1 /* arch/sparc64/kernel/traps.c 2 * 3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com) 5 */ 6 7 /* 8 * I like traps on v9, :)))) 9 */ 10 11 #include <linux/extable.h> 12 #include <linux/sched/mm.h> 13 #include <linux/sched/debug.h> 14 #include <linux/linkage.h> 15 #include <linux/kernel.h> 16 #include <linux/signal.h> 17 #include <linux/smp.h> 18 #include <linux/mm.h> 19 #include <linux/init.h> 20 #include <linux/kdebug.h> 21 #include <linux/ftrace.h> 22 #include <linux/reboot.h> 23 #include <linux/gfp.h> 24 #include <linux/context_tracking.h> 25 26 #include <asm/smp.h> 27 #include <asm/delay.h> 28 #include <asm/ptrace.h> 29 #include <asm/oplib.h> 30 #include <asm/page.h> 31 #include <asm/pgtable.h> 32 #include <asm/unistd.h> 33 #include <linux/uaccess.h> 34 #include <asm/fpumacro.h> 35 #include <asm/lsu.h> 36 #include <asm/dcu.h> 37 #include <asm/estate.h> 38 #include <asm/chafsr.h> 39 #include <asm/sfafsr.h> 40 #include <asm/psrcompat.h> 41 #include <asm/processor.h> 42 #include <asm/timer.h> 43 #include <asm/head.h> 44 #include <asm/prom.h> 45 #include <asm/memctrl.h> 46 #include <asm/cacheflush.h> 47 #include <asm/setup.h> 48 49 #include "entry.h" 50 #include "kernel.h" 51 #include "kstack.h" 52 53 /* When an irrecoverable trap occurs at tl > 0, the trap entry 54 * code logs the trap state registers at every level in the trap 55 * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout 56 * is as follows: 57 */ 58 struct tl1_traplog { 59 struct { 60 unsigned long tstate; 61 unsigned long tpc; 62 unsigned long tnpc; 63 unsigned long tt; 64 } trapstack[4]; 65 unsigned long tl; 66 }; 67 68 static void dump_tl1_traplog(struct tl1_traplog *p) 69 { 70 int i, limit; 71 72 printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, " 73 "dumping track stack.\n", p->tl); 74 75 limit = (tlb_type == hypervisor) ? 2 : 4; 76 for (i = 0; i < limit; i++) { 77 printk(KERN_EMERG 78 "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] " 79 "TNPC[%016lx] TT[%lx]\n", 80 i + 1, 81 p->trapstack[i].tstate, p->trapstack[i].tpc, 82 p->trapstack[i].tnpc, p->trapstack[i].tt); 83 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc); 84 } 85 } 86 87 void bad_trap(struct pt_regs *regs, long lvl) 88 { 89 char buffer[36]; 90 91 if (notify_die(DIE_TRAP, "bad trap", regs, 92 0, lvl, SIGTRAP) == NOTIFY_STOP) 93 return; 94 95 if (lvl < 0x100) { 96 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl); 97 die_if_kernel(buffer, regs); 98 } 99 100 lvl -= 0x100; 101 if (regs->tstate & TSTATE_PRIV) { 102 sprintf(buffer, "Kernel bad sw trap %lx", lvl); 103 die_if_kernel(buffer, regs); 104 } 105 if (test_thread_flag(TIF_32BIT)) { 106 regs->tpc &= 0xffffffff; 107 regs->tnpc &= 0xffffffff; 108 } 109 force_sig_fault(SIGILL, ILL_ILLTRP, 110 (void __user *)regs->tpc, lvl, current); 111 } 112 113 void bad_trap_tl1(struct pt_regs *regs, long lvl) 114 { 115 char buffer[36]; 116 117 if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs, 118 0, lvl, SIGTRAP) == NOTIFY_STOP) 119 return; 120 121 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 122 123 sprintf (buffer, "Bad trap %lx at tl>0", lvl); 124 die_if_kernel (buffer, regs); 125 } 126 127 #ifdef CONFIG_DEBUG_BUGVERBOSE 128 void do_BUG(const char *file, int line) 129 { 130 bust_spinlocks(1); 131 printk("kernel BUG at %s:%d!\n", file, line); 132 } 133 EXPORT_SYMBOL(do_BUG); 134 #endif 135 136 static DEFINE_SPINLOCK(dimm_handler_lock); 137 static dimm_printer_t dimm_handler; 138 139 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen) 140 { 141 unsigned long flags; 142 int ret = -ENODEV; 143 144 spin_lock_irqsave(&dimm_handler_lock, flags); 145 if (dimm_handler) { 146 ret = dimm_handler(synd_code, paddr, buf, buflen); 147 } else if (tlb_type == spitfire) { 148 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1) 149 ret = -EINVAL; 150 else 151 ret = 0; 152 } else 153 ret = -ENODEV; 154 spin_unlock_irqrestore(&dimm_handler_lock, flags); 155 156 return ret; 157 } 158 159 int register_dimm_printer(dimm_printer_t func) 160 { 161 unsigned long flags; 162 int ret = 0; 163 164 spin_lock_irqsave(&dimm_handler_lock, flags); 165 if (!dimm_handler) 166 dimm_handler = func; 167 else 168 ret = -EEXIST; 169 spin_unlock_irqrestore(&dimm_handler_lock, flags); 170 171 return ret; 172 } 173 EXPORT_SYMBOL_GPL(register_dimm_printer); 174 175 void unregister_dimm_printer(dimm_printer_t func) 176 { 177 unsigned long flags; 178 179 spin_lock_irqsave(&dimm_handler_lock, flags); 180 if (dimm_handler == func) 181 dimm_handler = NULL; 182 spin_unlock_irqrestore(&dimm_handler_lock, flags); 183 } 184 EXPORT_SYMBOL_GPL(unregister_dimm_printer); 185 186 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 187 { 188 enum ctx_state prev_state = exception_enter(); 189 190 if (notify_die(DIE_TRAP, "instruction access exception", regs, 191 0, 0x8, SIGTRAP) == NOTIFY_STOP) 192 goto out; 193 194 if (regs->tstate & TSTATE_PRIV) { 195 printk("spitfire_insn_access_exception: SFSR[%016lx] " 196 "SFAR[%016lx], going.\n", sfsr, sfar); 197 die_if_kernel("Iax", regs); 198 } 199 if (test_thread_flag(TIF_32BIT)) { 200 regs->tpc &= 0xffffffff; 201 regs->tnpc &= 0xffffffff; 202 } 203 force_sig_fault(SIGSEGV, SEGV_MAPERR, 204 (void __user *)regs->tpc, 0, current); 205 out: 206 exception_exit(prev_state); 207 } 208 209 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 210 { 211 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 212 0, 0x8, SIGTRAP) == NOTIFY_STOP) 213 return; 214 215 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 216 spitfire_insn_access_exception(regs, sfsr, sfar); 217 } 218 219 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 220 { 221 unsigned short type = (type_ctx >> 16); 222 unsigned short ctx = (type_ctx & 0xffff); 223 224 if (notify_die(DIE_TRAP, "instruction access exception", regs, 225 0, 0x8, SIGTRAP) == NOTIFY_STOP) 226 return; 227 228 if (regs->tstate & TSTATE_PRIV) { 229 printk("sun4v_insn_access_exception: ADDR[%016lx] " 230 "CTX[%04x] TYPE[%04x], going.