1 /* arch/sparc64/kernel/traps.c 2 * 3 * Copyright (C) 1995,1997,2008,2009 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com) 5 */ 6 7 /* 8 * I like traps on v9, :)))) 9 */ 10 11 #include <linux/module.h> 12 #include <linux/sched.h> 13 #include <linux/linkage.h> 14 #include <linux/kernel.h> 15 #include <linux/signal.h> 16 #include <linux/smp.h> 17 #include <linux/mm.h> 18 #include <linux/init.h> 19 #include <linux/kdebug.h> 20 21 #include <asm/smp.h> 22 #include <asm/delay.h> 23 #include <asm/system.h> 24 #include <asm/ptrace.h> 25 #include <asm/oplib.h> 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/unistd.h> 29 #include <asm/uaccess.h> 30 #include <asm/fpumacro.h> 31 #include <asm/lsu.h> 32 #include <asm/dcu.h> 33 #include <asm/estate.h> 34 #include <asm/chafsr.h> 35 #include <asm/sfafsr.h> 36 #include <asm/psrcompat.h> 37 #include <asm/processor.h> 38 #include <asm/timer.h> 39 #include <asm/head.h> 40 #include <asm/prom.h> 41 #include <asm/memctrl.h> 42 43 #include "entry.h" 44 #include "kstack.h" 45 46 /* When an irrecoverable trap occurs at tl > 0, the trap entry 47 * code logs the trap state registers at every level in the trap 48 * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout 49 * is as follows: 50 */ 51 struct tl1_traplog { 52 struct { 53 unsigned long tstate; 54 unsigned long tpc; 55 unsigned long tnpc; 56 unsigned long tt; 57 } trapstack[4]; 58 unsigned long tl; 59 }; 60 61 static void dump_tl1_traplog(struct tl1_traplog *p) 62 { 63 int i, limit; 64 65 printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, " 66 "dumping track stack.\n", p->tl); 67 68 limit = (tlb_type == hypervisor) ? 2 : 4; 69 for (i = 0; i < limit; i++) { 70 printk(KERN_EMERG 71 "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] " 72 "TNPC[%016lx] TT[%lx]\n", 73 i + 1, 74 p->trapstack[i].tstate, p->trapstack[i].tpc, 75 p->trapstack[i].tnpc, p->trapstack[i].tt); 76 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc); 77 } 78 } 79 80 void bad_trap(struct pt_regs *regs, long lvl) 81 { 82 char buffer[32]; 83 siginfo_t info; 84 85 if (notify_die(DIE_TRAP, "bad trap", regs, 86 0, lvl, SIGTRAP) == NOTIFY_STOP) 87 return; 88 89 if (lvl < 0x100) { 90 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl); 91 die_if_kernel(buffer, regs); 92 } 93 94 lvl -= 0x100; 95 if (regs->tstate & TSTATE_PRIV) { 96 sprintf(buffer, "Kernel bad sw trap %lx", lvl); 97 die_if_kernel(buffer, regs); 98 } 99 if (test_thread_flag(TIF_32BIT)) { 100 regs->tpc &= 0xffffffff; 101 regs->tnpc &= 0xffffffff; 102 } 103 info.si_signo = SIGILL; 104 info.si_errno = 0; 105 info.si_code = ILL_ILLTRP; 106 info.si_addr = (void __user *)regs->tpc; 107 info.si_trapno = lvl; 108 force_sig_info(SIGILL, &info, current); 109 } 110 111 void bad_trap_tl1(struct pt_regs *regs, long lvl) 112 { 113 char buffer[32]; 114 115 if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs, 116 0, lvl, SIGTRAP) == NOTIFY_STOP) 117 return; 118 119 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 120 121 sprintf (buffer, "Bad trap %lx at tl>0", lvl); 122 die_if_kernel (buffer, regs); 123 } 124 125 #ifdef CONFIG_DEBUG_BUGVERBOSE 126 void do_BUG(const char *file, int line) 127 { 128 bust_spinlocks(1); 129 printk("kernel BUG at %s:%d!\n", file, line); 130 } 131 EXPORT_SYMBOL(do_BUG); 132 #endif 133 134 static DEFINE_SPINLOCK(dimm_handler_lock); 135 static dimm_printer_t dimm_handler; 136 137 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen) 138 { 139 unsigned long flags; 140 int ret = -ENODEV; 141 142 spin_lock_irqsave(&dimm_handler_lock, flags); 143 if (dimm_handler) { 144 ret = dimm_handler(synd_code, paddr, buf, buflen); 145 } else if (tlb_type == spitfire) { 146 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1) 147 ret = -EINVAL; 148 else 149 ret = 0; 150 } else 151 ret = -ENODEV; 152 spin_unlock_irqrestore(&dimm_handler_lock, flags); 153 154 return ret; 155 } 156 157 int register_dimm_printer(dimm_printer_t func) 158 { 159 unsigned long flags; 160 int ret = 0; 161 162 spin_lock_irqsave(&dimm_handler_lock, flags); 163 if (!dimm_handler) 164 dimm_handler = func; 165 else 166 ret = -EEXIST; 167 spin_unlock_irqrestore(&dimm_handler_lock, flags); 168 169 return ret; 170 } 171 EXPORT_SYMBOL_GPL(register_dimm_printer); 172 173 void unregister_dimm_printer(dimm_printer_t func) 174 { 175 unsigned long flags; 176 177 spin_lock_irqsave(&dimm_handler_lock, flags); 178 if (dimm_handler == func) 179 dimm_handler = NULL; 180 spin_unlock_irqrestore(&dimm_handler_lock, flags); 181 } 182 EXPORT_SYMBOL_GPL(unregister_dimm_printer); 183 184 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 185 { 186 siginfo_t info; 187 188 if (notify_die(DIE_TRAP, "instruction access exception", regs, 189 0, 0x8, SIGTRAP) == NOTIFY_STOP) 190 return; 191 192 if (regs->tstate & TSTATE_PRIV) { 193 printk("spitfire_insn_access_exception: SFSR[%016lx] " 194 "SFAR[%016lx], going.\n", sfsr, sfar); 195 die_if_kernel("Iax", regs); 196 } 197 if (test_thread_flag(TIF_32BIT)) { 198 regs->tpc &= 0xffffffff; 199 regs->tnpc &= 0xffffffff; 200 } 201 info.si_signo = SIGSEGV; 202 info.si_errno = 0; 203 info.si_code = SEGV_MAPERR; 204 info.si_addr = (void __user *)regs->tpc; 205 info.si_trapno = 0; 206 force_sig_info(SIGSEGV, &info, current); 207 } 208 209 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 210 { 211 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 212 0, 0x8, SIGTRAP) == NOTIFY_STOP) 213 return; 214 215 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 216 spitfire_insn_access_exception(regs, sfsr, sfar); 217 } 218 219 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 220 { 221 unsigned short type = (type_ctx >> 16); 222 unsigned short ctx = (type_ctx & 0xffff); 223 siginfo_t info; 224 225 if (notify_die(DIE_TRAP, "instruction access exception", regs, 226 0, 0x8, SIGTRAP) == NOTIFY_STOP) 227 return; 228 229 if (regs->tstate & TSTATE_PRIV) { 230 printk("sun4v_insn_access_exception: ADDR[%016lx] " 231 "CTX[%04x] TYPE[%04x], going.\n", 232 addr, ctx, type); 233 die_if_kernel("Iax", regs); 234 } 235 236 if (test_thread_flag(TIF_32BIT)) { 237 regs->tpc &= 0xffffffff; 238 regs->tnpc &= 0xffffffff; 239 } 240 info.si_signo = SIGSEGV; 241 info.si_errno = 0; 242 info.si_code = SEGV_MAPERR; 243 info.si_addr = (void __user *) addr; 244 info.si_trapno = 0; 245 force_sig_info(SIGSEGV, &info, current); 246 } 247 248 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 249 { 250 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 251 0, 0x8, SIGTRAP) == NOTIFY_STOP) 252 return; 253 254 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 255 sun4v_insn_access_exception(regs, addr, type_ctx); 256 } 257 258 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 259 { 260 siginfo_t info; 261 262 if (notify_die(DIE_TRAP, "data access exception", regs, 263 0, 0x30, SIGTRAP) == NOTIFY_STOP) 264 return; 265 266 if (regs->tstate & TSTATE_PRIV) { 267 /* Test if this comes from uaccess places. */ 268 const struct exception_table_entry *entry; 269 270 entry = search_exception_tables(regs->tpc); 271 if (entry) { 272 /* Ouch, somebody is trying VM hole tricks on us... */ 273 #ifdef DEBUG_EXCEPTIONS 274 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); 275 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 276 regs->tpc, entry->fixup); 277 #endif 278 regs->tpc = entry->fixup; 279 regs->tnpc = regs->tpc + 4; 280 return; 281 } 282 /* Shit... */ 283 printk("spitfire_data_access_exception: SFSR[%016lx] " 284 "SFAR[%016lx], going.\n", sfsr, sfar); 285 die_if_kernel("Dax", regs); 286 } 287 288 info.si_signo = SIGSEGV; 289 info.si_errno = 0; 290 info.si_code = SEGV_MAPERR; 291 info.si_addr = (void __user *)sfar; 292 info.si_trapno = 0; 293 force_sig_info(SIGSEGV, &info, current); 294 } 295 296 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 297 { 298 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 299 0, 0x30, SIGTRAP) == NOTIFY_STOP) 300 return; 301 302 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 303 spitfire_data_access_exception(regs, sfsr, sfar); 304 } 305 306 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 307 { 308 unsigned short type = (type_ctx >> 16); 309 unsigned short ctx = (type_ctx & 0xffff); 310 siginfo_t info; 311 312 if (notify_die(DIE_TRAP, "data access exception", regs, 313 0, 0x8, SIGTRAP) == NOTIFY_STOP) 314 return; 315 316 if (regs->tstate & TSTATE_PRIV) { 317 /* Test if this comes from uaccess places. */ 318 const struct exception_table_entry *entry; 319 320 entry = search_exception_tables(regs->tpc); 321 if (entry) { 322 /* Ouch, somebody is trying VM hole tricks on us... */ 323 #ifdef DEBUG_EXCEPTIONS 324 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); 325 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 326 regs->tpc, entry->fixup); 327 #endif 328 regs->tpc = entry->fixup; 329 regs->tnpc = regs->tpc + 4; 330 return; 331 } 332 printk("sun4v_data_access_exception: ADDR[%016lx] " 333 "CTX[%04x] TYPE[%04x], going.