ret;
1207 
1208 		syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1209 		syndrome = cheetah_ecc_syntab[syndrome];
1210 		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1211 		if (ret != -1)
1212 			printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1213 			       (recoverable ? KERN_WARNING : KERN_CRIT),
1214 			       smp_processor_id(), unum);
1215 	} else if (afsr & MSYND_ERRORS) {
1216 		int syndrome;
1217 		int ret;
1218 
1219 		syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1220 		syndrome = cheetah_mtag_syntab[syndrome];
1221 		ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1222 		if (ret != -1)
1223 			printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1224 			       (recoverable ? KERN_WARNING : KERN_CRIT),
1225 			       smp_processor_id(), unum);
1226 	}
1227 
1228 	/* Now dump the cache snapshots. */
1229 	printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1230 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1231 	       (int) info->dcache_index,
1232 	       info->dcache_tag,
1233 	       info->dcache_utag,
1234 	       info->dcache_stag);
1235 	printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237 	       info->dcache_data[0],
1238 	       info->dcache_data[1],
1239 	       info->dcache_data[2],
1240 	       info->dcache_data[3]);
1241 	printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1242 	       "u[%016llx] l[%016llx]\n",
1243 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1244 	       (int) info->icache_index,
1245 	       info->icache_tag,
1246 	       info->icache_utag,
1247 	       info->icache_stag,
1248 	       info->icache_upper,
1249 	       info->icache_lower);
1250 	printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1251 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1252 	       info->icache_data[0],
1253 	       info->icache_data[1],
1254 	       info->icache_data[2],
1255 	       info->icache_data[3]);
1256 	printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1257 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1258 	       info->icache_data[4],
1259 	       info->icache_data[5],
1260 	       info->icache_data[6],
1261 	       info->icache_data[7]);
1262 	printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1263 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1264 	       (int) info->ecache_index, info->ecache_tag);
1265 	printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1266 	       (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1267 	       info->ecache_data[0],
1268 	       info->ecache_data[1],
1269 	       info->ecache_data[2],
1270 	       info->ecache_data[3]);
1271 
1272 	afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1273 	while (afsr != 0UL) {
1274 		unsigned long bit = cheetah_get_hipri(afsr);
1275 
1276 		printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1277 		       (recoverable ? KERN_WARNING : KERN_CRIT),
1278 		       bit, cheetah_get_string(bit));
1279 
1280 		afsr &= ~bit;
1281 	}
1282 
1283 	if (!recoverable)
1284 		printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1285 }
1286 
1287 static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1288 {
1289 	unsigned long afsr, afar;
1290 	int ret = 0;
1291 
1292 	__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1293 			     : "=r" (afsr)
1294 			     : "i" (ASI_AFSR));
1295 	if ((afsr & cheetah_afsr_errors) != 0) {
1296 		if (logp != NULL) {
1297 			__asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1298 					     : "=r" (afar)
1299 					     : "i" (ASI_AFAR));
1300 			logp->afsr = afsr;
1301 			logp->afar = afar;
1302 		}
1303 		ret = 1;
1304 	}
1305 	__asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1306 			     "membar #Sync\n\t"
1307 			     : : "r" (afsr), "i" (ASI_AFSR));
1308 
1309 	return ret;
1310 }
1311 
1312 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1313 {
1314 	struct cheetah_err_info local_snapshot, *p;
1315 	int recoverable;
1316 
1317 	/* Flush E-cache */
1318 	cheetah_flush_ecache();
1319 
1320 	p = cheetah_get_error_log(afsr);
1321 	if (!p) {
1322 		prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1323 			    afsr, afar);
1324 		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1325 			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1326 		prom_halt();
1327 	}
1328 
1329 	/* Grab snapshot of logged error. */
1330 	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1331 
1332 	/* If the current trap snapshot does not match what the
1333 	 * trap handler passed along into our args, big trouble.
1334 	 * In such a case, mark the local copy as invalid.
1335 	 *
1336 	 * Else, it matches and we mark the afsr in the non-local
1337 	 * copy as invalid so we may log new error traps there.
1338 	 */
1339 	if (p->afsr != afsr || p->afar != afar)
1340 		local_snapshot.afsr = CHAFSR_INVALID;
1341 	else
1342 		p->afsr = CHAFSR_INVALID;
1343 
1344 	cheetah_flush_icache();
1345 	cheetah_flush_dcache();
1346 
1347 	/* Re-enable I-cache/D-cache */
1348 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1349 			     "or %%g1, %1, %%g1\n\t"
1350 			     "stxa %%g1, [%%g0] %0\n\t"
1351 			     "membar #Sync"
1352 			     : /* no outputs */
1353 			     : "i" (ASI_DCU_CONTROL_REG),
1354 			       "i" (DCU_DC | DCU_IC)
1355 			     : "g1");
1356 
1357 	/* Re-enable error reporting */
1358 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1359 			     "or %%g1, %1, %%g1\n\t"
1360 			     "stxa %%g1, [%%g0] %0\n\t"
1361 			     "membar #Sync"
1362 			     : /* no outputs */
1363 			     : "i" (ASI_ESTATE_ERROR_EN),
1364 			       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1365 			     : "g1");
1366 
1367 	/* Decide if we can continue after handling this trap and
1368 	 * logging the error.
1369 	 */
1370 	recoverable = 1;
1371 	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1372 		recoverable = 0;
1373 
1374 	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1375 	 * error was logged while we had error reporting traps disabled.
1376 	 */
1377 	if (cheetah_recheck_errors(&local_snapshot)) {
1378 		unsigned long new_afsr = local_snapshot.afsr;
1379 
1380 		/* If we got a new asynchronous error, die... */
1381 		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1382 				CHAFSR_WDU | CHAFSR_CPU |
1383 				CHAFSR_IVU | CHAFSR_UE |
1384 				CHAFSR_BERR | CHAFSR_TO))
1385 			recoverable = 0;
1386 	}
1387 
1388 	/* Log errors. */
1389 	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1390 
1391 	if (!recoverable)
1392 		panic("Irrecoverable Fast-ECC error trap.\n");
1393 
1394 	/* Flush E-cache to kick the error trap handlers out. */
1395 	cheetah_flush_ecache();
1396 }
1397 
1398 /* Try to fix a correctable error by pushing the line out from
1399  * the E-cache.  Recheck error reporting registers to see if the
1400  * problem is intermittent.
1401  */
1402 static int cheetah_fix_ce(unsigned long physaddr)
1403 {
1404 	unsigned long orig_estate;
1405 	unsigned long alias1, alias2;
1406 	int ret;
1407 
1408 	/* Make sure correctable error traps are disabled. */
1409 	__asm__ __volatile__("ldxa	[%%g0] %2, %0\n\t"
1410 			     "andn	%0, %1, %%g1\n\t"
1411 			     "stxa	%%g1, [%%g0] %2\n\t"
1412 			     "membar	#Sync"
1413 			     : "=&r" (orig_estate)
1414 			     : "i" (ESTATE_ERROR_CEEN),
1415 			       "i" (ASI_ESTATE_ERROR_EN)
1416 			     : "g1");
1417 
1418 	/* We calculate alias addresses that will force the
1419 	 * cache line in question out of the E-cache.  Then
1420 	 * we bring it back in with an atomic instruction so
1421 	 * that we get it in some modified/exclusive state,
1422 	 * then we displace it again to try and get proper ECC
1423 	 * pushed back into the system.