\n", 231 addr, ctx, type); 232 die_if_kernel("Iax", regs); 233 } 234 235 if (test_thread_flag(TIF_32BIT)) { 236 regs->tpc &= 0xffffffff; 237 regs->tnpc &= 0xffffffff; 238 } 239 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *) addr, 0, current); 240 } 241 242 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 243 { 244 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 245 0, 0x8, SIGTRAP) == NOTIFY_STOP) 246 return; 247 248 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 249 sun4v_insn_access_exception(regs, addr, type_ctx); 250 } 251 252 bool is_no_fault_exception(struct pt_regs *regs) 253 { 254 unsigned char asi; 255 u32 insn; 256 257 if (get_user(insn, (u32 __user *)regs->tpc) == -EFAULT) 258 return false; 259 260 /* 261 * Must do a little instruction decoding here in order to 262 * decide on a course of action. The bits of interest are: 263 * insn[31:30] = op, where 3 indicates the load/store group 264 * insn[24:19] = op3, which identifies individual opcodes 265 * insn[13] indicates an immediate offset 266 * op3[4]=1 identifies alternate space instructions 267 * op3[5:4]=3 identifies floating point instructions 268 * op3[2]=1 identifies stores 269 * See "Opcode Maps" in the appendix of any Sparc V9 270 * architecture spec for full details. 271 */ 272 if ((insn & 0xc0800000) == 0xc0800000) { /* op=3, op3[4]=1 */ 273 if (insn & 0x2000) /* immediate offset */ 274 asi = (regs->tstate >> 24); /* saved %asi */ 275 else 276 asi = (insn >> 5); /* immediate asi */ 277 if ((asi & 0xf2) == ASI_PNF) { 278 if (insn & 0x1000000) { /* op3[5:4]=3 */ 279 handle_ldf_stq(insn, regs); 280 return true; 281 } else if (insn & 0x200000) { /* op3[2], stores */ 282 return false; 283 } 284 handle_ld_nf(insn, regs); 285 return true; 286 } 287 } 288 return false; 289 } 290 291 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 292 { 293 enum ctx_state prev_state = exception_enter(); 294 295 if (notify_die(DIE_TRAP, "data access exception", regs, 296 0, 0x30, SIGTRAP) == NOTIFY_STOP) 297 goto out; 298 299 if (regs->tstate & TSTATE_PRIV) { 300 /* Test if this comes from uaccess places. */ 301 const struct exception_table_entry *entry; 302 303 entry = search_exception_tables(regs->tpc); 304 if (entry) { 305 /* Ouch, somebody is trying VM hole tricks on us... */ 306 #ifdef DEBUG_EXCEPTIONS 307 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); 308 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 309 regs->tpc, entry->fixup); 310 #endif 311 regs->tpc = entry->fixup; 312 regs->tnpc = regs->tpc + 4; 313 goto out; 314 } 315 /* Shit... */ 316 printk("spitfire_data_access_exception: SFSR[%016lx] " 317 "SFAR[%016lx], going.\n", sfsr, sfar); 318 die_if_kernel("Dax", regs); 319 } 320 321 if (is_no_fault_exception(regs)) 322 return; 323 324 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)sfar, 0, current); 325 out: 326 exception_exit(prev_state); 327 } 328 329 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 330 { 331 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 332 0, 0x30, SIGTRAP) == NOTIFY_STOP) 333 return; 334 335 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 336 spitfire_data_access_exception(regs, sfsr, sfar); 337 } 338 339 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 340 { 341 unsigned short type = (type_ctx >> 16); 342 unsigned short ctx = (type_ctx & 0xffff); 343 344 if (notify_die(DIE_TRAP, "data access exception", regs, 345 0, 0x8, SIGTRAP) == NOTIFY_STOP) 346 return; 347 348 if (regs->tstate & TSTATE_PRIV) { 349 /* Test if this comes from uaccess places. */ 350 const struct exception_table_entry *entry; 351 352 entry = search_exception_tables(regs->tpc); 353 if (entry) { 354 /* Ouch, somebody is trying VM hole tricks on us... */ 355 #ifdef DEBUG_EXCEPTIONS 356 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); 357 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 358 regs->tpc, entry->fixup); 359 #endif 360 regs->tpc = entry->fixup; 361 regs->tnpc = regs->tpc + 4; 362 return; 363 } 364 printk("sun4v_data_access_exception: ADDR[%016lx] " 365 "CTX[%04x] TYPE[%04x], going.\n", 366 addr, ctx, type); 367 die_if_kernel("Dax", regs); 368 } 369 370 if (test_thread_flag(TIF_32BIT)) { 371 regs->tpc &= 0xffffffff; 372 regs->tnpc &= 0xffffffff; 373 } 374 if (is_no_fault_exception(regs)) 375 return; 376 377 /* MCD (Memory Corruption Detection) disabled trap (TT=0x19) in HV 378 * is vectored thorugh data access exception trap with fault type 379 * set to HV_FAULT_TYPE_MCD_DIS. Check for MCD disabled trap. 380 * Accessing an address with invalid ASI for the address, for 381 * example setting an ADI tag on an address with ASI_MCD_PRIMARY 382 * when TTE.mcd is not set for the VA, is also vectored into 383 * kerbel by HV as data access exception with fault type set to 384 * HV_FAULT_TYPE_INV_ASI. 385 */ 386 switch (type) { 387 case HV_FAULT_TYPE_INV_ASI: 388 force_sig_fault(SIGILL, ILL_ILLADR, (void __user *)addr, 0, 389 current); 390 break; 391 case HV_FAULT_TYPE_MCD_DIS: 392 force_sig_fault(SIGSEGV, SEGV_ACCADI, (void __user *)addr, 0, 393 current); 394 break; 395 default: 396 force_sig_fault(SIGSEGV, SEGV_MAPERR, (void __user *)addr, 0, 397 current); 398 break; 399 } 400 } 401 402 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 403 { 404 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 