\n", 334 addr, ctx, type); 335 die_if_kernel("Dax", regs); 336 } 337 338 if (test_thread_flag(TIF_32BIT)) { 339 regs->tpc &= 0xffffffff; 340 regs->tnpc &= 0xffffffff; 341 } 342 info.si_signo = SIGSEGV; 343 info.si_errno = 0; 344 info.si_code = SEGV_MAPERR; 345 info.si_addr = (void __user *) addr; 346 info.si_trapno = 0; 347 force_sig_info(SIGSEGV, &info, current); 348 } 349 350 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 351 { 352 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 353 0, 0x8, SIGTRAP) == NOTIFY_STOP) 354 return; 355 356 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 357 sun4v_data_access_exception(regs, addr, type_ctx); 358 } 359 360 #ifdef CONFIG_PCI 361 #include "pci_impl.h" 362 #endif 363 364 /* When access exceptions happen, we must do this. */ 365 static void spitfire_clean_and_reenable_l1_caches(void) 366 { 367 unsigned long va; 368 369 if (tlb_type != spitfire) 370 BUG(); 371 372 /* Clean 'em. */ 373 for (va = 0; va < (PAGE_SIZE << 1); va += 32) { 374 spitfire_put_icache_tag(va, 0x0); 375 spitfire_put_dcache_tag(va, 0x0); 376 } 377 378 /* Re-enable in LSU. */ 379 __asm__ __volatile__("flush %%g6\n\t" 380 "membar #Sync\n\t" 381 "stxa %0, [%%g0] %1\n\t" 382 "membar #Sync" 383 : /* no outputs */ 384 : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC | 385 LSU_CONTROL_IM | LSU_CONTROL_DM), 386 "i" (ASI_LSU_CONTROL) 387 : "memory"); 388 } 389 390 static void spitfire_enable_estate_errors(void) 391 { 392 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 393 "membar #Sync" 394 : /* no outputs */ 395 : "r" (ESTATE_ERR_ALL), 396 "i" (ASI_ESTATE_ERROR_EN)); 397 } 398 399 static char ecc_syndrome_table[] = { 400 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49, 401 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a, 402 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48, 403 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c, 404 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48, 405 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29, 406 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b, 407 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48, 408 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48, 409 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e, 410 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b, 411 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 412 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36, 413 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48, 414 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48, 415 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 416 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48, 417 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b, 418 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32, 419 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48, 420 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b, 421 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 422 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48, 423 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 424 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49, 425 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48, 426 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48, 427 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 428 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48, 429 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 430 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b, 431 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a 432 }; 433 434 static char *syndrome_unknown = "<Unknown>"; 435 436 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit) 437 { 438 unsigned short scode; 439 char memmod_str[64], *p; 440 441 if (udbl & bit) { 442 scode = ecc_syndrome_table[udbl & 0xff]; 443 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) 444 p = syndrome_unknown; 445 else 446 p = memmod_str; 447 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] " 448 "Memory Module \"%s\"\n", 449 smp_processor_id(), scode, p); 450 } 451 452 if (udbh & bit) { 453 scode = ecc_syndrome_table[udbh & 0xff]; 454 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) 455 p = syndrome_unknown; 456 else 457 p = memmod_str; 458 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] " 459 "Memory Module \"%s\"\n", 460 smp_processor_id(), scode, p); 461 } 462 463 } 464 465 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs) 466 { 467 468 printk(KERN_WARNING "CPU[%d]: Correctable ECC Error " 469 "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n", 470 smp_processor_id(), afsr, afar, udbl, udbh, tl1); 471 472 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE); 473 474 /* We always log it, even if someone is listening for this 475 * trap. 476 */ 477 notify_die(DIE_TRAP, "Correctable ECC Error", regs, 478 0, TRAP_TYPE_CEE, SIGTRAP); 479 480 /* The Correctable ECC Error trap does not disable I/D caches. So 481 * we only have to restore the ESTATE Error Enable register. 482 */ 483 spitfire_enable_estate_errors(); 484 } 485 486 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs) 487 { 488 siginfo_t info; 489 490 printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] " 491 "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n", 492 smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1); 493 494 /* XXX add more human friendly logging of the error status 495 * XXX as is implemented for cheetah 496 */ 497 498 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE); 499 500 /* We always log it, even if someone is listening for this 501 * trap. 502 */ 503 notify_die(DIE_TRAP, "Uncorrectable Error", regs, 504 0, tt, SIGTRAP); 505 506 if (regs->tstate & TSTATE_PRIV) { 507 if (tl1) 508 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 509 die_if_kernel("UE", regs); 510 } 511 512 /* XXX need more intelligent processing here, such as is implemented 513 * XXX for cheetah errors, in fact if the E-cache still holds the 514 * XXX line with bad parity this will loop 515 */ 516 517 spitfire_clean_and_reenable_l1_caches(); 518 spitfire_enable_estate_errors(); 519 520 if (test_thread_flag(TIF_32BIT)) { 521 regs->tpc &= 0xffffffff; 522 regs->tnpc &= 0xffffffff; 523 } 524 info.si_signo = SIGBUS; 525 info.si_errno = 0; 526 info.si_code = BUS_OBJERR; 527 info.si_addr = (void *)0; 528 info.si_trapno = 0; 529 force_sig_info(SIGBUS, &info, current); 530 } 531 532 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar) 533 { 534 unsigned long afsr, tt, udbh, udbl; 535 int tl1; 536 537 afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT; 538 tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT; 539 tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0; 540 udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT; 541 udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT; 542 543 #ifdef CONFIG_PCI 544 if (tt == TRAP_TYPE_DAE && 545 pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { 546 spitfire_clean_and_reenable_l1_caches(); 547 spitfire_enable_estate_errors(); 548 549 pci_poke_faulted = 1; 550 regs->tnpc = regs->tpc + 4; 551 return; 552 } 553 #endif 554 555 if (afsr & SFAFSR_UE) 556 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs); 557 558 if (tt == TRAP_TYPE_CEE) { 559 /* Handle the case where we took a CEE trap, but ACK'd 560 * only the UE state in the UDB error registers. 561 */ 562 if (afsr & SFAFSR_UE) { 563 if (udbh & UDBE_CE) { 564 __asm__ __volatile__( 565 "stxa %0, [%1] %2\n\t" 566 "membar #Sync" 567 : /* no outputs */ 568 : "r" (udbh & UDBE_CE), 569 "r" (0x0), "i" (ASI_UDB_ERROR_W)); 570 } 571 if (udbl & UDBE_CE) { 572 __asm__ __volatile__( 573 "stxa %0, [%1] %2\n\t" 574 "membar #Sync" 575 : /* no outputs */ 576 : "r" (udbl & UDBE_CE), 577 "r" (0x18), "i" (ASI_UDB_ERROR_W)); 578 } 579 } 580 581 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs); 582 } 583 } 584 585 int cheetah_pcache_forced_on; 586 587 void cheetah_enable_pcache(void) 588 { 589 unsigned long dcr; 590 591 printk("CHEETAH: Enabling P-Cache on cpu %d.\n", 592 smp_processor_id()); 593 594 __asm__ __volatile__("ldxa [%%g0] %1, %0" 595 : "=r" (dcr) 596 : "i" (ASI_DCU_CONTROL_REG)); 597 dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL); 598 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 599 "membar #Sync" 600 : /* no outputs */ 601 : "r" (dcr), "i" (ASI_DCU_CONTROL_REG)); 602 } 603 604 /* Cheetah error trap handling. */ 605 static unsigned long ecache_flush_physbase; 606 static unsigned long ecache_flush_linesize; 607 static unsigned long ecache_flush_size; 608 609 /* This table is ordered in priority of errors and matches the 610 * AFAR overwrite policy as well. 611 */ 612 613 struct afsr_error_table { 614 unsigned long mask; 615 const char *name; 616 }; 617 618 static const char CHAFSR_PERR_msg[] = 619 "System interface protocol error"; 620 static const char CHAFSR_IERR_msg[] = 621 "Internal processor error"; 622 static const char CHAFSR_ISAP_msg[] = 623 "System request parity error on incoming addresss"; 624 static const char CHAFSR_UCU_msg[] = 625 "Uncorrectable E-cache ECC error for ifetch/data"; 626 static const char CHAFSR_UCC_msg[] = 627 "SW Correctable E-cache ECC error for ifetch/data"; 628 static const char CHAFSR_UE_msg[] = 629 "Uncorrectable system bus data ECC error for read"; 630 static const char CHAFSR_EDU_msg[] = 631 "Uncorrectable E-cache ECC error for stmerge/blkld"; 632 static const char CHAFSR_EMU_msg[] = 633 "Uncorrectable system bus MTAG error"; 634 static const char CHAFSR_WDU_msg[] = 635 "Uncorrectable E-cache ECC error for writeback"; 636 static const char CHAFSR_CPU_msg[] = 637 "Uncorrectable ECC error for copyout"; 638 static const char CHAFSR_CE_msg[] = 639 "HW corrected system bus data ECC error for read"; 640 static const char CHAFSR_EDC_msg[] = 641 "HW corrected E-cache ECC error for stmerge/blkld"; 642 static const char CHAFSR_EMC_msg[] = 643 "HW corrected system bus MTAG ECC error"; 644 static const char CHAFSR_WDC_msg[] = 645 "HW corrected E-cache ECC error for writeback"; 646 static const char CHAFSR_CPC_msg[] = 647 "HW corrected ECC error for copyout"; 648 static const char CHAFSR_TO_msg[] = 649 "Unmapped error from system bus"; 650 static const char CHAFSR_BERR_msg[] = 651 "Bus error response from system bus"; 652 static const char CHAFSR_IVC_msg[] = 653 "HW corrected system bus data ECC error for ivec read"; 654 static const char CHAFSR_IVU_msg[] = 655 "Uncorrectable system bus data ECC error for ivec read"; 656 static struct afsr_error_table __cheetah_error_table[] = { 657 { CHAFSR_PERR, CHAFSR_PERR_msg }, 658 { CHAFSR_IERR, CHAFSR_IERR_msg }, 659 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 660 { CHAFSR_UCU, CHAFSR_UCU_msg }, 661 { CHAFSR_UCC, CHAFSR_UCC_msg }, 662 { CHAFSR_UE, CHAFSR_UE_msg }, 663 { CHAFSR_EDU, CHAFSR_EDU_msg }, 664 { CHAFSR_EMU, CHAFSR_EMU_msg }, 665 { CHAFSR_WDU, CHAFSR_WDU_msg }, 666 { CHAFSR_CPU, CHAFSR_CPU_msg }, 667 { CHAFSR_CE, CHAFSR_CE_msg }, 668 { CHAFSR_EDC, CHAFSR_EDC_msg }, 669 { CHAFSR_EMC, CHAFSR_EMC_msg }, 670 { CHAFSR_WDC, CHAFSR_WDC_msg }, 671 { CHAFSR_CPC, CHAFSR_CPC_msg }, 672 { CHAFSR_TO, CHAFSR_TO_msg }, 673 { CHAFSR_BERR, CHAFSR_BERR_msg }, 674 /* These two do not update the AFAR. */ 675 { CHAFSR_IVC, CHAFSR_IVC_msg }, 676 { CHAFSR_IVU, CHAFSR_IVU_msg }, 677 { 0, NULL }, 678 }; 679 static const char CHPAFSR_DTO_msg[] = 680 "System bus unmapped error for prefetch/storequeue-read"; 681 static const