1424 	 */
1425 	physaddr &= ~(8UL - 1UL);
1426 	alias1 = (ecache_flush_physbase +
1427 		  (physaddr & ((ecache_flush_size >> 1) - 1)));
1428 	alias2 = alias1 + (ecache_flush_size >> 1);
1429 	__asm__ __volatile__("ldxa	[%0] %3, %%g0\n\t"
1430 			     "ldxa	[%1] %3, %%g0\n\t"
1431 			     "casxa	[%2] %3, %%g0, %%g0\n\t"
1432 			     "ldxa	[%0] %3, %%g0\n\t"
1433 			     "ldxa	[%1] %3, %%g0\n\t"
1434 			     "membar	#Sync"
1435 			     : /* no outputs */
1436 			     : "r" (alias1), "r" (alias2),
1437 			       "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1438 
1439 	/* Did that trigger another error? */
1440 	if (cheetah_recheck_errors(NULL)) {
1441 		/* Try one more time. */
1442 		__asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1443 				     "membar #Sync"
1444 				     : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1445 		if (cheetah_recheck_errors(NULL))
1446 			ret = 2;
1447 		else
1448 			ret = 1;
1449 	} else {
1450 		/* No new error, intermittent problem. */
1451 		ret = 0;
1452 	}
1453 
1454 	/* Restore error enables. */
1455 	__asm__ __volatile__("stxa	%0, [%%g0] %1\n\t"
1456 			     "membar	#Sync"
1457 			     : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1458 
1459 	return ret;
1460 }
1461 
1462 /* Return non-zero if PADDR is a valid physical memory address. */
1463 static int cheetah_check_main_memory(unsigned long paddr)
1464 {
1465 	unsigned long vaddr = PAGE_OFFSET + paddr;
1466 
1467 	if (vaddr > (unsigned long) high_memory)
1468 		return 0;
1469 
1470 	return kern_addr_valid(vaddr);
1471 }
1472 
1473 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1474 {
1475 	struct cheetah_err_info local_snapshot, *p;
1476 	int recoverable, is_memory;
1477 
1478 	p = cheetah_get_error_log(afsr);
1479 	if (!p) {
1480 		prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1481 			    afsr, afar);
1482 		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1483 			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1484 		prom_halt();
1485 	}
1486 
1487 	/* Grab snapshot of logged error. */
1488 	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1489 
1490 	/* If the current trap snapshot does not match what the
1491 	 * trap handler passed along into our args, big trouble.
1492 	 * In such a case, mark the local copy as invalid.
1493 	 *
1494 	 * Else, it matches and we mark the afsr in the non-local
1495 	 * copy as invalid so we may log new error traps there.
1496 	 */
1497 	if (p->afsr != afsr || p->afar != afar)
1498 		local_snapshot.afsr = CHAFSR_INVALID;
1499 	else
1500 		p->afsr = CHAFSR_INVALID;
1501 
1502 	is_memory = cheetah_check_main_memory(afar);
1503 
1504 	if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1505 		/* XXX Might want to log the results of this operation
1506 		 * XXX somewhere... -DaveM
1507 		 */
1508 		cheetah_fix_ce(afar);
1509 	}
1510 
1511 	{
1512 		int flush_all, flush_line;
1513 
1514 		flush_all = flush_line = 0;
1515 		if ((afsr & CHAFSR_EDC) != 0UL) {
1516 			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1517 				flush_line = 1;
1518 			else
1519 				flush_all = 1;
1520 		} else if ((afsr & CHAFSR_CPC) != 0UL) {
1521 			if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1522 				flush_line = 1;
1523 			else
1524 				flush_all = 1;
1525 		}
1526 
1527 		/* Trap handler only disabled I-cache, flush it. */
1528 		cheetah_flush_icache();
1529 
1530 		/* Re-enable I-cache */
1531 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1532 				     "or %%g1, %1, %%g1\n\t"
1533 				     "stxa %%g1, [%%g0] %0\n\t"
1534 				     "membar #Sync"
1535 				     : /* no outputs */
1536 				     : "i" (ASI_DCU_CONTROL_REG),
1537 				     "i" (DCU_IC)
1538 				     : "g1");
1539 
1540 		if (flush_all)
1541 			cheetah_flush_ecache();
1542 		else if (flush_line)
1543 			cheetah_flush_ecache_line(afar);
1544 	}
1545 
1546 	/* Re-enable error reporting */
1547 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1548 			     "or %%g1, %1, %%g1\n\t"
1549 			     "stxa %%g1, [%%g0] %0\n\t"
1550 			     "membar #Sync"
1551 			     : /* no outputs */
1552 			     : "i" (ASI_ESTATE_ERROR_EN),
1553 			       "i" (ESTATE_ERROR_CEEN)
1554 			     : "g1");
1555 
1556 	/* Decide if we can continue after handling this trap and
1557 	 * logging the error.
1558 	 */
1559 	recoverable = 1;
1560 	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1561 		recoverable = 0;
1562 
1563 	/* Re-check AFSR/AFAR */
1564 	(void) cheetah_recheck_errors(&local_snapshot);
1565 
1566 	/* Log errors. */
1567 	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1568 
1569 	if (!recoverable)
1570 		panic("Irrecoverable Correctable-ECC error trap.\n");
1571 }
1572 
1573 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1574 {
1575 	struct cheetah_err_info local_snapshot, *p;
1576 	int recoverable, is_memory;
1577 
1578 #ifdef CONFIG_PCI
1579 	/* Check for the special PCI poke sequence. */
1580 	if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1581 		cheetah_flush_icache();
1582 		cheetah_flush_dcache();
1583 
1584 		/* Re-enable I-cache/D-cache */
1585 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1586 				     "or %%g1, %1, %%g1\n\t"
1587 				     "stxa %%g1, [%%g0] %0\n\t"
1588 				     "membar #Sync"
1589 				     : /* no outputs */
1590 				     : "i" (ASI_DCU_CONTROL_REG),
1591 				       "i" (DCU_DC | DCU_IC)
1592 				     : "g1");
1593 
1594 		/* Re-enable error reporting */
1595 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1596 				     "or %%g1, %1, %%g1\n\t"
1597 				     "stxa %%g1, [%%g0] %0\n\t"
1598 				     "membar #Sync"
1599 				     : /* no outputs */
1600 				     : "i" (ASI_ESTATE_ERROR_EN),
1601 				       "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1602 				     : "g1");
1603 
1604 		(void) cheetah_recheck_errors(NULL);
1605 
1606 		pci_poke_faulted = 1;
1607 		regs->tpc += 4;
1608 		regs->tnpc = regs->tpc + 4;
1609 		return;
1610 	}
1611 #endif
1612 
1613 	p = cheetah_get_error_log(afsr);
1614 	if (!p) {
1615 		prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1616 			    afsr, afar);
1617 		prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1618 			    smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1619 		prom_halt();
1620 	}
1621 
1622 	/* Grab snapshot of logged error. */
1623 	memcpy(&local_snapshot, p, sizeof(local_snapshot));
1624 
1625 	/* If the current trap snapshot does not match what the
1626 	 * trap handler passed along into our args, big trouble.
1627 	 * In such a case, mark the local copy as invalid.
1628 	 *
1629 	 * Else, it matches and we mark the afsr in the non-local
1630 	 * copy as invalid so we may log new error traps there.