405 0, 0x8, SIGTRAP) == NOTIFY_STOP) 406 return; 407 408 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 409 sun4v_data_access_exception(regs, addr, type_ctx); 410 } 411 412 #ifdef CONFIG_PCI 413 #include "pci_impl.h" 414 #endif 415 416 /* When access exceptions happen, we must do this. */ 417 static void spitfire_clean_and_reenable_l1_caches(void) 418 { 419 unsigned long va; 420 421 if (tlb_type != spitfire) 422 BUG(); 423 424 /* Clean 'em. */ 425 for (va = 0; va < (PAGE_SIZE << 1); va += 32) { 426 spitfire_put_icache_tag(va, 0x0); 427 spitfire_put_dcache_tag(va, 0x0); 428 } 429 430 /* Re-enable in LSU. */ 431 __asm__ __volatile__("flush %%g6\n\t" 432 "membar #Sync\n\t" 433 "stxa %0, [%%g0] %1\n\t" 434 "membar #Sync" 435 : /* no outputs */ 436 : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC | 437 LSU_CONTROL_IM | LSU_CONTROL_DM), 438 "i" (ASI_LSU_CONTROL) 439 : "memory"); 440 } 441 442 static void spitfire_enable_estate_errors(void) 443 { 444 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 445 "membar #Sync" 446 : /* no outputs */ 447 : "r" (ESTATE_ERR_ALL), 448 "i" (ASI_ESTATE_ERROR_EN)); 449 } 450 451 static char ecc_syndrome_table[] = { 452 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49, 453 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a, 454 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48, 455 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c, 456 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48, 457 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29, 458 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b, 459 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48, 460 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48, 461 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e, 462 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b, 463 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 464 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36, 465 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48, 466 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48, 467 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 468 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48, 469 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b, 470 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32, 471 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48, 472 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b, 473 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 474 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48, 475 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 476 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49, 477 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48, 478 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48, 479 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 480 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48, 481 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 482 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b, 483 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a 484 }; 485 486 static char *syndrome_unknown = "<Unknown>"; 487 488 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit) 489 { 490 unsigned short scode; 491 char memmod_str[64], *p; 492 493 if (udbl & bit) { 494 scode = ecc_syndrome_table[udbl & 0xff]; 495 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) 496 p = syndrome_unknown; 497 else 498 p = memmod_str; 499 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] " 500 "Memory Module \"%s\"\n", 501 smp_processor_id(), scode, p); 502 } 503 504 if (udbh & bit) { 505 scode = ecc_syndrome_table[udbh & 0xff]; 506 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) 507 p = syndrome_unknown; 508 else 509 p = memmod_str; 510 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] " 511 "Memory Module \"%s\"\n", 512 smp_processor_id(), scode, p); 513 } 514 515 } 516 517 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs) 518 { 519 520 printk(KERN_WARNING "CPU[%d]: Correctable ECC Error " 521 "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n", 522 smp_processor_id(), afsr, afar, udbl, udbh, tl1); 523 524 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE); 525 526 /* We always log it, even if someone is listening for this 527 * trap. 528 */ 529 notify_die(DIE_TRAP, "Correctable ECC Error", regs, 530 0, TRAP_TYPE_CEE, SIGTRAP); 531 532 /* The Correctable ECC Error trap does not disable I/D caches. So 533 * we only have to restore the ESTATE Error Enable register. 534 */ 535 spitfire_enable_estate_errors(); 536 } 537 538 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs) 539 { 540 printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] " 541 "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n", 542 smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1); 543 544 /* XXX add more human friendly logging of the error status 545 * XXX as is implemented for cheetah 546 */ 547 548 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE); 549 550 /* We always log it, even if someone is listening for this 551 * trap. 552 */ 553 notify_die(DIE_TRAP, "Uncorrectable Error", regs, 554 0, tt, SIGTRAP); 555 556 if (regs->tstate & TSTATE_PRIV) { 557 if (tl1) 558 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 559 die_if_kernel("UE", regs); 560 } 561 562 /* XXX need more intelligent processing here, such as is implemented 563 * XXX for cheetah errors, in fact if the E-cache still holds the 564 * XXX line with bad parity this will loop 565 */ 566 567 spitfire_clean_and_reenable_l1_caches(); 568 spitfire_enable_estate_errors(); 569 570 if (test_thread_flag(TIF_32BIT)) { 571 regs->tpc &= 0xffffffff; 572 regs->tnpc &= 0xffffffff; 573 } 574 force_sig_fault(SIGBUS, BUS_OBJERR, (void *)0, 0, current); 575 } 576 577 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar) 578 { 579 unsigned long afsr, tt, udbh, udbl; 580 int tl1; 581 582 afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT; 583 tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT; 584 tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0; 585 udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT; 586 udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT; 587 588 #ifdef CONFIG_PCI 589 if (tt == TRAP_TYPE_DAE && 590 pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { 591 spitfire_clean_and_reenable_l1_caches(); 592 spitfire_enable_estate_errors(); 593 594 pci_poke_faulted = 1; 595 regs->tnpc = regs->tpc + 4; 596 return; 597 } 598 #endif 599 600 if (afsr & SFAFSR_UE) 601 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs); 602 603 if (tt == TRAP_TYPE_CEE) { 604 /* Handle the case where we took a CEE trap, but ACK'd 605 * only the UE state in the UDB error registers. 606 */ 607 if (afsr & SFAFSR_UE) { 608 if (udbh & UDBE_CE) { 609 __asm__ __volatile__( 610 "stxa %0, [%1] %2\n\t" 611 "membar #Sync" 612 : /* no outputs */ 613 : "r" (udbh & UDBE_CE), 614 "r" (0x0), "i" (ASI_UDB_ERROR_W)); 615 } 616 if (udbl & UDBE_CE) { 617 __asm__ __volatile__( 618 "stxa %0, [%1] %2\n\t" 619 "membar #Sync" 620 : /* no outputs */ 621 : "r" (udbl & UDBE_CE), 622 "r" (0x18), "i" (ASI_UDB_ERROR_W)); 623 } 624 } 625 626 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs); 627 } 628 } 629 630 int cheetah_pcache_forced_on; 631 632 void cheetah_enable_pcache(void) 633 { 634 unsigned long dcr; 635 636 printk("CHEETAH: Enabling P-Cache on cpu %d.\n", 637 smp_processor_id()); 638 639 __asm__ __volatile__("ldxa [%%g0] %1, %0" 640 : "=r" (dcr) 641 : "i" (ASI_DCU_CONTROL_REG)); 642 dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL); 643 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 644 "membar #Sync" 645 : /* no outputs */ 646 : "r" (dcr), "i" (ASI_DCU_CONTROL_REG)); 647 } 648 649 /* Cheetah error trap handling. */ 650 static unsigned long ecache_flush_physbase; 651 static unsigned long ecache_flush_linesize; 652 static unsigned long ecache_flush_size; 653 654 /* This table is ordered in priority of errors and matches the 655 * AFAR overwrite policy as well. 656 */ 657 658 struct afsr_error_table { 659 unsigned long mask; 660 const char *name; 661 }; 662 663 static const char CHAFSR_PERR_msg[] = 664 "System interface protocol error"; 665 static const char CHAFSR_IERR_msg[] = 666 "Internal processor error"; 667 static const char CHAFSR_ISAP_msg[] = 668 "System request parity error on incoming address"; 669 static const char CHAFSR_UCU_msg[] = 670 "Uncorrectable E-cache ECC error for ifetch/data"; 671 static const char CHAFSR_UCC_msg[] = 672 "SW Correctable E-cache ECC error for ifetch/data"; 673 static const char CHAFSR_UE_msg[] = 674 "Uncorrectable system bus data ECC error for read"; 675 static const char CHAFSR_EDU_msg[] = 676 "Uncorrectable E-cache ECC error for stmerge/blkld"; 677 static const char CHAFSR_EMU_msg[] = 678 "Uncorrectable system bus MTAG error"; 679 static const char CHAFSR_WDU_msg[] = 680 "Uncorrectable E-cache ECC error for writeback"; 681 static const char CHAFSR_CPU_msg[] = 682 "Uncorrectable ECC error for copyout"; 683 static const char CHAFSR_CE_msg[] = 684 "HW corrected system bus data ECC error for read"; 685 static const char CHAFSR_EDC_msg[] = 686 "HW corrected E-cache ECC error for stmerge/blkld"; 687 static const char CHAFSR_EMC_msg[] = 688 "HW corrected system bus MTAG ECC error"; 689 static const char CHAFSR_WDC_msg[] = 690 "HW corrected E-cache ECC error for writeback"; 691 static const char CHAFSR_CPC_msg[] = 692 "HW corrected ECC error for copyout"; 693 static const char CHAFSR_TO_msg[] = 694 "Unmapped error from system bus"; 695 static const char CHAFSR_BERR_msg[] = 696 "Bus error response from system bus"; 697 static const char CHAFSR_IVC_msg[] = 698 "HW corrected system bus data ECC error for ivec read"; 699 static const char CHAFSR_IVU_msg[] = 700 "Uncorrectable system bus data ECC error for ivec read"; 701 static struct afsr_error_table __cheetah_error_table[] = { 702 { CHAFSR_PERR, CHAFSR_PERR_msg }, 703 { CHAFSR_IERR, CHAFSR_IERR_msg }, 704 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 705 { CHAFSR_UCU, CHAFSR_UCU_msg }, 706 { CHAFSR_UCC, CHAFSR_UCC_msg }, 707 { CHAFSR_UE, CHAFSR_UE_msg }, 708 { CHAFSR_EDU, CHAFSR_EDU_msg }, 709 { CHAFSR_EMU, CHAFSR_EMU_msg }, 710 { CHAFSR_WDU, CHAFSR_WDU_msg }, 711 { CHAFSR_CPU, CHAFSR_CPU_msg }, 712 { CHAFSR_CE, CHAFSR_CE_msg }, 713 { CHAFSR_EDC, CHAFSR_EDC_msg }, 714 { CHAFSR_EMC, CHAFSR_EMC_msg }, 715 { CHAFSR_WDC, CHAFSR_WDC_msg }, 716 { CHAFSR_CPC, CHAFSR_CPC_msg }, 717 { CHAFSR_TO, CHAFSR_TO_msg }, 718 { CHAFSR_BERR, CHAFSR_BERR_msg }, 719 /* These two do not update the AFAR. */ 720 { CHAFSR_IVC, CHAFSR_IVC_msg }, 721 { CHAFSR_IVU, CHAFSR_IVU_msg }, 722 { 0, NULL }, 723 }; 724 static const char CHPAFSR_DTO_msg[] = 725 "System bus unmapped error for prefetch/storequeue-read"; 726 static const char CHPAFSR_DBERR_msg[] = 727 "System bus error for prefetch/storequeue-read"; 728 static const char CHPAFSR_THCE_msg[] = 729 "Hardware corrected E-cache Tag ECC error"; 730 static const char CHPAFSR_TSCE_msg[] = 731 "SW handled correctable E-cache Tag ECC error"; 732 static const char CHPAFSR_TUE_msg[] = 733 "Uncorrectable E-cache Tag ECC error"; 734 static const char CHPAFSR_DUE_msg[] = 735 "System bus uncorrectable data ECC error due to