char CHPAFSR_DBERR_msg[] = 682 "System bus error for prefetch/storequeue-read"; 683 static const char CHPAFSR_THCE_msg[] = 684 "Hardware corrected E-cache Tag ECC error"; 685 static const char CHPAFSR_TSCE_msg[] = 686 "SW handled correctable E-cache Tag ECC error"; 687 static const char CHPAFSR_TUE_msg[] = 688 "Uncorrectable E-cache Tag ECC error"; 689 static const char CHPAFSR_DUE_msg[] = 690 "System bus uncorrectable data ECC error due to prefetch/store-fill"; 691 static struct afsr_error_table __cheetah_plus_error_table[] = { 692 { CHAFSR_PERR, CHAFSR_PERR_msg }, 693 { CHAFSR_IERR, CHAFSR_IERR_msg }, 694 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 695 { CHAFSR_UCU, CHAFSR_UCU_msg }, 696 { CHAFSR_UCC, CHAFSR_UCC_msg }, 697 { CHAFSR_UE, CHAFSR_UE_msg }, 698 { CHAFSR_EDU, CHAFSR_EDU_msg }, 699 { CHAFSR_EMU, CHAFSR_EMU_msg }, 700 { CHAFSR_WDU, CHAFSR_WDU_msg }, 701 { CHAFSR_CPU, CHAFSR_CPU_msg }, 702 { CHAFSR_CE, CHAFSR_CE_msg }, 703 { CHAFSR_EDC, CHAFSR_EDC_msg }, 704 { CHAFSR_EMC, CHAFSR_EMC_msg }, 705 { CHAFSR_WDC, CHAFSR_WDC_msg }, 706 { CHAFSR_CPC, CHAFSR_CPC_msg }, 707 { CHAFSR_TO, CHAFSR_TO_msg }, 708 { CHAFSR_BERR, CHAFSR_BERR_msg }, 709 { CHPAFSR_DTO, CHPAFSR_DTO_msg }, 710 { CHPAFSR_DBERR, CHPAFSR_DBERR_msg }, 711 { CHPAFSR_THCE, CHPAFSR_THCE_msg }, 712 { CHPAFSR_TSCE, CHPAFSR_TSCE_msg }, 713 { CHPAFSR_TUE, CHPAFSR_TUE_msg }, 714 { CHPAFSR_DUE, CHPAFSR_DUE_msg }, 715 /* These two do not update the AFAR. */ 716 { CHAFSR_IVC, CHAFSR_IVC_msg }, 717 { CHAFSR_IVU, CHAFSR_IVU_msg }, 718 { 0, NULL }, 719 }; 720 static const char JPAFSR_JETO_msg[] = 721 "System interface protocol error, hw timeout caused"; 722 static const char JPAFSR_SCE_msg[] = 723 "Parity error on system snoop results"; 724 static const char JPAFSR_JEIC_msg[] = 725 "System interface protocol error, illegal command detected"; 726 static const char JPAFSR_JEIT_msg[] = 727 "System interface protocol error, illegal ADTYPE detected"; 728 static const char JPAFSR_OM_msg[] = 729 "Out of range memory error has occurred"; 730 static const char JPAFSR_ETP_msg[] = 731 "Parity error on L2 cache tag SRAM"; 732 static const char JPAFSR_UMS_msg[] = 733 "Error due to unsupported store"; 734 static const char JPAFSR_RUE_msg[] = 735 "Uncorrectable ECC error from remote cache/memory"; 736 static const char JPAFSR_RCE_msg[] = 737 "Correctable ECC error from remote cache/memory"; 738 static const char JPAFSR_BP_msg[] = 739 "JBUS parity error on returned read data"; 740 static const char JPAFSR_WBP_msg[] = 741 "JBUS parity error on data for writeback or block store"; 742 static const char JPAFSR_FRC_msg[] = 743 "Foreign read to DRAM incurring correctable ECC error"; 744 static const char JPAFSR_FRU_msg[] = 745 "Foreign read to DRAM incurring uncorrectable ECC error"; 746 static struct afsr_error_table __jalapeno_error_table[] = { 747 { JPAFSR_JETO, JPAFSR_JETO_msg }, 748 { JPAFSR_SCE, JPAFSR_SCE_msg }, 749 { JPAFSR_JEIC, JPAFSR_JEIC_msg }, 750 { JPAFSR_JEIT, JPAFSR_JEIT_msg }, 751 { CHAFSR_PERR, CHAFSR_PERR_msg }, 752 { CHAFSR_IERR, CHAFSR_IERR_msg }, 753 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 754 { CHAFSR_UCU, CHAFSR_UCU_msg }, 755 { CHAFSR_UCC, CHAFSR_UCC_msg }, 756 { CHAFSR_UE, CHAFSR_UE_msg }, 757 { CHAFSR_EDU, CHAFSR_EDU_msg }, 758 { JPAFSR_OM, JPAFSR_OM_msg }, 759 { CHAFSR_WDU, CHAFSR_WDU_msg }, 760 { CHAFSR_CPU, CHAFSR_CPU_msg }, 761 { CHAFSR_CE, CHAFSR_CE_msg }, 762 { CHAFSR_EDC, CHAFSR_EDC_msg }, 763 { JPAFSR_ETP, JPAFSR_ETP_msg }, 764 { CHAFSR_WDC, CHAFSR_WDC_msg }, 765 { CHAFSR_CPC, CHAFSR_CPC_msg }, 766 { CHAFSR_TO, CHAFSR_TO_msg }, 767 { CHAFSR_BERR, CHAFSR_BERR_msg }, 768 { JPAFSR_UMS, JPAFSR_UMS_msg }, 769 { JPAFSR_RUE, JPAFSR_RUE_msg }, 770 { JPAFSR_RCE, JPAFSR_RCE_msg }, 771 { JPAFSR_BP, JPAFSR_BP_msg }, 772 { JPAFSR_WBP, JPAFSR_WBP_msg }, 773 { JPAFSR_FRC, JPAFSR_FRC_msg }, 774 { JPAFSR_FRU, JPAFSR_FRU_msg }, 775 /* These two do not update the AFAR. */ 776 { CHAFSR_IVU, CHAFSR_IVU_msg }, 777 { 0, NULL }, 778 }; 779 static struct afsr_error_table *cheetah_error_table; 780 static unsigned long cheetah_afsr_errors; 781 782 struct cheetah_err_info *cheetah_error_log; 783 784 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr) 785 { 786 struct cheetah_err_info *p; 787 int cpu = smp_processor_id(); 788 789 if (!cheetah_error_log) 790 return NULL; 791 792 p = cheetah_error_log + (cpu * 2); 793 if ((afsr & CHAFSR_TL1) != 0UL) 794 p++; 795 796 return p; 797 } 798 799 extern unsigned int tl0_icpe[], tl1_icpe[]; 800 extern unsigned int tl0_dcpe[], tl1_dcpe[]; 801 extern unsigned int tl0_fecc[], tl1_fecc[]; 802 extern unsigned int tl0_cee[], tl1_cee[]; 803 extern unsigned int tl0_iae[], tl1_iae[]; 804 extern unsigned int tl0_dae[], tl1_dae[]; 805 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[]; 806 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[]; 807 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[]; 808 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[]; 809 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[]; 810 811 void __init cheetah_ecache_flush_init(void) 812 { 813 unsigned long largest_size, smallest_linesize, order, ver; 814 int i, sz; 815 816 /* Scan all cpu device tree nodes, note two values: 817 * 1) largest E-cache size 818 * 2) smallest E-cache line size 819 */ 820 largest_size = 0UL; 821 smallest_linesize = ~0UL; 822 823 for (i = 0; i < NR_CPUS; i++) { 824 unsigned long val; 825 826 val = cpu_data(i).ecache_size; 827 if (!val) 828 continue; 829 830 if (val > largest_size) 831 largest_size = val; 832 833 val = cpu_data(i).ecache_line_size; 834 if (val < smallest_linesize) 835 smallest_linesize = val; 836 837 } 838 839 if (largest_size == 0UL || smallest_linesize == ~0UL) { 840 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache " 841 "parameters.\n"); 842 prom_halt(); 843 } 844 845 ecache_flush_size = (2 * largest_size); 846 ecache_flush_linesize = smallest_linesize; 847 848 ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size); 849 850 if (ecache_flush_physbase == ~0UL) { 851 prom_printf("cheetah_ecache_flush_init: Cannot find %d byte " 852 "contiguous physical memory.\n", 853 ecache_flush_size); 854 prom_halt(); 855 } 856 857 /* Now allocate error trap reporting scoreboard. */ 858 sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info)); 859 for (order = 0; order < MAX_ORDER; order++) { 860 if ((PAGE_SIZE << order) >= sz) 861 break; 862 } 863 cheetah_error_log = (struct cheetah_err_info *) 864 __get_free_pages(GFP_KERNEL, order); 865 if (!cheetah_error_log) { 866 prom_printf("cheetah_ecache_flush_init: Failed to allocate " 867 "error logging scoreboard (%d bytes).\n", sz); 868 prom_halt(); 869 } 870 memset(cheetah_error_log, 0, PAGE_SIZE << order); 871 872 /* Mark all AFSRs as invalid so that the trap handler will 873 * log new new information there. 874 */ 875 for (i = 0; i < 2 * NR_CPUS; i++) 876 cheetah_error_log[i].afsr = CHAFSR_INVALID; 877 878 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 879 if ((ver >> 32) == __JALAPENO_ID || 880 (ver >> 32) == __SERRANO_ID) { 881 cheetah_error_table = &__jalapeno_error_table[0]; 882 cheetah_afsr_errors = JPAFSR_ERRORS; 883 } else if ((ver >> 32) == 0x003e0015) { 884 cheetah_error_table = &__cheetah_plus_error_table[0]; 885 cheetah_afsr_errors = CHPAFSR_ERRORS; 886 } else { 887 cheetah_error_table = &__cheetah_error_table[0]; 888 cheetah_afsr_errors = CHAFSR_ERRORS; 889 } 890 891 /* Now patch trap tables. */ 892 memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4)); 893 memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4)); 894 memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4)); 895 memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4)); 896 memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4)); 897 memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4)); 898 memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4)); 899 memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4)); 900 if (tlb_type == cheetah_plus) { 901 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4)); 902 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4)); 903 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4)); 904 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4)); 905 } 906 flushi(PAGE_OFFSET); 907 } 908 909 static void cheetah_flush_ecache(void) 910 { 911 unsigned long flush_base = ecache_flush_physbase; 912 unsigned long flush_linesize = ecache_flush_linesize; 913 unsigned long flush_size = ecache_flush_size; 914 915 __asm__ __volatile__("1: subcc %0, %4, %0\n\t" 916 " bne,pt %%xcc, 1b\n\t" 917 " ldxa [%2 + %0] %3, %%g0\n\t" 918 : "=&r" (flush_size) 919 : "0" (flush_size), "r" (flush_base), 920 "i" (ASI_PHYS_USE_EC), "r" (flush_linesize)); 921 } 922 923 static void cheetah_flush_ecache_line(unsigned long physaddr) 924 { 925 unsigned long alias; 926 927 physaddr &= ~(8UL - 1UL); 928 physaddr = (ecache_flush_physbase + 929 (physaddr & ((ecache_flush_size>>1UL) - 1UL))); 930 alias = physaddr + (ecache_flush_size >> 1UL); 931 __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t" 932 "ldxa [%1] %2, %%g0\n\t" 933 "membar #Sync" 934 : /* no outputs */ 935 : "r" (physaddr), "r" (alias), 936 "i" (ASI_PHYS_USE_EC)); 937 } 938 939 /* Unfortunately, the diagnostic access to the I-cache tags we need to 940 * use to clear the thing interferes with I-cache coherency transactions. 941 * 942 * So we must only flush the I-cache when it is disabled. 