1631 	 */
1632 	if (p->afsr != afsr || p->afar != afar)
1633 		local_snapshot.afsr = CHAFSR_INVALID;
1634 	else
1635 		p->afsr = CHAFSR_INVALID;
1636 
1637 	is_memory = cheetah_check_main_memory(afar);
1638 
1639 	{
1640 		int flush_all, flush_line;
1641 
1642 		flush_all = flush_line = 0;
1643 		if ((afsr & CHAFSR_EDU) != 0UL) {
1644 			if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1645 				flush_line = 1;
1646 			else
1647 				flush_all = 1;
1648 		} else if ((afsr & CHAFSR_BERR) != 0UL) {
1649 			if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1650 				flush_line = 1;
1651 			else
1652 				flush_all = 1;
1653 		}
1654 
1655 		cheetah_flush_icache();
1656 		cheetah_flush_dcache();
1657 
1658 		/* Re-enable I/D caches */
1659 		__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1660 				     "or %%g1, %1, %%g1\n\t"
1661 				     "stxa %%g1, [%%g0] %0\n\t"
1662 				     "membar #Sync"
1663 				     : /* no outputs */
1664 				     : "i" (ASI_DCU_CONTROL_REG),
1665 				     "i" (DCU_IC | DCU_DC)
1666 				     : "g1");
1667 
1668 		if (flush_all)
1669 			cheetah_flush_ecache();
1670 		else if (flush_line)
1671 			cheetah_flush_ecache_line(afar);
1672 	}
1673 
1674 	/* Re-enable error reporting */
1675 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1676 			     "or %%g1, %1, %%g1\n\t"
1677 			     "stxa %%g1, [%%g0] %0\n\t"
1678 			     "membar #Sync"
1679 			     : /* no outputs */
1680 			     : "i" (ASI_ESTATE_ERROR_EN),
1681 			     "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1682 			     : "g1");
1683 
1684 	/* Decide if we can continue after handling this trap and
1685 	 * logging the error.
1686 	 */
1687 	recoverable = 1;
1688 	if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1689 		recoverable = 0;
1690 
1691 	/* Re-check AFSR/AFAR.  What we are looking for here is whether a new
1692 	 * error was logged while we had error reporting traps disabled.
1693 	 */
1694 	if (cheetah_recheck_errors(&local_snapshot)) {
1695 		unsigned long new_afsr = local_snapshot.afsr;
1696 
1697 		/* If we got a new asynchronous error, die... */
1698 		if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1699 				CHAFSR_WDU | CHAFSR_CPU |
1700 				CHAFSR_IVU | CHAFSR_UE |
1701 				CHAFSR_BERR | CHAFSR_TO))
1702 			recoverable = 0;
1703 	}
1704 
1705 	/* Log errors. */
1706 	cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1707 
1708 	/* "Recoverable" here means we try to yank the page from ever
1709 	 * being newly used again.  This depends upon a few things:
1710 	 * 1) Must be main memory, and AFAR must be valid.
1711 	 * 2) If we trapped from user, OK.
1712 	 * 3) Else, if we trapped from kernel we must find exception
1713 	 *    table entry (ie. we have to have been accessing user
1714 	 *    space).
1715 	 *
1716 	 * If AFAR is not in main memory, or we trapped from kernel
1717 	 * and cannot find an exception table entry, it is unacceptable
1718 	 * to try and continue.
1719 	 */
1720 	if (recoverable && is_memory) {
1721 		if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1722 			/* OK, usermode access. */
1723 			recoverable = 1;
1724 		} else {
1725 			const struct exception_table_entry *entry;
1726 
1727 			entry = search_exception_tables(regs->tpc);
1728 			if (entry) {
1729 				/* OK, kernel access to userspace. */
1730 				recoverable = 1;
1731 
1732 			} else {
1733 				/* BAD, privileged state is corrupted. */
1734 				recoverable = 0;
1735 			}
1736 
1737 			if (recoverable) {
1738 				if (pfn_valid(afar >> PAGE_SHIFT))
1739 					get_page(pfn_to_page(afar >> PAGE_SHIFT));
1740 				else
1741 					recoverable = 0;
1742 
1743 				/* Only perform fixup if we still have a
1744 				 * recoverable condition.
1745 				 */
1746 				if (recoverable) {
1747 					regs->tpc = entry->fixup;
1748 					regs->tnpc = regs->tpc + 4;
1749 				}
1750 			}
1751 		}
1752 	} else {
1753 		recoverable = 0;
1754 	}
1755 
1756 	if (!recoverable)
1757 		panic("Irrecoverable deferred error trap.\n");
1758 }
1759 
1760 /* Handle a D/I cache parity error trap.  TYPE is encoded as:
1761  *
1762  * Bit0:	0=dcache,1=icache
1763  * Bit1:	0=recoverable,1=unrecoverable
1764  *
1765  * The hardware has disabled both the I-cache and D-cache in
1766  * the %dcr register.
1767  */
1768 void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1769 {
1770 	if (type & 0x1)
1771 		__cheetah_flush_icache();
1772 	else
1773 		cheetah_plus_zap_dcache_parity();
1774 	cheetah_flush_dcache();
1775 
1776 	/* Re-enable I-cache/D-cache */
1777 	__asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1778 			     "or %%g1, %1, %%g1\n\t"
1779 			     "stxa %%g1, [%%g0] %0\n\t"
1780 			     "membar #Sync"
1781 			     : /* no outputs */
1782 			     : "i" (ASI_DCU_CONTROL_REG),
1783 			       "i" (DCU_DC | DCU_IC)
1784 			     : "g1");
1785 
1786 	if (type & 0x2) {
1787 		printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1788 		       smp_processor_id(),
1789 		       (type & 0x1) ? 'I' : 'D',
1790 		       regs->tpc);
1791 		printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1792 		panic("Irrecoverable Cheetah+ parity error.");
1793 	}
1794 
1795 	printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1796 	       smp_processor_id(),
1797 	       (type & 0x1) ? 'I' : 'D',
1798 	       regs->tpc);
1799 	printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1800 }
1801 
1802 struct sun4v_error_entry {
1803 	/* Unique error handle */
1804 /*0x00*/u64		err_handle;
1805 
1806 	/* %stick value at the time of the error */
1807 /*0x08*/u64		err_stick;
1808 
1809 /*0x10*/u8		reserved_1[3];
1810 
1811 	/* Error type */
1812 /*0x13*/u8		err_type;
1813 #define SUN4V_ERR_TYPE_UNDEFINED	0
1814 #define SUN4V_ERR_TYPE_UNCORRECTED_RES	1
1815 #define SUN4V_ERR_TYPE_PRECISE_NONRES	2
1816 #define SUN4V_ERR_TYPE_DEFERRED_NONRES	3
1817 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST	4
1818 #define SUN4V_ERR_TYPE_DUMP_CORE	5
1819 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE	6
1820 #define SUN4V_ERR_TYPE_NUM		7
1821 
1822 	/* Error attributes */
1823 /*0x14*/u32		err_attrs;
1824 #define SUN4V_ERR_ATTRS_PROCESSOR	0x00000001
1825 #define SUN4V_ERR_ATTRS_MEMORY		0x00000002
1826 #define SUN4V_ERR_ATTRS_PIO		0x00000004
1827 #define SUN4V_ERR_ATTRS_INT_REGISTERS	0x00000008
1828 #define SUN4V_ERR_ATTRS_FPU_REGISTERS	0x00000010
1829 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST	0x00000020
1830 #define SUN4V_ERR_ATTRS_ASR		0x00000040
1831 #define SUN4V_ERR_ATTRS_ASI		0x00000080
1832 #define SUN4V_ERR_ATTRS_PRIV_REG	0x00000100
1833 #define SUN4V_ERR_ATTRS_SPSTATE_MSK	0x00000600
1834 #define SUN4V_ERR_ATTRS_MCD		0x00000800
1835 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT	9
1836 #define SUN4V_ERR_ATTRS_MODE_MSK	0x03000000
1837 #define SUN4V_ERR_ATTRS_MODE_SHFT	24