prefetch/store-fill"; 736 static struct afsr_error_table __cheetah_plus_error_table[] = { 737 { CHAFSR_PERR, CHAFSR_PERR_msg }, 738 { CHAFSR_IERR, CHAFSR_IERR_msg }, 739 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 740 { CHAFSR_UCU, CHAFSR_UCU_msg }, 741 { CHAFSR_UCC, CHAFSR_UCC_msg }, 742 { CHAFSR_UE, CHAFSR_UE_msg }, 743 { CHAFSR_EDU, CHAFSR_EDU_msg }, 744 { CHAFSR_EMU, CHAFSR_EMU_msg }, 745 { CHAFSR_WDU, CHAFSR_WDU_msg }, 746 { CHAFSR_CPU, CHAFSR_CPU_msg }, 747 { CHAFSR_CE, CHAFSR_CE_msg }, 748 { CHAFSR_EDC, CHAFSR_EDC_msg }, 749 { CHAFSR_EMC, CHAFSR_EMC_msg }, 750 { CHAFSR_WDC, CHAFSR_WDC_msg }, 751 { CHAFSR_CPC, CHAFSR_CPC_msg }, 752 { CHAFSR_TO, CHAFSR_TO_msg }, 753 { CHAFSR_BERR, CHAFSR_BERR_msg }, 754 { CHPAFSR_DTO, CHPAFSR_DTO_msg }, 755 { CHPAFSR_DBERR, CHPAFSR_DBERR_msg }, 756 { CHPAFSR_THCE, CHPAFSR_THCE_msg }, 757 { CHPAFSR_TSCE, CHPAFSR_TSCE_msg }, 758 { CHPAFSR_TUE, CHPAFSR_TUE_msg }, 759 { CHPAFSR_DUE, CHPAFSR_DUE_msg }, 760 /* These two do not update the AFAR. */ 761 { CHAFSR_IVC, CHAFSR_IVC_msg }, 762 { CHAFSR_IVU, CHAFSR_IVU_msg }, 763 { 0, NULL }, 764 }; 765 static const char JPAFSR_JETO_msg[] = 766 "System interface protocol error, hw timeout caused"; 767 static const char JPAFSR_SCE_msg[] = 768 "Parity error on system snoop results"; 769 static const char JPAFSR_JEIC_msg[] = 770 "System interface protocol error, illegal command detected"; 771 static const char JPAFSR_JEIT_msg[] = 772 "System interface protocol error, illegal ADTYPE detected"; 773 static const char JPAFSR_OM_msg[] = 774 "Out of range memory error has occurred"; 775 static const char JPAFSR_ETP_msg[] = 776 "Parity error on L2 cache tag SRAM"; 777 static const char JPAFSR_UMS_msg[] = 778 "Error due to unsupported store"; 779 static const char JPAFSR_RUE_msg[] = 780 "Uncorrectable ECC error from remote cache/memory"; 781 static const char JPAFSR_RCE_msg[] = 782 "Correctable ECC error from remote cache/memory"; 783 static const char JPAFSR_BP_msg[] = 784 "JBUS parity error on returned read data"; 785 static const char JPAFSR_WBP_msg[] = 786 "JBUS parity error on data for writeback or block store"; 787 static const char JPAFSR_FRC_msg[] = 788 "Foreign read to DRAM incurring correctable ECC error"; 789 static const char JPAFSR_FRU_msg[] = 790 "Foreign read to DRAM incurring uncorrectable ECC error"; 791 static struct afsr_error_table __jalapeno_error_table[] = { 792 { JPAFSR_JETO, JPAFSR_JETO_msg }, 793 { JPAFSR_SCE, JPAFSR_SCE_msg }, 794 { JPAFSR_JEIC, JPAFSR_JEIC_msg }, 795 { JPAFSR_JEIT, JPAFSR_JEIT_msg }, 796 { CHAFSR_PERR, CHAFSR_PERR_msg }, 797 { CHAFSR_IERR, CHAFSR_IERR_msg }, 798 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 799 { CHAFSR_UCU, CHAFSR_UCU_msg }, 800 { CHAFSR_UCC, CHAFSR_UCC_msg }, 801 { CHAFSR_UE, CHAFSR_UE_msg }, 802 { CHAFSR_EDU, CHAFSR_EDU_msg }, 803 { JPAFSR_OM, JPAFSR_OM_msg }, 804 { CHAFSR_WDU, CHAFSR_WDU_msg }, 805 { CHAFSR_CPU, CHAFSR_CPU_msg }, 806 { CHAFSR_CE, CHAFSR_CE_msg }, 807 { CHAFSR_EDC, CHAFSR_EDC_msg }, 808 { JPAFSR_ETP, JPAFSR_ETP_msg }, 809 { CHAFSR_WDC, CHAFSR_WDC_msg }, 810 { CHAFSR_CPC, CHAFSR_CPC_msg }, 811 { CHAFSR_TO, CHAFSR_TO_msg }, 812 { CHAFSR_BERR, CHAFSR_BERR_msg }, 813 { JPAFSR_UMS, JPAFSR_UMS_msg }, 814 { JPAFSR_RUE, JPAFSR_RUE_msg }, 815 { JPAFSR_RCE, JPAFSR_RCE_msg }, 816 { JPAFSR_BP, JPAFSR_BP_msg }, 817 { JPAFSR_WBP, JPAFSR_WBP_msg }, 818 { JPAFSR_FRC, JPAFSR_FRC_msg }, 819 { JPAFSR_FRU, JPAFSR_FRU_msg }, 820 /* These two do not update the AFAR. */ 821 { CHAFSR_IVU, CHAFSR_IVU_msg }, 822 { 0, NULL }, 823 }; 824 static struct afsr_error_table *cheetah_error_table; 825 static unsigned long cheetah_afsr_errors; 826 827 struct cheetah_err_info *cheetah_error_log; 828 829 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr) 830 { 831 struct cheetah_err_info *p; 832 int cpu = smp_processor_id(); 833 834 if (!cheetah_error_log) 835 return NULL; 836 837 p = cheetah_error_log + (cpu * 2); 838 if ((afsr & CHAFSR_TL1) != 0UL) 839 p++; 840 841 return p; 842 } 843 844 extern unsigned int tl0_icpe[], tl1_icpe[]; 845 extern unsigned int tl0_dcpe[], tl1_dcpe[]; 846 extern unsigned int tl0_fecc[], tl1_fecc[]; 847 extern unsigned int tl0_cee[], tl1_cee[]; 848 extern unsigned int tl0_iae[], tl1_iae[]; 849 extern unsigned int tl0_dae[], tl1_dae[]; 850 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[]; 851 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[]; 852 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[]; 853 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[]; 854 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[]; 855 856 void __init cheetah_ecache_flush_init(void) 857 { 858 unsigned long largest_size, smallest_linesize, order, ver; 859 int i, sz; 860 861 /* Scan all cpu device tree nodes, note two values: 862 * 1) largest E-cache size 863 * 2) smallest E-cache line size 864 */ 865 largest_size = 0UL; 866 smallest_linesize = ~0UL; 867 868 for (i = 0; i < NR_CPUS; i++) { 869 unsigned long val; 870 871 val = cpu_data(i).ecache_size; 872 if (!val) 873 continue; 874 875 if (val > largest_size) 876 largest_size = val; 877 878 val = cpu_data(i).ecache_line_size; 879 if (val < smallest_linesize) 880 smallest_linesize = val; 881 882 } 883 884 if (largest_size == 0UL || smallest_linesize == ~0UL) { 885 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache " 886 "parameters.\n"); 887 prom_halt(); 888 } 889 890 ecache_flush_size = (2 * largest_size); 891 ecache_flush_linesize = smallest_linesize; 892 893 ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size); 894 895 if (ecache_flush_physbase == ~0UL) { 896 prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte " 897 "contiguous physical memory.