943 */ 944 static void __cheetah_flush_icache(void) 945 { 946 unsigned int icache_size, icache_line_size; 947 unsigned long addr; 948 949 icache_size = local_cpu_data().icache_size; 950 icache_line_size = local_cpu_data().icache_line_size; 951 952 /* Clear the valid bits in all the tags. */ 953 for (addr = 0; addr < icache_size; addr += icache_line_size) { 954 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 955 "membar #Sync" 956 : /* no outputs */ 957 : "r" (addr | (2 << 3)), 958 "i" (ASI_IC_TAG)); 959 } 960 } 961 962 static void cheetah_flush_icache(void) 963 { 964 unsigned long dcu_save; 965 966 /* Save current DCU, disable I-cache. */ 967 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 968 "or %0, %2, %%g1\n\t" 969 "stxa %%g1, [%%g0] %1\n\t" 970 "membar #Sync" 971 : "=r" (dcu_save) 972 : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) 973 : "g1"); 974 975 __cheetah_flush_icache(); 976 977 /* Restore DCU register */ 978 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 979 "membar #Sync" 980 : /* no outputs */ 981 : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG)); 982 } 983 984 static void cheetah_flush_dcache(void) 985 { 986 unsigned int dcache_size, dcache_line_size; 987 unsigned long addr; 988 989 dcache_size = local_cpu_data().dcache_size; 990 dcache_line_size = local_cpu_data().dcache_line_size; 991 992 for (addr = 0; addr < dcache_size; addr += dcache_line_size) { 993 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 994 "membar #Sync" 995 : /* no outputs */ 996 : "r" (addr), "i" (ASI_DCACHE_TAG)); 997 } 998 } 999 1000 /* In order to make the even parity correct we must do two things. 1001 * First, we clear DC_data_parity and set DC_utag to an appropriate value. 1002 * Next, we clear out all 32-bytes of data for that line. Data of 1003 * all-zero + tag parity value of zero == correct parity. 1004 */ 1005 static void cheetah_plus_zap_dcache_parity(void) 1006 { 1007 unsigned int dcache_size, dcache_line_size; 1008 unsigned long addr; 1009 1010 dcache_size = local_cpu_data().dcache_size; 1011 dcache_line_size = local_cpu_data().dcache_line_size; 1012 1013 for (addr = 0; addr < dcache_size; addr += dcache_line_size) { 1014 unsigned long tag = (addr >> 14); 1015 unsigned long line; 1016 1017 __asm__ __volatile__("membar #Sync\n\t" 1018 "stxa %0, [%1] %2\n\t" 1019 "membar #Sync" 1020 : /* no outputs */ 1021 : "r" (tag), "r" (addr), 1022 "i" (ASI_DCACHE_UTAG)); 1023 for (line = addr; line < addr + dcache_line_size; line += 8) 1024 __asm__ __volatile__("membar #Sync\n\t" 1025 "stxa %%g0, [%0] %1\n\t" 1026 "membar #Sync" 1027 : /* no outputs */ 1028 : "r" (line), 1029 "i" (ASI_DCACHE_DATA)); 1030 } 1031 } 1032 1033 /* Conversion tables used to frob Cheetah AFSR syndrome values into 1034 * something palatable to the memory controller driver get_unumber 1035 * routine. 1036 */ 1037 #define MT0 137 1038 #define MT1 138 1039 #define MT2 139 1040 #define NONE 254 1041 #define MTC0 140 1042 #define MTC1 141 1043 #define MTC2 142 1044 #define MTC3 143 1045 #define C0 128 1046 #define C1 129 1047 #define C2 130 1048 #define C3 131 1049 #define C4 132 1050 #define C5 133 1051 #define C6 134 1052 #define C7 135 1053 #define C8 136 1054 #define M2 144 1055 #define M3 145 1056 #define M4 146 1057 #define M 147 1058 static unsigned char cheetah_ecc_syntab[] = { 1059 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M, 1060 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16, 1061 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10, 1062 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M, 1063 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6, 1064 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4, 1065 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4, 1066 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3, 1067 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5, 1068 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M, 1069 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2, 1070 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3, 1071 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M, 1072 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3, 1073 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M, 1074 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M, 1075 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4, 1076 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M, 1077 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2, 1078 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M, 1079 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4, 1080 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3, 1081 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3, 1082 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2, 1083 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4, 1084 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M, 1085 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3, 1086 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M, 1087 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3, 1088 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M, 1089 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M, 1090 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M 1091 }; 1092 static unsigned char cheetah_mtag_syntab[] = { 1093 NONE, MTC0, 1094 MTC1, NONE, 1095 MTC2, NONE, 1096 NONE, MT0, 1097 MTC3, NONE, 1098 NONE, MT1, 1099 NONE, MT2, 1100 NONE, NONE 1101 }; 1102 1103 /* Return the highest priority error conditon mentioned. */ 1104 static inline unsigned long cheetah_get_hipri(unsigned long afsr) 1105 { 1106 unsigned long tmp = 0; 1107 int i; 1108 1109 for (i = 0; cheetah_error_table[i].mask; i++) { 1110 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL) 1111 return tmp; 1112 } 1113 return tmp; 1114 } 1115 1116 static const char *cheetah_get_string(unsigned long bit) 1117 { 1118 int i; 1119 1120 for (i = 0; cheetah_error_table[i].mask; i++) { 1121 if ((bit & cheetah_error_table[i].mask) != 0UL) 1122 return cheetah_error_table[i].name; 1123 } 1124 return "???"; 1125 } 1126 1127 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info, 1128 unsigned long afsr, unsigned long afar, int recoverable) 1129 { 1130 unsigned long hipri; 1131 char unum[256]; 1132 1133 printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n", 1134 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1135 afsr, afar, 1136 (afsr & CHAFSR_TL1) ? 1 : 0); 1137 printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n", 1138 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1139 regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate); 1140 printk("%s" "ERROR(%d): ", 1141 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id()); 1142 printk("TPC<%pS>\n", (void *) regs->tpc); 1143 printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n", 1144 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1145 (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT, 1146 (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT, 1147 (afsr & CHAFSR_ME) ? ", Multiple Errors" : "", 1148 (afsr & CHAFSR_PRIV) ? ", Privileged" : ""); 1149 hipri = cheetah_get_hipri(afsr); 1150 printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n", 1151 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1152 hipri, cheetah_get_string(hipri)); 1153 1154 /* Try to get unumber if relevant. */ 1155 #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \ 1156 CHAFSR_CPC | CHAFSR_CPU | \ 1157 CHAFSR_UE | CHAFSR_CE | \ 1158 CHAFSR_EDC | CHAFSR_EDU | \ 1159 CHAFSR_UCC | CHAFSR_UCU | \ 1160 CHAFSR_WDU | CHAFSR_WDC) 1161 #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU) 1162 if (afsr & ESYND_ERRORS) { 1163 int syndrome; 1164 int ret; 1165 1166 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT; 1167 syndrome = cheetah_ecc_syntab[syndrome]; 1168 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); 1169 if (ret != -1) 1170 printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n", 1171 (recoverable ? KERN_WARNING : KERN_CRIT), 1172 smp_processor_id(), unum); 1173 } else if (afsr & MSYND_ERRORS) { 1174 int syndrome; 1175 int ret; 1176 1177 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT; 1178 syndrome = cheetah_mtag_syntab[syndrome]; 1179 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); 1180 if (ret != -1) 1181 printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n", 1182 (recoverable ? KERN_WARNING : KERN_CRIT), 1183 smp_processor_id(), unum); 1184 } 1185 1186 /* Now dump the cache snapshots. */ 1187 printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n", 1188 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1189 (int) info->dcache_index, 1190 info->dcache_tag, 1191 info->dcache_utag, 1192 info->dcache_stag); 1193 printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", 1194 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1195 info->dcache_data[0], 1196 info->dcache_data[1], 1197 info->dcache_data[2], 1198 info->dcache_data[3]); 1199 printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] " 1200 "u[%016llx] l[%016llx]\n", 1201 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1202 (int) info->icache_index, 1203 info->icache_tag, 1204 info->icache_utag, 1205 info->icache_stag, 1206 info->icache_upper, 1207 info->icache_lower); 1208 printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n", 1209 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1210 info->icache_data[0], 1211 info->icache_data[1], 1212 info->icache_data[2], 1213 info->icache_data[3]); 1214 printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n", 1215 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1216 info->icache_data[4], 1217 info->icache_data[5], 1218 info->icache_data[6], 1219 info->icache_data[7]); 1220 printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n", 1221 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1222 (int) info->ecache_index, info->ecache_tag); 1223 printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", 1224 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1225 info->ecache_data[0], 1226 info->ecache_data[1], 1227 info->ecache_data[2], 1228 info->ecache_data[3]); 1229 1230 afsr = (afsr & ~hipri) & cheetah_afsr_errors; 1231 while (afsr != 0UL) { 1232 unsigned long bit = cheetah_get_hipri(afsr); 1233 1234 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n", 1235 (recoverable ? KERN_WARNING : KERN_CRIT), 1236 bit, cheetah_get_string(bit)); 1237 1238 afsr &= ~bit; 1239 } 1240 1241 if (!recoverable) 1242 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n"); 1243 } 1244 1245 static int cheetah_recheck_errors(struct cheetah_err_info *logp) 1246 { 1247 unsigned long afsr, afar; 1248 int ret = 0; 1249 1250 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1251 : "=r" (afsr) 1252 : "i" (ASI_AFSR)); 1253 if ((afsr & cheetah_afsr_errors) != 0) { 1254 if (logp != NULL) { 1255 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1256 : "=r" (afar) 1257 : "i" (ASI_AFAR)); 1258 logp->afsr = afsr; 1259 logp->afar = afar; 1260 } 1261 ret = 1; 1262 } 1263 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1264 "membar #Sync\n\t" 1265 : : "r" (afsr), "i" (ASI_AFSR)); 1266 1267 return ret; 1268 } 1269 1270 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1271 { 1272 struct cheetah_err_info local_snapshot, *p; 1273 int recoverable; 1274 1275 /* Flush E-cache */ 1276 cheetah_flush_ecache(); 1277 1278 p = cheetah_get_error_log(afsr); 1279 if (!p) { 1280 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n", 1281 afsr, afar); 1282 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1283 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1284 prom_halt(); 1285 } 1286 1287 /* Grab snapshot of logged error. */ 1288 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1289 1290 /* If the current trap snapshot does not match what the 1291 * trap handler passed along into our args, big trouble. 