1838 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL	0x80000000
1839 
1840 #define SUN4V_ERR_SPSTATE_FAULTED	0
1841 #define SUN4V_ERR_SPSTATE_AVAILABLE	1
1842 #define SUN4V_ERR_SPSTATE_NOT_PRESENT	2
1843 
1844 #define SUN4V_ERR_MODE_USER		1
1845 #define SUN4V_ERR_MODE_PRIV		2
1846 
1847 	/* Real address of the memory region or PIO transaction */
1848 /*0x18*/u64		err_raddr;
1849 
1850 	/* Size of the operation triggering the error, in bytes */
1851 /*0x20*/u32		err_size;
1852 
1853 	/* ID of the CPU */
1854 /*0x24*/u16		err_cpu;
1855 
1856 	/* Grace periof for shutdown, in seconds */
1857 /*0x26*/u16		err_secs;
1858 
1859 	/* Value of the %asi register */
1860 /*0x28*/u8		err_asi;
1861 
1862 /*0x29*/u8		reserved_2;
1863 
1864 	/* Value of the ASR register number */
1865 /*0x2a*/u16		err_asr;
1866 #define SUN4V_ERR_ASR_VALID		0x8000
1867 
1868 /*0x2c*/u32		reserved_3;
1869 /*0x30*/u64		reserved_4;
1870 /*0x38*/u64		reserved_5;
1871 };
1872 
1873 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1874 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1875 
1876 static const char *sun4v_err_type_to_str(u8 type)
1877 {
1878 	static const char *types[SUN4V_ERR_TYPE_NUM] = {
1879 		"undefined",
1880 		"uncorrected resumable",
1881 		"precise nonresumable",
1882 		"deferred nonresumable",
1883 		"shutdown request",
1884 		"dump core",
1885 		"SP state change",
1886 	};
1887 
1888 	if (type < SUN4V_ERR_TYPE_NUM)
1889 		return types[type];
1890 
1891 	return "unknown";
1892 }
1893 
1894 static void sun4v_emit_err_attr_strings(u32 attrs)
1895 {
1896 	static const char *attr_names[] = {
1897 		"processor",
1898 		"memory",
1899 		"PIO",
1900 		"int-registers",
1901 		"fpu-registers",
1902 		"shutdown-request",
1903 		"ASR",
1904 		"ASI",
1905 		"priv-reg",
1906 	};
1907 	static const char *sp_states[] = {
1908 		"sp-faulted",
1909 		"sp-available",
1910 		"sp-not-present",
1911 		"sp-state-reserved",
1912 	};
1913 	static const char *modes[] = {
1914 		"mode-reserved0",
1915 		"user",
1916 		"priv",
1917 		"mode-reserved1",
1918 	};
1919 	u32 sp_state, mode;
1920 	int i;
1921 
1922 	for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1923 		if (attrs & (1U << i)) {
1924 			const char *s = attr_names[i];
1925 
1926 			pr_cont("%s ", s);
1927 		}
1928 	}
1929 
1930 	sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1931 		    SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1932 	pr_cont("%s ", sp_states[sp_state]);
1933 
1934 	mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1935 		SUN4V_ERR_ATTRS_MODE_SHFT);
1936 	pr_cont("%s ", modes[mode]);
1937 
1938 	if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1939 		pr_cont("res-queue-full ");
1940 }
1941 
1942 /* When the report contains a real-address of "-1" it means that the
1943  * hardware did not provide the address.  So we compute the effective
1944  * address of the load or store instruction at regs->tpc and report
1945  * that.  Usually when this happens it's a PIO and in such a case we
1946  * are using physical addresses with bypass ASIs anyways, so what we
1947  * report here is exactly what we want.
1948  */
1949 static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1950 {
1951 	unsigned int insn;
1952 	u64 addr;
1953 
1954 	if (!(regs->tstate & TSTATE_PRIV))
1955 		return;
1956 
1957 	insn = *(unsigned int *) regs->tpc;
1958 
1959 	addr = compute_effective_address(regs, insn, 0);
1960 
1961 	printk("%s: insn effective address [0x%016llx]\n",
1962 	       pfx, addr);
1963 }
1964 
1965 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1966 			    int cpu, const char *pfx, atomic_t *ocnt)
1967 {
1968 	u64 *raw_ptr = (u64 *) ent;
1969 	u32 attrs;
1970 	int cnt;
1971 
1972 	printk("%s: Reporting on cpu %d\n", pfx, cpu);
1973 	printk("%s: TPC [0x%016lx] <%pS>\n",
1974 	       pfx, regs->tpc, (void *) regs->tpc);
1975 
1976 	printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1977 	       pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1978 	printk("%s:      %016llx:%016llx:%016llx:%016llx]\n",
1979 	       pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1980 
1981 	printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1982 	       pfx, ent->err_handle, ent->err_stick);
1983 
1984 	printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1985 
1986 	attrs = ent->err_attrs;
1987 	printk("%s: attrs [0x%08x] < ", pfx, attrs);
1988 	sun4v_emit_err_attr_strings(attrs);
1989 	pr_cont(">\n");
1990 
1991 	/* Various fields in the error report are only valid if
1992 	 * certain attribute bits are set.
1993 	 */
1994 	if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1995 		     SUN4V_ERR_ATTRS_PIO |
1996 		     SUN4V_ERR_ATTRS_ASI)) {
1997 		printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1998 
1999 		if (ent->err_raddr == ~(u64)0)
2000 			sun4v_report_real_raddr(pfx, regs);
2001 	}
2002 
2003 	if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
2004 		printk("%s: size [0x%x]\n", pfx, ent->err_size);
2005 
2006 	if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
2007 		     SUN4V_ERR_ATTRS_INT_REGISTERS |
2008 		     SUN4V_ERR_ATTRS_FPU_REGISTERS |
2009 		     SUN4V_ERR_ATTRS_PRIV_REG))
2010 		printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
2011 
2012 	if (attrs & SUN4V_ERR_ATTRS_ASI)
2013 		printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
2014 
2015 	if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
2016 		      SUN4V_ERR_ATTRS_FPU_REGISTERS |
2017 		      SUN4V_ERR_ATTRS_PRIV_REG)) &&
2018 	    (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
2019 		printk("%s: reg [0x%04x]\n",
2020 		       pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
2021 
2022 	show_regs(regs);
2023 
2024 	if ((cnt = atomic_read(ocnt)) != 0) {
2025 		atomic_set(ocnt, 0);
2026 		wmb();
2027 		printk("%s: Queue overflowed %d times.\n",
2028 		       pfx, cnt);
2029 	}
2030 }
2031 
2032 /* Handle memory corruption detected error which is vectored in
2033  * through resumable error trap.
2034  */
2035 void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent)
2036 {
2037 	if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34,
2038 		       SIGSEGV) == NOTIFY_STOP)
2039 		return;
2040 
2041 	if (regs->tstate & TSTATE_PRIV) {
2042 		/* MCD exception could happen because the task was
2043 		 * running a system call with MCD enabled and passed a
2044 		 * non-versioned pointer or pointer with bad version
2045 		 * tag to the system call. In such cases, hypervisor
2046 		 * places the address of offending instruction in the
2047 		 * resumable error report. This is a deferred error,
2048 		 * so the read/write that caused the trap was potentially
2049 		 * retired long time back and we may have no choice
2050 		 * but to send SIGSEGV to the process.