\n", 898 ecache_flush_size); 899 prom_halt(); 900 } 901 902 /* Now allocate error trap reporting scoreboard. */ 903 sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info)); 904 for (order = 0; order < MAX_ORDER; order++) { 905 if ((PAGE_SIZE << order) >= sz) 906 break; 907 } 908 cheetah_error_log = (struct cheetah_err_info *) 909 __get_free_pages(GFP_KERNEL, order); 910 if (!cheetah_error_log) { 911 prom_printf("cheetah_ecache_flush_init: Failed to allocate " 912 "error logging scoreboard (%d bytes).\n", sz); 913 prom_halt(); 914 } 915 memset(cheetah_error_log, 0, PAGE_SIZE << order); 916 917 /* Mark all AFSRs as invalid so that the trap handler will 918 * log new new information there. 919 */ 920 for (i = 0; i < 2 * NR_CPUS; i++) 921 cheetah_error_log[i].afsr = CHAFSR_INVALID; 922 923 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 924 if ((ver >> 32) == __JALAPENO_ID || 925 (ver >> 32) == __SERRANO_ID) { 926 cheetah_error_table = &__jalapeno_error_table[0]; 927 cheetah_afsr_errors = JPAFSR_ERRORS; 928 } else if ((ver >> 32) == 0x003e0015) { 929 cheetah_error_table = &__cheetah_plus_error_table[0]; 930 cheetah_afsr_errors = CHPAFSR_ERRORS; 931 } else { 932 cheetah_error_table = &__cheetah_error_table[0]; 933 cheetah_afsr_errors = CHAFSR_ERRORS; 934 } 935 936 /* Now patch trap tables. */ 937 memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4)); 938 memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4)); 939 memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4)); 940 memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4)); 941 memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4)); 942 memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4)); 943 memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4)); 944 memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4)); 945 if (tlb_type == cheetah_plus) { 946 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4)); 947 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4)); 948 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4)); 949 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4)); 950 } 951 flushi(PAGE_OFFSET); 952 } 953 954 static void cheetah_flush_ecache(void) 955 { 956 unsigned long flush_base = ecache_flush_physbase; 957 unsigned long flush_linesize = ecache_flush_linesize; 958 unsigned long flush_size = ecache_flush_size; 959 960 __asm__ __volatile__("1: subcc %0, %4, %0\n\t" 961 " bne,pt %%xcc, 1b\n\t" 962 " ldxa [%2 + %0] %3, %%g0\n\t" 963 : "=&r" (flush_size) 964 : "0" (flush_size), "r" (flush_base), 965 "i" (ASI_PHYS_USE_EC), "r" (flush_linesize)); 966 } 967 968 static void cheetah_flush_ecache_line(unsigned long physaddr) 969 { 970 unsigned long alias; 971 972 physaddr &= ~(8UL - 1UL); 973 physaddr = (ecache_flush_physbase + 974 (physaddr & ((ecache_flush_size>>1UL) - 1UL))); 975 alias = physaddr + (ecache_flush_size >> 1UL); 976 __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t" 977 "ldxa [%1] %2, %%g0\n\t" 978 "membar #Sync" 979 : /* no outputs */ 980 : "r" (physaddr), "r" (alias), 981 "i" (ASI_PHYS_USE_EC)); 982 } 983 984 /* Unfortunately, the diagnostic access to the I-cache tags we need to 985 * use to clear the thing interferes with I-cache coherency transactions. 986 * 987 * So we must only flush the I-cache when it is disabled. 988 */ 989 static void __cheetah_flush_icache(void) 990 { 991 unsigned int icache_size, icache_line_size; 992 unsigned long addr; 993 994 icache_size = local_cpu_data().icache_size; 995 icache_line_size = local_cpu_data().icache_line_size; 996 997 /* Clear the valid bits in all the tags. */ 998 for (addr = 0; addr < icache_size; addr += icache_line_size) { 999 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 1000 "membar #Sync" 1001 : /* no outputs */ 1002 : "r" (addr | (2 << 3)), 1003 "i" (ASI_IC_TAG)); 1004 } 1005 } 1006 1007 static void cheetah_flush_icache(void) 1008 { 1009 unsigned long dcu_save; 1010 1011 /* Save current DCU, disable I-cache. */ 1012 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1013 "or %0, %2, %%g1\n\t" 1014 "stxa %%g1, [%%g0] %1\n\t" 1015 "membar #Sync" 1016 : "=r" (dcu_save) 1017 : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) 1018 : "g1"); 1019 1020 __cheetah_flush_icache(); 1021 1022 /* Restore DCU register */ 1023 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1024 "membar #Sync" 1025 : /* no outputs */ 1026 : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG)); 1027 } 1028 1029 static void cheetah_flush_dcache(void) 1030 { 1031 unsigned int dcache_size, dcache_line_size; 1032 unsigned long addr; 1033 1034 dcache_size = local_cpu_data().dcache_size; 1035 dcache_line_size = local_cpu_data().dcache_line_size; 1036 1037 for (addr = 0; addr < dcache_size; addr += dcache_line_size) { 1038 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 1039 "membar #Sync" 1040 : /* no outputs */ 1041 : "r" (addr), "i" (ASI_DCACHE_TAG)); 1042 } 1043 } 1044 1045 /* In order to make the even parity correct we must do two things. 1046 * First, we clear DC_data_parity and set DC_utag to an appropriate value. 1047 * Next, we clear out all 32-bytes of data for that line. Data of 1048 * all-zero + tag parity value of zero == correct parity. 