1292 * In such a case, mark the local copy as invalid. 1293 * 1294 * Else, it matches and we mark the afsr in the non-local 1295 * copy as invalid so we may log new error traps there. 1296 */ 1297 if (p->afsr != afsr || p->afar != afar) 1298 local_snapshot.afsr = CHAFSR_INVALID; 1299 else 1300 p->afsr = CHAFSR_INVALID; 1301 1302 cheetah_flush_icache(); 1303 cheetah_flush_dcache(); 1304 1305 /* Re-enable I-cache/D-cache */ 1306 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1307 "or %%g1, %1, %%g1\n\t" 1308 "stxa %%g1, [%%g0] %0\n\t" 1309 "membar #Sync" 1310 : /* no outputs */ 1311 : "i" (ASI_DCU_CONTROL_REG), 1312 "i" (DCU_DC | DCU_IC) 1313 : "g1"); 1314 1315 /* Re-enable error reporting */ 1316 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1317 "or %%g1, %1, %%g1\n\t" 1318 "stxa %%g1, [%%g0] %0\n\t" 1319 "membar #Sync" 1320 : /* no outputs */ 1321 : "i" (ASI_ESTATE_ERROR_EN), 1322 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1323 : "g1"); 1324 1325 /* Decide if we can continue after handling this trap and 1326 * logging the error. 1327 */ 1328 recoverable = 1; 1329 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1330 recoverable = 0; 1331 1332 /* Re-check AFSR/AFAR. What we are looking for here is whether a new 1333 * error was logged while we had error reporting traps disabled. 1334 */ 1335 if (cheetah_recheck_errors(&local_snapshot)) { 1336 unsigned long new_afsr = local_snapshot.afsr; 1337 1338 /* If we got a new asynchronous error, die... */ 1339 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | 1340 CHAFSR_WDU | CHAFSR_CPU | 1341 CHAFSR_IVU | CHAFSR_UE | 1342 CHAFSR_BERR | CHAFSR_TO)) 1343 recoverable = 0; 1344 } 1345 1346 /* Log errors. */ 1347 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1348 1349 if (!recoverable) 1350 panic("Irrecoverable Fast-ECC error trap.\n"); 1351 1352 /* Flush E-cache to kick the error trap handlers out. */ 1353 cheetah_flush_ecache(); 1354 } 1355 1356 /* Try to fix a correctable error by pushing the line out from 1357 * the E-cache. Recheck error reporting registers to see if the 1358 * problem is intermittent. 1359 */ 1360 static int cheetah_fix_ce(unsigned long physaddr) 1361 { 1362 unsigned long orig_estate; 1363 unsigned long alias1, alias2; 1364 int ret; 1365 1366 /* Make sure correctable error traps are disabled. */ 1367 __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t" 1368 "andn %0, %1, %%g1\n\t" 1369 "stxa %%g1, [%%g0] %2\n\t" 1370 "membar #Sync" 1371 : "=&r" (orig_estate) 1372 : "i" (ESTATE_ERROR_CEEN), 1373 "i" (ASI_ESTATE_ERROR_EN) 1374 : "g1"); 1375 1376 /* We calculate alias addresses that will force the 1377 * cache line in question out of the E-cache. Then 1378 * we bring it back in with an atomic instruction so 1379 * that we get it in some modified/exclusive state, 1380 * then we displace it again to try and get proper ECC 1381 * pushed back into the system. 1382 */ 1383 physaddr &= ~(8UL - 1UL); 1384 alias1 = (ecache_flush_physbase + 1385 (physaddr & ((ecache_flush_size >> 1) - 1))); 1386 alias2 = alias1 + (ecache_flush_size >> 1); 1387 __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t" 1388 "ldxa [%1] %3, %%g0\n\t" 1389 "casxa [%2] %3, %%g0, %%g0\n\t" 1390 "ldxa [%0] %3, %%g0\n\t" 1391 "ldxa [%1] %3, %%g0\n\t" 1392 "membar #Sync" 1393 : /* no outputs */ 1394 : "r" (alias1), "r" (alias2), 1395 "r" (physaddr), "i" (ASI_PHYS_USE_EC)); 1396 1397 /* Did that trigger another error? */ 1398 if (cheetah_recheck_errors(NULL)) { 1399 /* Try one more time. */ 1400 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t" 1401 "membar #Sync" 1402 : : "r" (physaddr), "i" (ASI_PHYS_USE_EC)); 1403 if (cheetah_recheck_errors(NULL)) 1404 ret = 2; 1405 else 1406 ret = 1; 1407 } else { 1408 /* No new error, intermittent problem. */ 1409 ret = 0; 1410 } 1411 1412 /* Restore error enables. */ 1413 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1414 "membar #Sync" 1415 : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN)); 1416 1417 return ret; 1418 } 1419 1420 /* Return non-zero if PADDR is a valid physical memory address. */ 1421 static int cheetah_check_main_memory(unsigned long paddr) 1422 { 1423 unsigned long vaddr = PAGE_OFFSET + paddr; 1424 1425 if (vaddr > (unsigned long) high_memory) 1426 return 0; 1427 1428 return kern_addr_valid(vaddr); 1429 } 1430 1431 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1432 { 1433 struct cheetah_err_info local_snapshot, *p; 1434 int recoverable, is_memory; 1435 1436 p = cheetah_get_error_log(afsr); 1437 if (!p) { 1438 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n", 1439 afsr, afar); 1440 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1441 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1442 prom_halt(); 1443 } 1444 1445 /* Grab snapshot of logged error. */ 1446 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1447 1448 /* If the current trap snapshot does not match what the 1449 * trap handler passed along into our args, big trouble. 1450 * In such a case, mark the local copy as invalid. 1451 * 1452 * Else, it matches and we mark the afsr in the non-local 1453 * copy as invalid so we may log new error traps there. 1454 */ 1455 if (p->afsr != afsr || p->afar != afar) 1456 local_snapshot.afsr = CHAFSR_INVALID; 1457 else 1458 p->afsr = CHAFSR_INVALID; 1459 1460 is_memory = cheetah_check_main_memory(afar); 1461 1462 if (is_memory && (afsr & CHAFSR_CE) != 0UL) { 1463 /* XXX Might want to log the results of this operation 1464 * XXX somewhere... -DaveM 1465 */ 1466 cheetah_fix_ce(afar); 1467 } 1468 1469 { 1470 int flush_all, flush_line; 1471 1472 flush_all = flush_line = 0; 1473 if ((afsr & CHAFSR_EDC) != 0UL) { 1474 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC) 1475 flush_line = 1; 1476 else 1477 flush_all = 1; 1478 } else if ((afsr & CHAFSR_CPC) != 0UL) { 1479 if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC) 1480 flush_line = 1; 1481 else 1482 flush_all = 1; 1483 } 1484 1485 /* Trap handler only disabled I-cache, flush it. */ 1486 cheetah_flush_icache(); 1487 1488 /* Re-enable I-cache */ 1489 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1490 "or %%g1, %1, %%g1\n\t" 1491 "stxa %%g1, [%%g0] %0\n\t" 1492 "membar #Sync" 1493 : /* no outputs */ 1494 : "i" (ASI_DCU_CONTROL_REG), 1495 "i" (DCU_IC) 1496 : "g1"); 1497 1498 if (flush_all) 1499 cheetah_flush_ecache(); 1500 else if (flush_line) 1501 cheetah_flush_ecache_line(afar); 1502 } 1503 1504 /* Re-enable error reporting */ 1505 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1506 "or %%g1, %1, %%g1\n\t" 1507 "stxa %%g1, [%%g0] %0\n\t" 1508 "membar #Sync" 1509 : /* no outputs */ 1510 : "i" (ASI_ESTATE_ERROR_EN), 1511 "i" (ESTATE_ERROR_CEEN) 1512 : "g1"); 1513 1514 /* Decide if we can continue after handling this trap and 1515 * logging the error. 1516 */ 1517 recoverable = 1; 1518 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1519 recoverable = 0; 1520 1521 /* Re-check AFSR/AFAR */ 1522 (void) cheetah_recheck_errors(&local_snapshot); 1523 1524 /* Log errors. */ 1525 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1526 1527 if (!recoverable) 1528 panic("Irrecoverable Correctable-ECC error trap.\n"); 1529 } 1530 1531 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1532 { 1533 struct cheetah_err_info local_snapshot, *p; 1534 int recoverable, is_memory; 1535 1536 #ifdef CONFIG_PCI 1537 /* Check for the special PCI poke sequence. */ 1538 if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { 1539 cheetah_flush_icache(); 1540 cheetah_flush_dcache(); 1541 1542 /* Re-enable I-cache/D-cache */ 1543 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1544 "or %%g1, %1, %%g1\n\t" 1545 "stxa %%g1, [%%g0] %0\n\t" 1546 "membar #Sync" 1547 : /* no outputs */ 1548 : "i" (ASI_DCU_CONTROL_REG), 1549 "i" (DCU_DC | DCU_IC) 1550 : "g1"); 1551 1552 /* Re-enable error reporting */ 1553 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1554 "or %%g1, %1, %%g1\n\t" 1555 "stxa %%g1, [%%g0] %0\n\t" 1556 "membar #Sync" 1557 : /* no outputs */ 1558 : "i" (ASI_ESTATE_ERROR_EN), 1559 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1560 : "g1"); 1561 1562 (void) cheetah_recheck_errors(NULL); 1563 1564 pci_poke_faulted = 1; 1565 regs->tpc += 4; 1566 regs->tnpc = regs->tpc + 4; 1567 return; 1568 } 1569 #endif 1570 1571 p = cheetah_get_error_log(afsr); 1572 if (!p) { 1573 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n", 1574 afsr, afar); 1575 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1576 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1577 prom_halt(); 1578 } 1579 1580 /* Grab snapshot of logged error. */ 1581 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1582 1583 /* If the current trap snapshot does not match what the 1584 * trap handler passed along into our args, big trouble. 1585 * In such a case, mark the local copy as invalid. 1586 * 1587 * Else, it matches and we mark the afsr in the non-local 1588 * copy as invalid so we may log new error traps there. 