2051 		 */
2052 		const struct exception_table_entry *entry;
2053 
2054 		entry = search_exception_tables(regs->tpc);
2055 		if (entry) {
2056 			/* Looks like a bad syscall parameter */
2057 #ifdef DEBUG_EXCEPTIONS
2058 			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2059 				 regs->tpc);
2060 			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2061 				 ent.err_raddr, entry->fixup);
2062 #endif
2063 			regs->tpc = entry->fixup;
2064 			regs->tnpc = regs->tpc + 4;
2065 			return;
2066 		}
2067 	}
2068 
2069 	/* Send SIGSEGV to the userspace process with the right signal
2070 	 * code
2071 	 */
2072 	force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr,
2073 			0);
2074 }
2075 
2076 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2077  * Log the event and clear the first word of the entry.
2078  */
2079 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2080 {
2081 	enum ctx_state prev_state = exception_enter();
2082 	struct sun4v_error_entry *ent, local_copy;
2083 	struct trap_per_cpu *tb;
2084 	unsigned long paddr;
2085 	int cpu;
2086 
2087 	cpu = get_cpu();
2088 
2089 	tb = &trap_block[cpu];
2090 	paddr = tb->resum_kernel_buf_pa + offset;
2091 	ent = __va(paddr);
2092 
2093 	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2094 
2095 	/* We have a local copy now, so release the entry.  */
2096 	ent->err_handle = 0;
2097 	wmb();
2098 
2099 	put_cpu();
2100 
2101 	if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2102 		/* We should really take the seconds field of
2103 		 * the error report and use it for the shutdown
2104 		 * invocation, but for now do the same thing we
2105 		 * do for a DS shutdown request.
2106 		 */
2107 		pr_info("Shutdown request, %u seconds...\n",
2108 			local_copy.err_secs);
2109 		orderly_poweroff(true);
2110 		goto out;
2111 	}
2112 
2113 	/* If this is a memory corruption detected error vectored in
2114 	 * by HV through resumable error trap, call the handler
2115 	 */
2116 	if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) {
2117 		do_mcd_err(regs, local_copy);
2118 		return;
2119 	}
2120 
2121 	sun4v_log_error(regs, &local_copy, cpu,
2122 			KERN_ERR "RESUMABLE ERROR",
2123 			&sun4v_resum_oflow_cnt);
2124 out:
2125 	exception_exit(prev_state);
2126 }
2127 
2128 /* If we try to printk() we'll probably make matters worse, by trying
2129  * to retake locks this cpu already holds or causing more errors. So
2130  * just bump a counter, and we'll report these counter bumps above.
2131  */
2132 void sun4v_resum_overflow(struct pt_regs *regs)
2133 {
2134 	atomic_inc(&sun4v_resum_oflow_cnt);
2135 }
2136 
2137 /* Given a set of registers, get the virtual addressi that was being accessed
2138  * by the faulting instructions at tpc.
2139  */
2140 static unsigned long sun4v_get_vaddr(struct pt_regs *regs)
2141 {
2142 	unsigned int insn;
2143 
2144 	if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) {
2145 		return compute_effective_address(regs, insn,
2146 						 (insn >> 25) & 0x1f);
2147 	}
2148 	return 0;
2149 }
2150 
2151 /* Attempt to handle non-resumable errors generated from userspace.
2152  * Returns true if the signal was handled, false otherwise.
2153  */
2154 bool sun4v_nonresum_error_user_handled(struct pt_regs *regs,
2155 				  struct sun4v_error_entry *ent) {
2156 
2157 	unsigned int attrs = ent->err_attrs;
2158 
2159 	if (attrs & SUN4V_ERR_ATTRS_MEMORY) {
2160 		unsigned long addr = ent->err_raddr;
2161 
2162 		if (addr == ~(u64)0) {
2163 			/* This seems highly unlikely to ever occur */
2164 			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n");
2165 		} else {
2166 			unsigned long page_cnt = DIV_ROUND_UP(ent->err_size,
2167 							      PAGE_SIZE);
2168 
2169 			/* Break the unfortunate news. */
2170 			pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n",
2171 				 addr);
2172 			pr_emerg("SUN4V NON-RECOVERABLE ERROR:   Claiming %lu ages.\n",
2173 				 page_cnt);
2174 
2175 			while (page_cnt-- > 0) {
2176 				if (pfn_valid(addr >> PAGE_SHIFT))
2177 					get_page(pfn_to_page(addr >> PAGE_SHIFT));
2178 				addr += PAGE_SIZE;
2179 			}
2180 		}
2181 		force_sig(SIGKILL);
2182 
2183 		return true;
2184 	}
2185 	if (attrs & SUN4V_ERR_ATTRS_PIO) {
2186 		force_sig_fault(SIGBUS, BUS_ADRERR,
2187 				(void __user *)sun4v_get_vaddr(regs), 0);
2188 		return true;
2189 	}
2190 
2191 	/* Default to doing nothing */
2192 	return false;
2193 }
2194 
2195 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2196  * Log the event, clear the first word of the entry, and die.
2197  */
2198 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2199 {
2200 	struct sun4v_error_entry *ent, local_copy;
2201 	struct trap_per_cpu *tb;
2202 	unsigned long paddr;
2203 	int cpu;
2204 
2205 	cpu = get_cpu();
2206 
2207 	tb = &trap_block[cpu];
2208 	paddr = tb->nonresum_kernel_buf_pa + offset;
2209 	ent = __va(paddr);
2210 
2211 	memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2212 
2213 	/* We have a local copy now, so release the entry.  */
2214 	ent->err_handle = 0;
2215 	wmb();
2216 
2217 	put_cpu();
2218 
2219 	if (!(regs->tstate & TSTATE_PRIV) &&
2220 	    sun4v_nonresum_error_user_handled(regs, &local_copy)) {
2221 		/* DON'T PANIC: This userspace error was handled. */
2222 		return;
2223 	}
2224 
2225 #ifdef CONFIG_PCI
2226 	/* Check for the special PCI poke sequence. */
2227 	if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2228 		pci_poke_faulted = 1;
2229 		regs->tpc += 4;
2230 		regs->tnpc = regs->tpc + 4;
2231 		return;
2232 	}
2233 #endif
2234 
2235 	sun4v_log_error(regs, &local_copy, cpu,
2236 			KERN_EMERG "NON-RESUMABLE ERROR",
2237 			&sun4v_nonresum_oflow_cnt);
2238 
2239 	panic("Non-resumable error.");
2240 }
2241 
2242 /* If we try to printk() we'll probably make matters worse, by trying
2243  * to retake locks this cpu already holds or causing more errors. So
2244  * just bump a counter, and we'll report these counter bumps above.
2245  */
2246 void sun4v_nonresum_overflow(struct pt_regs *regs)
2247 {
2248 	/* XXX Actually even this can make not that much sense.  Perhaps
2249 	 * XXX we should just pull the plug and panic directly from here?