1589 */ 1590 if (p->afsr != afsr || p->afar != afar) 1591 local_snapshot.afsr = CHAFSR_INVALID; 1592 else 1593 p->afsr = CHAFSR_INVALID; 1594 1595 is_memory = cheetah_check_main_memory(afar); 1596 1597 { 1598 int flush_all, flush_line; 1599 1600 flush_all = flush_line = 0; 1601 if ((afsr & CHAFSR_EDU) != 0UL) { 1602 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU) 1603 flush_line = 1; 1604 else 1605 flush_all = 1; 1606 } else if ((afsr & CHAFSR_BERR) != 0UL) { 1607 if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR) 1608 flush_line = 1; 1609 else 1610 flush_all = 1; 1611 } 1612 1613 cheetah_flush_icache(); 1614 cheetah_flush_dcache(); 1615 1616 /* Re-enable I/D caches */ 1617 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1618 "or %%g1, %1, %%g1\n\t" 1619 "stxa %%g1, [%%g0] %0\n\t" 1620 "membar #Sync" 1621 : /* no outputs */ 1622 : "i" (ASI_DCU_CONTROL_REG), 1623 "i" (DCU_IC | DCU_DC) 1624 : "g1"); 1625 1626 if (flush_all) 1627 cheetah_flush_ecache(); 1628 else if (flush_line) 1629 cheetah_flush_ecache_line(afar); 1630 } 1631 1632 /* Re-enable error reporting */ 1633 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1634 "or %%g1, %1, %%g1\n\t" 1635 "stxa %%g1, [%%g0] %0\n\t" 1636 "membar #Sync" 1637 : /* no outputs */ 1638 : "i" (ASI_ESTATE_ERROR_EN), 1639 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1640 : "g1"); 1641 1642 /* Decide if we can continue after handling this trap and 1643 * logging the error. 1644 */ 1645 recoverable = 1; 1646 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1647 recoverable = 0; 1648 1649 /* Re-check AFSR/AFAR. What we are looking for here is whether a new 1650 * error was logged while we had error reporting traps disabled. 1651 */ 1652 if (cheetah_recheck_errors(&local_snapshot)) { 1653 unsigned long new_afsr = local_snapshot.afsr; 1654 1655 /* If we got a new asynchronous error, die... */ 1656 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | 1657 CHAFSR_WDU | CHAFSR_CPU | 1658 CHAFSR_IVU | CHAFSR_UE | 1659 CHAFSR_BERR | CHAFSR_TO)) 1660 recoverable = 0; 1661 } 1662 1663 /* Log errors. */ 1664 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1665 1666 /* "Recoverable" here means we try to yank the page from ever 1667 * being newly used again. This depends upon a few things: 1668 * 1) Must be main memory, and AFAR must be valid. 1669 * 2) If we trapped from user, OK. 1670 * 3) Else, if we trapped from kernel we must find exception 1671 * table entry (ie. we have to have been accessing user 1672 * space). 1673 * 1674 * If AFAR is not in main memory, or we trapped from kernel 1675 * and cannot find an exception table entry, it is unacceptable 1676 * to try and continue. 1677 */ 1678 if (recoverable && is_memory) { 1679 if ((regs->tstate & TSTATE_PRIV) == 0UL) { 1680 /* OK, usermode access. */ 1681 recoverable = 1; 1682 } else { 1683 const struct exception_table_entry *entry; 1684 1685 entry = search_exception_tables(regs->tpc); 1686 if (entry) { 1687 /* OK, kernel access to userspace. */ 1688 recoverable = 1; 1689 1690 } else { 1691 /* BAD, privileged state is corrupted. */ 1692 recoverable = 0; 1693 } 1694 1695 if (recoverable) { 1696 if (pfn_valid(afar >> PAGE_SHIFT)) 1697 get_page(pfn_to_page(afar >> PAGE_SHIFT)); 1698 else 1699 recoverable = 0; 1700 1701 /* Only perform fixup if we still have a 1702 * recoverable condition. 1703 */ 1704 if (recoverable) { 1705 regs->tpc = entry->fixup; 1706 regs->tnpc = regs->tpc + 4; 1707 } 1708 } 1709 } 1710 } else { 1711 recoverable = 0; 1712 } 1713 1714 if (!recoverable) 1715 panic("Irrecoverable deferred error trap.\n"); 1716 } 1717 1718 /* Handle a D/I cache parity error trap. TYPE is encoded as: 1719 * 1720 * Bit0: 0=dcache,1=icache 1721 * Bit1: 0=recoverable,1=unrecoverable 1722 * 1723 * The hardware has disabled both the I-cache and D-cache in 1724 * the %dcr register. 1725 */ 1726 void cheetah_plus_parity_error(int type, struct pt_regs *regs) 1727 { 1728 if (type & 0x1) 1729 __cheetah_flush_icache(); 1730 else 1731 cheetah_plus_zap_dcache_parity(); 1732 cheetah_flush_dcache(); 1733 1734 /* Re-enable I-cache/D-cache */ 1735 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1736 "or %%g1, %1, %%g1\n\t" 1737 "stxa %%g1, [%%g0] %0\n\t" 1738 "membar #Sync" 1739 : /* no outputs */ 1740 : "i" (ASI_DCU_CONTROL_REG), 1741 "i" (DCU_DC | DCU_IC) 1742 : "g1"); 1743 1744 if (type & 0x2) { 1745 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", 1746 smp_processor_id(), 1747 (type & 0x1) ? 'I' : 'D', 1748 regs->tpc); 1749 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc); 1750 panic("Irrecoverable Cheetah+ parity error."); 1751 } 1752 1753 printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", 1754 smp_processor_id(), 1755 (type & 0x1) ? 'I' : 'D', 1756 regs->tpc); 1757 printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc); 1758 } 1759 1760 struct sun4v_error_entry { 1761 u64 err_handle; 1762 u64 err_stick; 1763 1764 u32 err_type; 1765 #define SUN4V_ERR_TYPE_UNDEFINED 0 1766 #define SUN4V_ERR_TYPE_UNCORRECTED_RES 1 1767 #define SUN4V_ERR_TYPE_PRECISE_NONRES 2 1768 #define SUN4V_ERR_TYPE_DEFERRED_NONRES 3 1769 #define SUN4V_ERR_TYPE_WARNING_RES 4 1770 1771 u32 err_attrs; 1772 #define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001 1773 #define SUN4V_ERR_ATTRS_MEMORY 0x00000002 1774 #define SUN4V_ERR_ATTRS_PIO 0x00000004 1775 #define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008 1776 #define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010 1777 #define SUN4V_ERR_ATTRS_USER_MODE 0x01000000 1778 #define SUN4V_ERR_ATTRS_PRIV_MODE 0x02000000 1779 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000 1780 1781 u64 err_raddr; 1782 u32 err_size; 1783 u16 err_cpu; 1784 u16 err_pad; 1785 }; 1786 1787 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0); 1788 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0); 1789 1790 static const char *sun4v_err_type_to_str(u32 type) 1791 { 1792 switch (type) { 1793 case SUN4V_ERR_TYPE_UNDEFINED: 1794 return "undefined"; 1795 case SUN4V_ERR_TYPE_UNCORRECTED_RES: 1796 return "uncorrected resumable"; 1797 case SUN4V_ERR_TYPE_PRECISE_NONRES: 1798 return "precise nonresumable"; 1799 case SUN4V_ERR_TYPE_DEFERRED_NONRES: 1800 return "deferred nonresumable"; 1801 case SUN4V_ERR_TYPE_WARNING_RES: 1802 return "warning resumable"; 1803 default: 1804 return "unknown"; 1805 }; 1806 } 1807 1808 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent, int cpu, const char *pfx, atomic_t *ocnt) 1809 { 1810 int cnt; 1811 1812 printk("%s: Reporting on cpu %d\n", pfx, cpu); 1813 printk("%s: err_handle[%llx] err_stick[%llx] err_type[%08x:%s]\n", 1814 pfx, 1815 ent->err_handle, ent->err_stick, 1816 ent->err_type, 1817 sun4v_err_type_to_str(ent->err_type)); 1818 printk("%s: err_attrs[%08x:%s %s %s %s %s %s %s %s]\n", 1819 pfx, 1820 ent->err_attrs, 1821 ((ent->err_attrs & SUN4V_ERR_ATTRS_PROCESSOR) ? 1822 "processor" : ""), 1823 ((ent->err_attrs & SUN4V_ERR_ATTRS_MEMORY) ? 1824 "memory" : ""), 1825 ((ent->err_attrs & SUN4V_ERR_ATTRS_PIO) ? 1826 "pio" : ""), 1827 ((ent->err_attrs & SUN4V_ERR_ATTRS_INT_REGISTERS) ? 1828 "integer-regs" : ""), 1829 ((ent->err_attrs & SUN4V_ERR_ATTRS_FPU_REGISTERS) ? 1830 "fpu-regs" : ""), 1831 ((ent->err_attrs & SUN4V_ERR_ATTRS_USER_MODE) ? 1832 "user" : ""), 1833 ((ent->err_attrs & SUN4V_ERR_ATTRS_PRIV_MODE) ? 1834 "privileged" : ""), 1835 ((ent->err_attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) ? 1836 "queue-full" : "")); 1837 printk("%s: err_raddr[%016llx] err_size[%u] err_cpu[%u]\n", 1838 pfx, 1839 ent->err_raddr, ent->err_size, ent->err_cpu); 1840 1841 show_regs(regs); 1842 1843 if ((cnt = atomic_read(ocnt)) != 0) { 1844 atomic_set(ocnt, 0); 1845 wmb(); 1846 printk("%s: Queue overflowed %d times.\n", 1847 pfx, cnt); 1848 } 1849 } 1850 1851 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. 1852 * Log the event and clear the first word of the entry. 1853 */ 1854 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset) 1855 { 1856 struct sun4v_error_entry *ent, local_copy; 1857 struct trap_per_cpu *tb; 1858 unsigned long paddr; 1859 int cpu; 1860 1861 cpu = get_cpu(); 1862 1863 tb = &trap_block[cpu]; 1864 paddr = tb->resum_kernel_buf_pa + offset; 1865 ent = __va(paddr); 1866 1867 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); 1868 1869 /* We have a local copy now, so release the entry. */ 1870 ent->err_handle = 0; 1871 wmb(); 1872 1873 put_cpu(); 1874 1875 if (ent->err_type == SUN4V_ERR_TYPE_WARNING_RES) { 1876 /* If err_type is 0x4, it's a powerdown request. Do 1877 * not do the usual resumable error log because that 1878 * makes it look like some abnormal error. 1879 */ 1880 printk(KERN_INFO "Power down request...\n"); 1881 kill_cad_pid(SIGINT, 1); 1882 return; 1883 } 1884 1885 sun4v_log_error(regs, &local_copy, cpu, 1886 KERN_ERR "RESUMABLE ERROR", 1887 &sun4v_resum_oflow_cnt); 1888 } 1889 1890 /* If we try to printk() we'll probably make matters worse, by trying 1891 * to retake locks this cpu already holds or causing more errors. So 1892 * just bump a counter, and we'll report these counter bumps above. 1893 */ 1894 void sun4v_resum_overflow(struct pt_regs *regs) 1895 { 1896 atomic_inc(&sun4v_resum_oflow_cnt); 1897 } 1898 1899 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. 1900 * Log the event, clear the first word of the entry, and die. 1901 */ 1902 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset) 1903 { 1904 struct sun4v_error_entry *ent, local_copy; 1905 struct trap_per_cpu *tb; 1906 unsigned long paddr; 1907 int cpu; 1908 1909 cpu = get_cpu(); 1910 1911 tb = &trap_block[cpu]; 1912 paddr = tb->nonresum_kernel_buf_pa + offset; 1913 ent = __va(paddr); 1914 1915 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); 1916 1917 /* We have a local copy now, so release the entry. */ 1918 ent->err_handle = 0; 1919 wmb(); 1920 1921 put_cpu(); 1922 1923 #ifdef CONFIG_PCI 1924 /* Check for the special PCI poke sequence. */ 1925 if (pci_poke_in_progress && pci_poke_cpu == cpu) { 1926 pci_poke_faulted = 1; 1927 regs->tpc += 4; 1928 regs->tnpc = regs->tpc + 4; 1929 return; 1930 } 1931 #endif 1932 1933 sun4v_log_error(regs, &local_copy, cpu, 1934 KERN_EMERG "NON-RESUMABLE ERROR", 1935 &sun4v_nonresum_oflow_cnt); 1936 1937 panic("Non-resumable error."); 1938 } 1939 1940 /* If we try to printk() we'll probably make matters worse, by trying 1941 * to retake locks this cpu already holds or causing more errors. So 1942 * just bump a counter, and we'll report these counter bumps above. 1943 */ 1944 void sun4v_nonresum_overflow(struct pt_regs *regs) 1945 { 1946 /* XXX Actually even this can make not that much sense. Perhaps 1947 * XXX we should just pull the plug and panic directly from here? 1948 */ 1949 atomic_inc(&sun4v_nonresum_oflow_cnt); 1950 } 1951 1952 unsigned long sun4v_err_itlb_vaddr; 1953 unsigned long sun4v_err_itlb_ctx; 1954 unsigned long sun4v_err_itlb_pte; 1955 unsigned long sun4v_err_itlb_error; 1956 1957 void sun4v_itlb_error_report(struct pt_regs *regs, int tl) 1958 { 1959 if (tl > 1) 1960 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 1961 1962 printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n", 1963 regs->tpc, tl); 1964 printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc); 1965 printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]); 1966 printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n", 1967 (void *) regs->u_regs[UREG_I7]); 1968 printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] " 1969 "pte[%lx] error[%lx]\n", 1970 sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx, 1971 sun4v_err_itlb_pte, sun4v_err_itlb_error); 1972 1973 prom_halt(); 1974 } 1975 1976 unsigned long sun4v_err_dtlb_vaddr; 1977 unsigned long sun4v_err_dtlb_ctx; 1978 unsigned long sun4v_err_dtlb_pte; 1979 unsigned long sun4v_err_dtlb_error; 1980 1981 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl) 1982 { 1983 if (tl > 1) 1984 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 1985 1986 printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n", 1987 regs->tpc, tl); 1988 printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc); 1989 printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]); 1990 printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n", 1991 (void *) regs->u_regs[UREG_I7]); 1992 printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] " 1993 "pte[%lx] error[%lx]\n", 1994 sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx, 1995 sun4v_err_dtlb_pte, sun4v_err_dtlb_error); 1996 1997 prom_halt(); 1998 } 1999 2000 void hypervisor_tlbop_error(unsigned long err, unsigned long op) 2001 { 2002 printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n", 2003 err, op); 2004 } 2005 2006 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op) 2007 { 2008 printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n", 2009 err, op); 2010 } 2011 2012 void do_fpe_common(struct pt_regs *regs) 2013 { 2014 if (regs->tstate & TSTATE_PRIV) { 2015 regs->tpc = regs->tnpc; 2016 regs->tnpc += 4; 2017 } else { 2018 unsigned long fsr = current_thread_info()->xfsr[0]; 2019 siginfo_t info; 2020 2021 if (test_thread_flag(TIF_32BIT)) { 2022 regs->tpc &= 0xffffffff; 2023 regs->tnpc &= 0xffffffff; 2024 } 2025 info.si_signo = SIGFPE; 2026 info.si_errno = 0; 2027 info.si_addr = (void __user *)regs->tpc; 2028 info.si_trapno = 0; 2029 info.si_code = __SI_FAULT; 2030 if ((fsr & 0x1c000) == (1 << 14)) { 2031 if (fsr & 0x10) 2032 info.si_code = FPE_FLTINV; 2033 else if (fsr & 0x08) 2034 info.si_code = FPE_FLTOVF; 2035 else if (fsr & 0x04) 2036 info.si_code = FPE_FLTUND; 2037 else if (fsr & 0x02) 2038 info.si_code = FPE_FLTDIV; 2039 else if (fsr & 0x01) 2040 info.si_code = FPE_FLTRES; 2041 } 2042 force_sig_info(SIGFPE, &info, current); 2043 } 2044 } 2045 2046 void do_fpieee(struct pt_regs *regs) 2047 { 2048 if (notify_die(DIE_TRAP, "fpu exception ieee", regs, 2049 0, 0x24, SIGFPE) == NOTIFY_STOP) 2050 return; 2051 2052 do_fpe_common(regs); 2053 } 2054 2055 extern int do_mathemu(struct pt_regs *, struct fpustate *); 2056 2057 void do_fpother(struct pt_regs *regs) 2058 { 2059 struct fpustate *f = FPUSTATE; 2060 int ret = 0; 2061 2062 if (notify_die(DIE_TRAP, "fpu exception other", regs, 2063 0, 0x25, SIGFPE) == NOTIFY_STOP) 2064 return; 2065 2066 switch ((current_thread_info()->xfsr[0] & 0x1c000)) { 2067 case (2 << 14): /* unfinished_FPop */ 2068 case (3 << 14): /* unimplemented_FPop */ 2069 ret = do_mathemu(regs, f); 2070 break; 2071 } 2072 if (ret) 2073 return; 2074 do_fpe_common(regs); 2075 } 2076 2077 void do_tof(struct pt_regs *regs) 2078 { 2079 siginfo_t info; 2080 2081 if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs, 2082 0, 0x26, SIGEMT) == NOTIFY_STOP) 2083 return; 2084 2085 if (regs->tstate & TSTATE_PRIV) 2086 die_if_kernel("Penguin overflow trap from kernel mode", regs); 2087 if (test_thread_flag(TIF_32BIT)) { 2088 regs->tpc &= 0xffffffff; 2089 regs->tnpc &= 0xffffffff; 2090 } 2091 info.si_signo = SIGEMT; 2092 info.si_errno = 0; 2093 info.si_code = EMT_TAGOVF; 2094 info.si_addr = (void __user *)regs->tpc; 2095 info.si_trapno = 0; 2096 force_sig_info(SIGEMT, &info, current); 2097 } 2098 2099 void do_div0(struct pt_regs *regs) 2100 { 2101 siginfo_t info; 2102 2103 if (notify_die(DIE_TRAP, "integer division by zero", regs, 2104 0, 0x28, SIGFPE) == NOTIFY_STOP) 2105 return; 2106 2107 if (regs->tstate & TSTATE_PRIV) 2108 die_if_kernel("TL0: Kernel divide by zero.", regs); 2109 if (test_thread_flag(TIF_32BIT)) { 2110 regs->tpc &= 0xffffffff; 2111 regs->tnpc &= 0xffffffff; 2112 } 2113 info.si_signo = SIGFPE; 2114 info.si_errno = 0; 2115 info.si_code = FPE_INTDIV; 2116 info.si_addr = (void __user *)regs->tpc; 2117 info.si_trapno = 0; 2118 force_sig_info(SIGFPE, &info, current); 2119 } 2120 2121 static void instruction_dump(unsigned int *pc) 2122 { 2123 int i; 2124 2125 if ((((unsigned long) pc) & 3)) 2126 return; 2127 2128 printk("Instruction DUMP:"); 2129 for (i = -3; i < 6; i++) 2130 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>'); 2131 printk("\n"); 2132 } 2133 2134 static void user_instruction_dump(unsigned int __user *pc) 2135 { 2136 int i; 2137 unsigned int buf[9]; 2138 2139 if ((((unsigned long) pc) & 3)) 2140 return; 2141 2142 if (copy_from_user(buf, pc - 3, sizeof(buf))) 2143 return; 2144 2145 printk("Instruction DUMP:"); 2146 for (i = 0; i < 9; i++) 2147 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>'); 2148 printk("\n"); 2149 } 2150 2151 void show_stack(struct task_struct *tsk, unsigned long *_ksp) 2152 { 2153 unsigned long fp, thread_base, ksp; 2154 struct thread_info *tp; 2155 int count = 0; 2156 2157 ksp = (unsigned long) _ksp; 2158 if (!tsk) 2159 tsk = current; 2160 tp = task_thread_info(tsk); 2161 if (ksp == 0UL) { 2162 if (tsk == current) 2163 asm("mov %%fp, %0" : "=r" (ksp)); 2164 else 2165 ksp = tp->ksp; 2166 } 2167 if (tp == current_thread_info()) 2168 flushw_all(); 2169 2170 fp = ksp + STACK_BIAS; 2171 thread_base = (unsigned long) tp; 2172 2173 printk("Call Trace:\n"); 2174 do { 2175 struct sparc_stackf *sf; 2176 struct pt_regs *regs; 2177 unsigned long pc; 2178 2179 if (!kstack_valid(tp, fp)) 2180 break; 2181 sf = (struct sparc_stackf *) fp; 2182 regs = (struct pt_regs *) (sf + 1); 2183 2184 if (kstack_is_trap_frame(tp, regs)) { 2185 if (!(regs->tstate & TSTATE_PRIV)) 2186 break; 2187 pc = regs->tpc; 2188 fp = regs->u_regs[UREG_I6] + STACK_BIAS; 2189 } else { 2190 pc = sf->callers_pc; 2191 fp = (unsigned long)sf->fp + STACK_BIAS; 2192 } 2193 2194 printk(" [%016lx] %pS\n", pc, (void *) pc); 2195 } while (++count < 16); 2196 } 2197 2198 void dump_stack(void) 2199 { 2200 show_stack(current, NULL); 2201 } 2202 2203 EXPORT_SYMBOL(dump_stack); 2204 2205 static inline int is_kernel_stack(struct task_struct *task, 2206 struct reg_window *rw) 2207 { 2208 unsigned long rw_addr = (unsigned long) rw; 2209 unsigned long thread_base, thread_end; 2210 2211 if (rw_addr < PAGE_OFFSET) { 2212 if (task != &init_task) 2213 return 0; 2214 } 2215 2216 thread_base = (unsigned long) task_stack_page(task); 2217 thread_end = thread_base + sizeof(union thread_union); 2218 if (rw_addr >= thread_base && 2219 rw_addr < thread_end && 2220 !(rw_addr & 0x7UL)) 2221 return 1; 2222 2223 return 0; 2224 } 2225 2226 static inline struct reg_window *kernel_stack_up(struct reg_window *rw) 2227 { 2228 unsigned long fp = rw->ins[6]; 2229 2230 if (!fp) 2231 return NULL; 2232 2233 return (struct reg_window *) (fp + STACK_BIAS); 2234 } 2235 2236 void die_if_kernel(char *str, struct pt_regs *regs) 2237 { 2238 static int die_counter; 2239 int count = 0; 2240 2241 /* Amuse the user. */ 2242 printk( 2243 " \\|/ ____ \\|/\n" 2244 " \"@'/ .. \\`@\"\n" 2245 " /_| \\__/ |_\\\n" 2246 " \\__U_/\n"); 2247 2248 printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter); 2249 notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV); 2250 __asm__ __volatile__("flushw"); 2251 show_regs(regs); 2252 add_taint(TAINT_DIE); 2253 if (regs->tstate & TSTATE_PRIV) { 2254 struct reg_window *rw = (struct reg_window *) 2255 (regs->u_regs[UREG_FP] + STACK_BIAS); 2256 2257 /* Stop the back trace when we hit userland or we 2258 * find some badly aligned kernel stack. 2259 */ 2260 while (rw && 2261 count++ < 30&& 2262 is_kernel_stack(current, rw)) { 2263 printk("Caller[%016lx]: %pS\n", rw->ins[7], 2264 (void *) rw->ins[7]); 2265 2266 rw = kernel_stack_up(rw); 2267 } 2268 instruction_dump ((unsigned int *) regs->tpc); 2269 } else { 2270 if (test_thread_flag(TIF_32BIT)) { 2271 regs->tpc &= 0xffffffff; 2272 regs->tnpc &= 0xffffffff; 2273 } 2274 user_instruction_dump ((unsigned int __user *) regs->tpc); 2275 } 2276 if (regs->tstate & TSTATE_PRIV) 2277 do_exit(SIGKILL); 2278 do_exit(SIGSEGV); 2279 } 2280 EXPORT_SYMBOL(die_if_kernel); 2281 2282 #define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19)) 2283 #define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19)) 2284 2285 extern int handle_popc(u32 insn, struct pt_regs *regs); 2286 extern int handle_ldf_stq(u32 insn, struct pt_regs *regs); 2287 2288 void do_illegal_instruction(struct pt_regs *regs) 2289 { 2290 unsigned long pc = regs->tpc; 2291 unsigned long tstate = regs->tstate; 2292 u32 insn; 2293 siginfo_t info; 2294 2295 if (notify_die(DIE_TRAP, "illegal instruction", regs, 2296 0, 0x10, SIGILL) == NOTIFY_STOP) 2297 return; 2298 2299 if (tstate & TSTATE_PRIV) 2300 die_if_kernel("Kernel illegal instruction", regs); 2301 if (test_thread_flag(TIF_32BIT)) 2302 pc = (u32)pc; 2303 if (get_user(insn, (u32 __user *) pc) != -EFAULT) { 2304 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ { 2305 if (handle_popc(insn, regs)) 2306 return; 2307 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ { 2308 if (handle_ldf_stq(insn, regs)) 2309 return; 