2250 	 */
2251 	atomic_inc(&sun4v_nonresum_oflow_cnt);
2252 }
2253 
2254 static void sun4v_tlb_error(struct pt_regs *regs)
2255 {
2256 	die_if_kernel("TLB/TSB error", regs);
2257 }
2258 
2259 unsigned long sun4v_err_itlb_vaddr;
2260 unsigned long sun4v_err_itlb_ctx;
2261 unsigned long sun4v_err_itlb_pte;
2262 unsigned long sun4v_err_itlb_error;
2263 
2264 void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2265 {
2266 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2267 
2268 	printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2269 	       regs->tpc, tl);
2270 	printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2271 	printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2272 	printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2273 	       (void *) regs->u_regs[UREG_I7]);
2274 	printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2275 	       "pte[%lx] error[%lx]\n",
2276 	       sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2277 	       sun4v_err_itlb_pte, sun4v_err_itlb_error);
2278 
2279 	sun4v_tlb_error(regs);
2280 }
2281 
2282 unsigned long sun4v_err_dtlb_vaddr;
2283 unsigned long sun4v_err_dtlb_ctx;
2284 unsigned long sun4v_err_dtlb_pte;
2285 unsigned long sun4v_err_dtlb_error;
2286 
2287 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2288 {
2289 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2290 
2291 	printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2292 	       regs->tpc, tl);
2293 	printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2294 	printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2295 	printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2296 	       (void *) regs->u_regs[UREG_I7]);
2297 	printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2298 	       "pte[%lx] error[%lx]\n",
2299 	       sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2300 	       sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2301 
2302 	sun4v_tlb_error(regs);
2303 }
2304 
2305 void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2306 {
2307 	printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2308 	       err, op);
2309 }
2310 
2311 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2312 {
2313 	printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2314 	       err, op);
2315 }
2316 
2317 static void do_fpe_common(struct pt_regs *regs)
2318 {
2319 	if (regs->tstate & TSTATE_PRIV) {
2320 		regs->tpc = regs->tnpc;
2321 		regs->tnpc += 4;
2322 	} else {
2323 		unsigned long fsr = current_thread_info()->xfsr[0];
2324 		int code;
2325 
2326 		if (test_thread_flag(TIF_32BIT)) {
2327 			regs->tpc &= 0xffffffff;
2328 			regs->tnpc &= 0xffffffff;
2329 		}
2330 		code = FPE_FLTUNK;
2331 		if ((fsr & 0x1c000) == (1 << 14)) {
2332 			if (fsr & 0x10)
2333 				code = FPE_FLTINV;
2334 			else if (fsr & 0x08)
2335 				code = FPE_FLTOVF;
2336 			else if (fsr & 0x04)
2337 				code = FPE_FLTUND;
2338 			else if (fsr & 0x02)
2339 				code = FPE_FLTDIV;
2340 			else if (fsr & 0x01)
2341 				code = FPE_FLTRES;
2342 		}
2343 		force_sig_fault(SIGFPE, code,
2344 				(void __user *)regs->tpc, 0);
2345 	}
2346 }
2347 
2348 void do_fpieee(struct pt_regs *regs)
2349 {
2350 	enum ctx_state prev_state = exception_enter();
2351 
2352 	if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2353 		       0, 0x24, SIGFPE) == NOTIFY_STOP)
2354 		goto out;
2355 
2356 	do_fpe_common(regs);
2357 out:
2358 	exception_exit(prev_state);
2359 }
2360 
2361 void do_fpother(struct pt_regs *regs)
2362 {
2363 	enum ctx_state prev_state = exception_enter();
2364 	struct fpustate *f = FPUSTATE;
2365 	int ret = 0;
2366 
2367 	if (notify_die(DIE_TRAP, "fpu exception other", regs,
2368 		       0, 0x25, SIGFPE) == NOTIFY_STOP)
2369 		goto out;
2370 
2371 	switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2372 	case (2 << 14): /* unfinished_FPop */
2373 	case (3 << 14): /* unimplemented_FPop */
2374 		ret = do_mathemu(regs, f, false);
2375 		break;
2376 	}
2377 	if (ret)
2378 		goto out;
2379 	do_fpe_common(regs);
2380 out:
2381 	exception_exit(prev_state);
2382 }
2383 
2384 void do_tof(struct pt_regs *regs)
2385 {
2386 	enum ctx_state prev_state = exception_enter();
2387 
2388 	if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2389 		       0, 0x26, SIGEMT) == NOTIFY_STOP)
2390 		goto out;
2391 
2392 	if (regs->tstate & TSTATE_PRIV)
2393 		die_if_kernel("Penguin overflow trap from kernel mode", regs);
2394 	if (test_thread_flag(TIF_32BIT)) {
2395 		regs->tpc &= 0xffffffff;
2396 		regs->tnpc &= 0xffffffff;
2397 	}
2398 	force_sig_fault(SIGEMT, EMT_TAGOVF,
2399 			(void __user *)regs->tpc, 0);
2400 out:
2401 	exception_exit(prev_state);
2402 }
2403 
2404 void do_div0(struct pt_regs *regs)
2405 {
2406 	enum ctx_state prev_state = exception_enter();
2407 
2408 	if (notify_die(DIE_TRAP, "integer division by zero", regs,
2409 		       0, 0x28, SIGFPE) == NOTIFY_STOP)
2410 		goto out;
2411 
2412 	if (regs->tstate & TSTATE_PRIV)
2413 		die_if_kernel("TL0: Kernel divide by zero.", regs);
2414 	if (test_thread_flag(TIF_32BIT)) {
2415 		regs->tpc &= 0xffffffff;
2416 		regs->tnpc &= 0xffffffff;
2417 	}
2418 	force_sig_fault(SIGFPE, FPE_INTDIV,
2419 			(void __user *)regs->tpc, 0);
2420 out:
2421 	exception_exit(prev_state);
2422 }
2423 
2424 static void instruction_dump(unsigned int *pc)
2425 {
2426 	int i;
2427 
2428 	if ((((unsigned long) pc) & 3))
2429 		return;
2430 
2431 	printk("Instruction DUMP:");
2432 	for (i = -3; i < 6; i++)
2433 		printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2434 	printk("\n");
2435 }
2436 
2437 static void user_instruction_dump(unsigned int __user *pc)
2438 {
2439 	int i;
2440 	unsigned int buf[9];
2441 
2442 	if ((((unsigned long) pc) & 3))
2443 		return;
2444 
2445 	if (copy_from_user(buf, pc - 3, sizeof(buf)))
2446 		return;
2447 
2448 	printk("Instruction DUMP:");
2449 	for (i = 0; i < 9; i++)
2450 		printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2451 	printk("\n");
2452 }
2453 
2454 void show_stack(struct task_struct *tsk, unsigned long *_ksp, const char *loglvl)
2455 {
2456 	unsigned long fp, ksp;
2457 	struct thread_info *tp;
2458 	int count = 0;
2459 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2460 	int graph = 0;
2461 #endif
2462 
2463 	ksp = (unsigned long) _ksp;
2464 	if (!tsk)
2465 		tsk = current;
2466 	tp = task_thread_info(tsk);
2467 	if (ksp == 0UL) {
2468 		if (tsk == current)
2469 			asm("mov %%fp, %0" : "=r" (ksp));
2470 		else
2471 			ksp = tp->ksp;
2472 	}
2473 	if (tp == current_thread_info())
2474 		flushw_all();
2475 
2476 	fp = ksp + STACK_BIAS;
2477 
2478 	printk("%sCall Trace:\n", loglvl);
2479 	do {
2480 		struct sparc_stackf *sf;
2481 		struct pt_regs *regs;
2482 		unsigned long pc;
2483 
2484 		if (!kstack_valid(tp, fp))
2485 			break;
2486 		sf = (struct sparc_stackf *) fp;
2487 		regs = (struct pt_regs *) (sf + 1);
2488 
2489 		if (kstack_is_trap_frame(tp, regs)) {
2490 			if (!(regs->tstate & TSTATE_PRIV))
2491 				break;
2492 			pc = regs->tpc;
2493 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2494 		} else {
2495 			pc = sf->callers_pc;
2496 			fp = (unsigned long)sf->fp + STACK_BIAS;
2497 		}
2498 
2499 		print_ip_sym(loglvl, pc);
2500 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2501 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2502 			struct ftrace_ret_stack *ret_stack;
2503 			ret_stack = ftrace_graph_get_ret_stack(tsk, graph);
2504 			if (ret_stack) {
2505 				pc = ret_stack->ret;
2506 				print_ip_sym(loglvl, pc);
2507 				graph++;
2508 			}
2509 		}
2510 #endif
2511 	} while (++count < 16);
2512 }
2513 
2514 static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2515 {
2516 	unsigned long fp = rw->ins[6];
2517 
2518 	if (!fp)
2519 		return NULL;
2520 
2521 	return (struct reg_window *) (fp + STACK_BIAS);
2522 }
2523 
2524 void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2525 {
2526 	static int die_counter;
2527 	int count = 0;
2528 
2529 	/* Amuse the user. */
2530 	printk(
2531 "              \\|/ ____ \\|/\n"
2532 "              \"@'/ .. \\`@\"\n"
2533 "              /_| \\__/ |_\\\n"
2534 "                 \\__U_/\n");
2535 
2536 	printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2537 	notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2538 	__asm__ __volatile__("flushw");
2539 	show_regs(regs);
2540 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2541 	if (regs->tstate & TSTATE_PRIV) {
2542 		struct thread_info *tp = current_thread_info();
2543 		struct reg_window *rw = (struct reg_window *)
2544 			(regs->u_regs[UREG_FP] + STACK_BIAS);
2545 
2546 		/* Stop the back trace when we hit userland or we
2547 		 * find some badly aligned kernel stack.