2310 } else if (tlb_type == hypervisor) { 2311 if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) { 2312 if (!vis_emul(regs, insn)) 2313 return; 2314 } else { 2315 struct fpustate *f = FPUSTATE; 2316 2317 /* XXX maybe verify XFSR bits like 2318 * XXX do_fpother() does? 2319 */ 2320 if (do_mathemu(regs, f)) 2321 return; 2322 } 2323 } 2324 } 2325 info.si_signo = SIGILL; 2326 info.si_errno = 0; 2327 info.si_code = ILL_ILLOPC; 2328 info.si_addr = (void __user *)pc; 2329 info.si_trapno = 0; 2330 force_sig_info(SIGILL, &info, current); 2331 } 2332 2333 extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn); 2334 2335 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) 2336 { 2337 siginfo_t info; 2338 2339 if (notify_die(DIE_TRAP, "memory address unaligned", regs, 2340 0, 0x34, SIGSEGV) == NOTIFY_STOP) 2341 return; 2342 2343 if (regs->tstate & TSTATE_PRIV) { 2344 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); 2345 return; 2346 } 2347 info.si_signo = SIGBUS; 2348 info.si_errno = 0; 2349 info.si_code = BUS_ADRALN; 2350 info.si_addr = (void __user *)sfar; 2351 info.si_trapno = 0; 2352 force_sig_info(SIGBUS, &info, current); 2353 } 2354 2355 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 2356 { 2357 siginfo_t info; 2358 2359 if (notify_die(DIE_TRAP, "memory address unaligned", regs, 2360 0, 0x34, SIGSEGV) == NOTIFY_STOP) 2361 return; 2362 2363 if (regs->tstate & TSTATE_PRIV) { 2364 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); 2365 return; 2366 } 2367 info.si_signo = SIGBUS; 2368 info.si_errno = 0; 2369 info.si_code = BUS_ADRALN; 2370 info.si_addr = (void __user *) addr; 2371 info.si_trapno = 0; 2372 force_sig_info(SIGBUS, &info, current); 2373 } 2374 2375 void do_privop(struct pt_regs *regs) 2376 { 2377 siginfo_t info; 2378 2379 if (notify_die(DIE_TRAP, "privileged operation", regs, 2380 0, 0x11, SIGILL) == NOTIFY_STOP) 2381 return; 2382 2383 if (test_thread_flag(TIF_32BIT)) { 2384 regs->tpc &= 0xffffffff; 2385 regs->tnpc &= 0xffffffff; 2386 } 2387 info.si_signo = SIGILL; 2388 info.si_errno = 0; 2389 info.si_code = ILL_PRVOPC; 2390 info.si_addr = (void __user *)regs->tpc; 2391 info.si_trapno = 0; 2392 force_sig_info(SIGILL, &info, current); 2393 } 2394 2395 void do_privact(struct pt_regs *regs) 2396 { 2397 do_privop(regs); 2398 } 2399 2400 /* Trap level 1 stuff or other traps we should never see... */ 2401 void do_cee(struct pt_regs *regs) 2402 { 2403 die_if_kernel("TL0: Cache Error Exception", regs); 2404 } 2405 2406 void do_cee_tl1(struct pt_regs *regs) 2407 { 2408 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2409 die_if_kernel("TL1: Cache Error Exception", regs); 2410 } 2411 2412 void do_dae_tl1(struct pt_regs *regs) 2413 { 2414 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2415 die_if_kernel("TL1: Data Access Exception", regs); 2416 } 2417 2418 void do_iae_tl1(struct pt_regs *regs) 2419 { 2420 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2421 die_if_kernel("TL1: Instruction Access Exception", regs); 2422 } 2423 2424 void do_div0_tl1(struct pt_regs *regs) 2425 { 2426 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2427 die_if_kernel("TL1: DIV0 Exception", regs); 2428 } 2429 2430 void do_fpdis_tl1(struct pt_regs *regs) 2431 { 2432 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2433 die_if_kernel("TL1: FPU Disabled", regs); 2434 } 2435 2436 void do_fpieee_tl1(struct pt_regs *regs) 2437 { 2438 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2439 die_if_kernel("TL1: FPU IEEE Exception", regs); 2440 } 2441 2442 void do_fpother_tl1(struct pt_regs *regs) 2443 { 2444 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2445 die_if_kernel("TL1: FPU Other Exception", regs); 2446 } 2447 2448 void do_ill_tl1(struct pt_regs *regs) 2449 { 2450 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2451 die_if_kernel("TL1: Illegal Instruction Exception", regs); 2452 } 2453 2454 void do_irq_tl1(struct pt_regs *regs) 2455 { 2456 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2457 die_if_kernel("TL1: IRQ Exception", regs); 2458 } 2459 2460 void do_lddfmna_tl1(struct pt_regs *regs) 2461 { 2462 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2463 die_if_kernel("TL1: LDDF Exception", regs); 2464 } 2465 2466 void do_stdfmna_tl1(struct pt_regs *regs) 2467 { 2468 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2469 die_if_kernel("TL1: STDF Exception", regs); 2470 } 2471 2472 void do_paw(struct pt_regs *regs) 2473 { 2474 die_if_kernel("TL0: Phys Watchpoint Exception", regs); 2475 } 2476 2477 void do_paw_tl1(struct pt_regs *regs) 2478 { 2479 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2480 die_if_kernel("TL1: Phys Watchpoint Exception", regs); 2481 } 2482 2483 void do_vaw(struct pt_regs *regs) 2484 { 2485 die_if_kernel("TL0: Virt Watchpoint Exception", regs); 2486 } 2487 2488 void do_vaw_tl1(struct pt_regs *regs) 2489 { 2490 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2491 die_if_kernel("TL1: Virt Watchpoint Exception", regs); 2492 } 2493 2494 void do_tof_tl1(struct pt_regs *regs) 2495 { 2496 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2497 die_if_kernel("TL1: Tag Overflow Exception", regs); 2498 } 2499 2500 void do_getpsr(struct pt_regs *regs) 2501 { 2502 regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate); 2503 regs->tpc = regs->tnpc; 2504 regs->tnpc += 4; 2505 if (test_thread_flag(TIF_32BIT)) { 2506 regs->tpc &= 0xffffffff; 2507 regs->tnpc &= 0xffffffff; 2508 } 2509 } 2510 2511 struct trap_per_cpu trap_block[NR_CPUS]; 2512 2513 /* This can get invoked before sched_init() so play it super safe 2514 * and use hard_smp_processor_id(). 2515 */ 2516 void notrace init_cur_cpu_trap(struct thread_info *t) 2517 { 2518 int cpu = hard_smp_processor_id(); 2519 struct trap_per_cpu *p = &trap_block[cpu]; 2520 2521 p->thread = t; 2522 p->pgd_paddr = 0; 2523 } 2524 2525 extern void thread_info_offsets_are_bolixed_dave(void); 2526 extern void trap_per_cpu_offsets_are_bolixed_dave(void); 2527 extern void tsb_config_offsets_are_bolixed_dave(void); 2528 2529 /* Only invoked on boot processor. */ 2530 void __init trap_init(void) 2531 { 2532 /* Compile time sanity check. */ 2533 if (TI_TASK != offsetof(struct thread_info, task) || 2534 TI_FLAGS != offsetof(struct thread_info, flags) || 2535 TI_CPU != offsetof(struct thread_info, cpu) || 2536 TI_FPSAVED != offsetof(struct thread_info, fpsaved) || 2537 TI_KSP != offsetof(struct thread_info, ksp) || 2538 TI_FAULT_ADDR != offsetof(struct thread_info, fault_address) || 2539 TI_KREGS != offsetof(struct thread_info, kregs) || 2540 TI_UTRAPS != offsetof(struct thread_info, utraps) || 2541 TI_EXEC_DOMAIN != offsetof(struct thread_info, exec_domain) || 2542 TI_REG_WINDOW != offsetof(struct thread_info, reg_window) || 2543 TI_RWIN_SPTRS != offsetof(struct thread_info, rwbuf_stkptrs) || 2544 TI_GSR != offsetof(struct thread_info, gsr) || 2545 TI_XFSR != offsetof(struct thread_info, xfsr) || 2546 TI_USER_CNTD0 != offsetof(struct thread_info, user_cntd0) || 2547 TI_USER_CNTD1 != offsetof(struct thread_info, user_cntd1) || 2548 TI_KERN_CNTD0 != offsetof(struct thread_info, kernel_cntd0) || 2549 TI_KERN_CNTD1 != offsetof(struct thread_info, kernel_cntd1) || 2550 TI_PCR != offsetof(struct thread_info, pcr_reg) || 2551 TI_PRE_COUNT != offsetof(struct thread_info, preempt_count) || 2552 TI_NEW_CHILD != offsetof(struct thread_info, new_child) || 2553 TI_SYS_NOERROR != offsetof(struct thread_info, syscall_noerror) || 2554 TI_RESTART_BLOCK != offsetof(struct thread_info, restart_block) || 2555 TI_KUNA_REGS != offsetof(struct thread_info, kern_una_regs) || 2556 TI_KUNA_INSN != offsetof(struct thread_info, kern_una_insn) || 2557 TI_FPREGS != offsetof(struct thread_info, fpregs) || 2558 (TI_FPREGS & (64 - 1))) 2559 thread_info_offsets_are_bolixed_dave(); 2560 2561 if (TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, thread) || 2562 (TRAP_PER_CPU_PGD_PADDR != 2563 offsetof(struct trap_per_cpu, pgd_paddr)) || 2564 (TRAP_PER_CPU_CPU_MONDO_PA != 2565 offsetof(struct trap_per_cpu, cpu_mondo_pa)) || 2566 (TRAP_PER_CPU_DEV_MONDO_PA != 2567 offsetof(struct trap_per_cpu, dev_mondo_pa)) || 2568 (TRAP_PER_CPU_RESUM_MONDO_PA != 2569 offsetof(struct trap_per_cpu, resum_mondo_pa)) || 2570 (TRAP_PER_CPU_RESUM_KBUF_PA != 2571 offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) || 2572 (TRAP_PER_CPU_NONRESUM_MONDO_PA != 2573 offsetof(struct trap_per_cpu, nonresum_mondo_pa)) || 2574 (TRAP_PER_CPU_NONRESUM_KBUF_PA != 2575 offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) || 2576 (TRAP_PER_CPU_FAULT_INFO != 2577 offsetof(struct trap_per_cpu, fault_info)) || 2578 (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA != 2579 offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) || 2580 (TRAP_PER_CPU_CPU_LIST_PA != 2581 offsetof(struct trap_per_cpu, cpu_list_pa)) || 2582 (TRAP_PER_CPU_TSB_HUGE != 2583 offsetof(struct trap_per_cpu, tsb_huge)) || 2584 (TRAP_PER_CPU_TSB_HUGE_TEMP != 2585 offsetof(struct trap_per_cpu, tsb_huge_temp)) || 2586 (TRAP_PER_CPU_IRQ_WORKLIST_PA != 2587 offsetof(struct trap_per_cpu, irq_worklist_pa)) || 2588 (TRAP_PER_CPU_CPU_MONDO_QMASK != 2589 offsetof(struct trap_per_cpu, cpu_mondo_qmask)) || 2590 (TRAP_PER_CPU_DEV_MONDO_QMASK != 2591 offsetof(struct trap_per_cpu, dev_mondo_qmask)) || 2592 (TRAP_PER_CPU_RESUM_QMASK != 2593 offsetof(struct trap_per_cpu, resum_qmask)) || 2594 (TRAP_PER_CPU_NONRESUM_QMASK != 2595 offsetof(struct trap_per_cpu, nonresum_qmask))) 2596 trap_per_cpu_offsets_are_bolixed_dave(); 2597 2598 if ((TSB_CONFIG_TSB != 2599 offsetof(struct tsb_config, tsb)) || 2600 (TSB_CONFIG_RSS_LIMIT != 2601 offsetof(struct tsb_config, tsb_rss_limit)) || 2602 (TSB_CONFIG_NENTRIES != 2603 offsetof(struct tsb_config, tsb_nentries)) || 2604 (TSB_CONFIG_REG_VAL != 2605 offsetof(struct tsb_config, tsb_reg_val)) || 2606 (TSB_CONFIG_MAP_VADDR != 2607 offsetof(struct tsb_config, tsb_map_vaddr)) || 2608 (TSB_CONFIG_MAP_PTE != 2609 offsetof(struct tsb_config, tsb_map_pte))) 2610 tsb_config_offsets_are_bolixed_dave(); 2611 2612 /* Attach to the address space of init_task. On SMP we 2613 * do this in smp.c:smp_callin for other cpus. 2614 */ 2615 atomic_inc(&init_mm.mm_count); 2616 current->active_mm = &init_mm; 2617 } 2618