2548 		 */
2549 		while (rw &&
2550 		       count++ < 30 &&
2551 		       kstack_valid(tp, (unsigned long) rw)) {
2552 			printk("Caller[%016lx]: %pS\n", rw->ins[7],
2553 			       (void *) rw->ins[7]);
2554 
2555 			rw = kernel_stack_up(rw);
2556 		}
2557 		instruction_dump ((unsigned int *) regs->tpc);
2558 	} else {
2559 		if (test_thread_flag(TIF_32BIT)) {
2560 			regs->tpc &= 0xffffffff;
2561 			regs->tnpc &= 0xffffffff;
2562 		}
2563 		user_instruction_dump ((unsigned int __user *) regs->tpc);
2564 	}
2565 	if (panic_on_oops)
2566 		panic("Fatal exception");
2567 	if (regs->tstate & TSTATE_PRIV)
2568 		do_exit(SIGKILL);
2569 	do_exit(SIGSEGV);
2570 }
2571 EXPORT_SYMBOL(die_if_kernel);
2572 
2573 #define VIS_OPCODE_MASK	((0x3 << 30) | (0x3f << 19))
2574 #define VIS_OPCODE_VAL	((0x2 << 30) | (0x36 << 19))
2575 
2576 void do_illegal_instruction(struct pt_regs *regs)
2577 {
2578 	enum ctx_state prev_state = exception_enter();
2579 	unsigned long pc = regs->tpc;
2580 	unsigned long tstate = regs->tstate;
2581 	u32 insn;
2582 
2583 	if (notify_die(DIE_TRAP, "illegal instruction", regs,
2584 		       0, 0x10, SIGILL) == NOTIFY_STOP)
2585 		goto out;
2586 
2587 	if (tstate & TSTATE_PRIV)
2588 		die_if_kernel("Kernel illegal instruction", regs);
2589 	if (test_thread_flag(TIF_32BIT))
2590 		pc = (u32)pc;
2591 	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2592 		if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2593 			if (handle_popc(insn, regs))
2594 				goto out;
2595 		} else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2596 			if (handle_ldf_stq(insn, regs))
2597 				goto out;
2598 		} else if (tlb_type == hypervisor) {
2599 			if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2600 				if (!vis_emul(regs, insn))
2601 					goto out;
2602 			} else {
2603 				struct fpustate *f = FPUSTATE;
2604 
2605 				/* On UltraSPARC T2 and later, FPU insns which
2606 				 * are not implemented in HW signal an illegal
2607 				 * instruction trap and do not set the FP Trap
2608 				 * Trap in the %fsr to unimplemented_FPop.
2609 				 */
2610 				if (do_mathemu(regs, f, true))
2611 					goto out;
2612 			}
2613 		}
2614 	}
2615 	force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0);
2616 out:
2617 	exception_exit(prev_state);
2618 }
2619 
2620 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2621 {
2622 	enum ctx_state prev_state = exception_enter();
2623 
2624 	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2625 		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2626 		goto out;
2627 
2628 	if (regs->tstate & TSTATE_PRIV) {
2629 		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2630 		goto out;
2631 	}
2632 	if (is_no_fault_exception(regs))
2633 		return;
2634 
2635 	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0);
2636 out:
2637 	exception_exit(prev_state);
2638 }
2639 
2640 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2641 {
2642 	if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2643 		       0, 0x34, SIGSEGV) == NOTIFY_STOP)
2644 		return;
2645 
2646 	if (regs->tstate & TSTATE_PRIV) {
2647 		kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2648 		return;
2649 	}
2650 	if (is_no_fault_exception(regs))
2651 		return;
2652 
2653 	force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0);
2654 }
2655 
2656 /* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI
2657  * tag mismatch.
2658  *
2659  * ADI version tag mismatch on a load from memory always results in a
2660  * precise exception. Tag mismatch on a store to memory will result in
2661  * precise exception if MCDPER or PMCDPER is set to 1.
2662  */
2663 void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr,
2664 				      unsigned long context)
2665 {
2666 	if (notify_die(DIE_TRAP, "memory corruption precise exception", regs,
2667 		       0, 0x8, SIGSEGV) == NOTIFY_STOP)
2668 		return;
2669 
2670 	if (regs->tstate & TSTATE_PRIV) {
2671 		/* MCD exception could happen because the task was running
2672 		 * a system call with MCD enabled and passed a non-versioned
2673 		 * pointer or pointer with bad version tag to  the system
2674 		 * call.
2675 		 */
2676 		const struct exception_table_entry *entry;
2677 
2678 		entry = search_exception_tables(regs->tpc);
2679 		if (entry) {
2680 			/* Looks like a bad syscall parameter */
2681 #ifdef DEBUG_EXCEPTIONS
2682 			pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n",
2683 				 regs->tpc);
2684 			pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
2685 				 regs->tpc, entry->fixup);
2686 #endif
2687 			regs->tpc = entry->fixup;
2688 			regs->tnpc = regs->tpc + 4;
2689 			return;
2690 		}
2691 		pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n",
2692 			 __func__, addr, context);
2693 		die_if_kernel("MCD precise", regs);
2694 	}
2695 
2696 	if (test_thread_flag(TIF_32BIT)) {
2697 		regs->tpc &= 0xffffffff;
2698 		regs->tnpc &= 0xffffffff;
2699 	}
2700 	force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0);
2701 }
2702 
2703 void do_privop(struct pt_regs *regs)
2704 {
2705 	enum ctx_state prev_state = exception_enter();
2706 
2707 	if (notify_die(DIE_TRAP, "privileged operation", regs,
2708 		       0, 0x11, SIGILL) == NOTIFY_STOP)
2709 		goto out;
2710 
2711 	if (test_thread_flag(TIF_32BIT)) {
2712 		regs->tpc &= 0xffffffff;
2713 		regs->tnpc &= 0xffffffff;
2714 	}
2715 	force_sig_fault(SIGILL, ILL_PRVOPC,
2716 			(void __user *)regs->tpc, 0);
2717 out:
2718 	exception_exit(prev_state);
2719 }
2720 
2721 void do_privact(struct pt_regs *regs)
2722 {
2723 	do_privop(regs);
2724 }
2725 
2726 /* Trap level 1 stuff or other traps we should never see... */
2727 void do_cee(struct pt_regs *regs)
2728 {
2729 	exception_enter();
2730 	die_if_kernel("TL0: Cache Error Exception", regs);
2731 }
2732 
2733 void do_div0_tl1(struct pt_regs *regs)
2734 {
2735 	exception_enter();
2736 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2737 	die_if_kernel("TL1: DIV0 Exception", regs);
2738 }
2739 
2740 void do_fpieee_tl1(struct pt_regs *regs)
2741 {
2742 	exception_enter();
2743 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2744 	die_if_kernel("TL1: FPU IEEE Exception", regs);
2745 }
2746 
2747 void do_fpother_tl1(struct pt_regs *regs)
2748 {
2749 	exception_enter();
2750 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2751 	die_if_kernel("TL1: FPU Other Exception", regs);
2752 }
2753 
2754 void do_ill_tl1(struct pt_regs *regs)
2755 {
2756 	exception_enter();
2757 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2758 	die_if_kernel("TL1: Illegal Instruction Exception", regs);
2759 }
2760 
2761 void do_irq_tl1(struct pt_regs *regs)
2762 {
2763 	exception_enter();
2764 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2765 	die_if_kernel("TL1: IRQ Exception", regs);
2766 }
2767 
2768 void do_lddfmna_tl1(struct pt_regs *regs)
2769 {
2770 	exception_enter();
2771 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2772 	die_if_kernel("TL1: LDDF Exception", regs);
2773 }
2774 
2775 void do_stdfmna_tl1(struct pt_regs *regs)
2776 {
2777 	exception_enter();
2778 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2779 	die_if_kernel("TL1: STDF Exception", regs);
2780 }
2781 
2782 void do_paw(struct pt_regs *regs)
2783 {
2784 	exception_enter();
2785 	die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2786 }
2787 
2788 void do_paw_tl1(struct pt_regs *regs)
2789 {
2790 	exception_enter();
2791 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2792 	die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2793 }
2794 
2795 void do_vaw(struct pt_regs *regs)
2796 {
2797 	exception_enter();
2798 	die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2799 }
2800 
2801 void do_vaw_tl1(struct pt_regs *regs)
2802 {
2803 	exception_enter();
2804 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2805 	die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2806 }
2807 
2808 void do_tof_tl1(struct pt_regs *regs)
2809 {
2810 	exception_enter();
2811 	dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2812 	die_if_kernel("TL1: Tag Overflow Exception", regs);
2813 }
2814 
2815 void do_getpsr(struct pt_regs *regs)
2816 {
2817 	regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2818 	regs->tpc   = regs->tnpc;
2819 	regs->tnpc += 4;
2820 	if (test_thread_flag(TIF_32BIT)) {
2821 		regs->tpc &= 0xffffffff;
2822 		regs->tnpc &= 0xffffffff;
2823 	}
2824 }
2825 
2826 u64 cpu_mondo_counter[NR_CPUS] = {0};
2827 struct trap_per_cpu trap_block[NR_CPUS];
2828 EXPORT_SYMBOL(trap_block);
2829 
2830 /* This can get invoked before sched_init() so play it super safe
2831  * and use hard_smp_processor_id().
2832  */
2833 void notrace init_cur_cpu_trap(struct thread_info *t)
2834 {
2835 	int cpu = hard_smp_processor_id();
2836 	struct trap_per_cpu *p = &trap_block[cpu];
2837 
2838 	p->thread = t;
2839 	p->pgd_paddr = 0;
2840 }
2841 
2842 extern void thread_info_offsets_are_bolixed_dave(void);
2843 extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2844 extern void tsb_config_offsets_are_bolixed_dave(void);
2845 
2846 /* Only invoked on boot processor. */
2847 void __init trap_init(void)
2848 {
2849 	/* Compile time sanity check. */
2850 	BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2851 		     TI_FLAGS != offsetof(struct thread_info, flags) ||
2852 		     TI_CPU != offsetof(struct thread_info, cpu) ||
2853 		     TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2854 		     TI_KSP != offsetof(struct thread_info, ksp) ||
2855 		     TI_FAULT_ADDR != offsetof(struct thread_info,
2856 					       fault_address) ||
2857 		     TI_KREGS != offsetof(struct thread_info, kregs) ||
2858 		     TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2859 		     TI_REG_WINDOW != offsetof(struct thread_info,
2860 					       reg_window) ||
2861 		     TI_RWIN_SPTRS != offsetof(struct thread_info,
2862 					       rwbuf_stkptrs) ||
2863 		     TI_GSR != offsetof(struct thread_info, gsr) ||
2864 		     TI_XFSR != offsetof(struct thread_info, xfsr) ||
2865 		     TI_PRE_COUNT != offsetof(struct thread_info,
2866 					      preempt_count) ||
2867 		     TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2868 		     TI_CURRENT_DS != offsetof(struct thread_info,
2869 						current_ds) ||
2870 		     TI_KUNA_REGS != offsetof(struct thread_info,
2871 					      kern_una_regs) ||
2872 		     TI_KUNA_INSN != offsetof(struct thread_info,
2873 					      kern_una_insn) ||
2874 		     TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2875 		     (TI_FPREGS & (64 - 1)));
2876 
2877 	BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2878 						     thread) ||
2879 		     (TRAP_PER_CPU_PGD_PADDR !=
2880 		      offsetof(struct trap_per_cpu, pgd_paddr)) ||
2881 		     (TRAP_PER_CPU_CPU_MONDO_PA !=
2882 		      offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2883 		     (TRAP_PER_CPU_DEV_MONDO_PA !=
2884 		      offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2885 		     (TRAP_PER_CPU_RESUM_MONDO_PA !=
2886 		      offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2887 		     (TRAP_PER_CPU_RESUM_KBUF_PA !=
2888 		      offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2889 		     (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2890 		      offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2891 		     (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2892 		      offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2893 		     (TRAP_PER_CPU_FAULT_INFO !=
2894 		      offsetof(struct trap_per_cpu, fault_info)) ||
2895 		     (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2896 		      offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2897 		     (TRAP_PER_CPU_CPU_LIST_PA !=
2898 		      offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2899 		     (TRAP_PER_CPU_TSB_HUGE !=
2900 		      offsetof(struct trap_per_cpu, tsb_huge)) ||
2901 		     (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2902 		      offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2903 		     (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2904 		      offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2905 		     (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2906 		      offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2907 		     (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2908 		      offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2909 		     (TRAP_PER_CPU_RESUM_QMASK !=
2910 		      offsetof(struct trap_per_cpu, resum_qmask)) ||
2911 		     (TRAP_PER_CPU_NONRESUM_QMASK !=
2912 		      offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2913 		     (TRAP_PER_CPU_PER_CPU_BASE !=
2914 		      offsetof(struct trap_per_cpu, __per_cpu_base)));
2915 
2916 	BUILD_BUG_ON((TSB_CONFIG_TSB !=
2917 		      offsetof(struct tsb_config, tsb)) ||
2918 		     (TSB_CONFIG_RSS_LIMIT !=
2919 		      offsetof(struct tsb_config, tsb_rss_limit)) ||
2920 		     (TSB_CONFIG_NENTRIES !=
2921 		      offsetof(struct tsb_config, tsb_nentries)) ||
2922 		     (TSB_CONFIG_REG_VAL !=
2923 		      offsetof(struct tsb_config, tsb_reg_val)) ||
2924 		     (TSB_CONFIG_MAP_VADDR !=
2925 		      offsetof(struct tsb_config, tsb_map_vaddr)) ||
2926 		     (TSB_CONFIG_MAP_PTE !=
2927 		      offsetof(struct tsb_config, tsb_map_pte)));
2928 
2929 	/* Attach to the address space of init_task.  On SMP we
2930 	 * do this in smp.c:smp_callin for other cpus.
2931 	 */
2932 	mmgrab(&init_mm);
2933 	current->active_mm = &init_mm;
2934 }
2935