1049 */ 1050 static void cheetah_plus_zap_dcache_parity(void) 1051 { 1052 unsigned int dcache_size, dcache_line_size; 1053 unsigned long addr; 1054 1055 dcache_size = local_cpu_data().dcache_size; 1056 dcache_line_size = local_cpu_data().dcache_line_size; 1057 1058 for (addr = 0; addr < dcache_size; addr += dcache_line_size) { 1059 unsigned long tag = (addr >> 14); 1060 unsigned long line; 1061 1062 __asm__ __volatile__("membar #Sync\n\t" 1063 "stxa %0, [%1] %2\n\t" 1064 "membar #Sync" 1065 : /* no outputs */ 1066 : "r" (tag), "r" (addr), 1067 "i" (ASI_DCACHE_UTAG)); 1068 for (line = addr; line < addr + dcache_line_size; line += 8) 1069 __asm__ __volatile__("membar #Sync\n\t" 1070 "stxa %%g0, [%0] %1\n\t" 1071 "membar #Sync" 1072 : /* no outputs */ 1073 : "r" (line), 1074 "i" (ASI_DCACHE_DATA)); 1075 } 1076 } 1077 1078 /* Conversion tables used to frob Cheetah AFSR syndrome values into 1079 * something palatable to the memory controller driver get_unumber 1080 * routine. 1081 */ 1082 #define MT0 137 1083 #define MT1 138 1084 #define MT2 139 1085 #define NONE 254 1086 #define MTC0 140 1087 #define MTC1 141 1088 #define MTC2 142 1089 #define MTC3 143 1090 #define C0 128 1091 #define C1 129 1092 #define C2 130 1093 #define C3 131 1094 #define C4 132 1095 #define C5 133 1096 #define C6 134 1097 #define C7 135 1098 #define C8 136 1099 #define M2 144 1100 #define M3 145 1101 #define M4 146 1102 #define M 147 1103 static unsigned char cheetah_ecc_syntab[] = { 1104 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M, 1105 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16, 1106 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10, 1107 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M, 1108 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6, 1109 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4, 1110 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4, 1111 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3, 1112 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5, 1113 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M, 1114 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2, 1115 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3, 1116 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M, 1117 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3, 1118 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M, 1119 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M, 1120 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4, 1121 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M, 1122 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2, 1123 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M, 1124 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4, 1125 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3, 1126 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3, 1127 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2, 1128 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4, 1129 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M, 1130 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3, 1131 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M, 1132 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3, 1133 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M, 1134 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M, 1135 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M 1136 }; 1137 static unsigned char cheetah_mtag_syntab[] = { 1138 NONE, MTC0, 1139 MTC1, NONE, 1140 MTC2, NONE, 1141 NONE, MT0, 1142 MTC3, NONE, 1143 NONE, MT1, 1144 NONE, MT2, 1145 NONE, NONE 1146 }; 1147 1148 /* Return the highest priority error conditon mentioned. */ 1149 static inline unsigned long cheetah_get_hipri(unsigned long afsr) 1150 { 1151 unsigned long tmp = 0; 1152 int i; 1153 1154 for (i = 0; cheetah_error_table[i].mask; i++) { 1155 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL) 1156 return tmp; 1157 } 1158 return tmp; 1159 } 1160 1161 static const char *cheetah_get_string(unsigned long bit) 1162 { 1163 int i; 1164 1165 for (i = 0; cheetah_error_table[i].mask; i++) { 1166 if ((bit & cheetah_error_table[i].mask) != 0UL) 1167 return cheetah_error_table[i].name; 1168 } 1169 return "???"; 1170 } 1171 1172 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info, 1173 unsigned long afsr, unsigned long afar, int recoverable) 1174 { 1175 unsigned long hipri; 1176 char unum[256]; 1177 1178 printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n", 1179 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1180 afsr, afar, 1181 (afsr & CHAFSR_TL1) ? 1 : 0); 1182 printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n", 1183 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1184 regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate); 1185 printk("%s" "ERROR(%d): ", 1186 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id()); 1187 printk("TPC<%pS>\n", (void *) regs->tpc); 1188 printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n", 1189 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1190 (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT, 1191 (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT, 1192 (afsr & CHAFSR_ME) ? ", Multiple Errors" : "", 1193 (afsr & CHAFSR_PRIV) ? ", Privileged" : ""); 1194 hipri = cheetah_get_hipri(afsr); 1195 printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n", 1196 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1197 hipri, cheetah_get_string(hipri)); 1198 1199 /* Try to get unumber if relevant. */ 1200 #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \ 1201 CHAFSR_CPC | CHAFSR_CPU | \ 1202 CHAFSR_UE | CHAFSR_CE | \ 1203 CHAFSR_EDC | CHAFSR_EDU | \ 1204 CHAFSR_UCC | CHAFSR_UCU | \ 1205 CHAFSR_WDU | CHAFSR_WDC) 1206 #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU) 1207 if (afsr & ESYND_ERRORS) { 1208 int syndrome; 1209 int ret; 1210 1211 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT; 1212 syndrome = cheetah_ecc_syntab[syndrome]; 1213 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); 1214 if (ret != -1) 1215 printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n", 1216 (recoverable ? KERN_WARNING : KERN_CRIT), 1217 smp_processor_id(), unum); 1218 } else if (afsr & MSYND_ERRORS) { 1219 int syndrome; 1220 int ret; 1221 1222 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT; 1223 syndrome = cheetah_mtag_syntab[syndrome]; 1224 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); 1225 if (ret != -1) 1226 printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n", 1227 (recoverable ? KERN_WARNING : KERN_CRIT), 1228 smp_processor_id(), unum); 1229 } 1230 1231 /* Now dump the cache snapshots. */ 1232 printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n", 1233 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1234 (int) info->dcache_index, 1235 info->dcache_tag, 1236 info->dcache_utag, 1237 info->dcache_stag); 1238 printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", 1239 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1240 info->dcache_data[0], 1241 info->dcache_data[1], 1242 info->dcache_data[2], 1243 info->dcache_data[3]); 1244 printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] " 1245 "u[%016llx] l[%016llx]\n", 1246 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1247 (int) info->icache_index, 1248 info->icache_tag, 1249 info->icache_utag, 1250 info->icache_stag, 1251 info->icache_upper, 1252 info->icache_lower); 1253 printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n", 1254 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1255 info->icache_data[0], 1256 info->icache_data[1], 1257 info->icache_data[2], 1258 info->icache_data[3]); 1259 printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n", 1260 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1261 info->icache_data[4], 1262 info->icache_data[5], 1263 info->icache_data[6], 1264 info->icache_data[7]); 1265 printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n", 1266 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1267 (int) info->ecache_index, info->ecache_tag); 1268 printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", 1269 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1270 info->ecache_data[0], 1271 info->ecache_data[1], 1272 info->ecache_data[2], 1273 info->ecache_data[3]); 1274 1275 afsr = (afsr & ~hipri) & cheetah_afsr_errors; 1276 while (afsr != 0UL) { 1277 unsigned long bit = cheetah_get_hipri(afsr); 1278 1279 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n", 1280 (recoverable ? KERN_WARNING : KERN_CRIT), 1281 bit, cheetah_get_string(bit)); 1282 1283 afsr &= ~bit; 1284 } 1285 1286 if (!recoverable) 1287 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n"); 1288 } 1289 1290 static int cheetah_recheck_errors(struct cheetah_err_info *logp) 1291 { 1292 unsigned long afsr, afar; 1293 int ret = 0; 1294 1295 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1296 : "=r" (afsr) 1297 : "i" (ASI_AFSR)); 1298 if ((afsr & cheetah_afsr_errors) != 0) { 1299 if (logp != NULL) { 1300 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1301 : "=r" (afar) 1302 : "i" (ASI_AFAR)); 1303 logp->afsr = afsr; 1304 logp->afar = afar; 1305 } 1306 ret = 1; 1307 } 1308 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1309 "membar #Sync\n\t" 1310 : : "r" (afsr), "i" (ASI_AFSR)); 1311 1312 return ret; 1313 } 1314 1315 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1316 { 1317 struct cheetah_err_info local_snapshot, *p; 1318 int recoverable; 1319 1320 /* Flush E-cache */ 1321 cheetah_flush_ecache(); 1322 1323 p = cheetah_get_error_log(afsr); 1324 if (!p) { 1325 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n", 1326 afsr, afar); 1327 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1328 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1329 prom_halt(); 1330 } 1331 1332 /* Grab snapshot of logged error. */ 1333 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1334 1335 /* If the current trap snapshot does not match what the 1336 * trap handler passed along into our args, big trouble. 1337 * In such a case, mark the local copy as invalid. 1338 * 1339 * Else, it matches and we mark the afsr in the non-local 1340 * copy as invalid so we may log new error traps there. 1341 */ 1342 if (p->afsr != afsr || p->afar != afar) 1343 local_snapshot.afsr = CHAFSR_INVALID; 1344 else 1345 p->afsr = CHAFSR_INVALID; 1346 1347 cheetah_flush_icache(); 1348 cheetah_flush_dcache(); 1349 1350 /* Re-enable I-cache/D-cache */ 1351 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1352 "or %%g1, %1, %%g1\n\t" 1353 "stxa %%g1, [%%g0] %0\n\t" 1354 "membar #Sync" 1355 : /* no outputs */ 1356 : "i" (ASI_DCU_CONTROL_REG), 1357 "i" (DCU_DC | DCU_IC) 1358 : "g1"); 1359 1360 /* Re-enable error reporting */ 1361 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1362 "or %%g1, %1, %%g1\n\t" 1363 "stxa %%g1, [%%g0] %0\n\t" 1364 "membar #Sync" 1365 : /* no outputs */ 1366 : "i" (ASI_ESTATE_ERROR_EN), 1367 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1368 : "g1"); 1369 1370 /* Decide if we can continue after handling this trap and 1371 * logging the error. 1372 */ 1373 recoverable = 1; 1374 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1375 recoverable = 0; 1376 1377 /* Re-check AFSR/AFAR. What we are looking for here is whether a new 1378 * error was logged while we had error reporting traps disabled. 1379 */ 1380 if (cheetah_recheck_errors(&local_snapshot)) { 1381 unsigned long new_afsr = local_snapshot.afsr; 1382 1383 /* If we got a new asynchronous error, die... */ 1384 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | 1385 CHAFSR_WDU | CHAFSR_CPU | 1386 CHAFSR_IVU | CHAFSR_UE | 1387 CHAFSR_BERR | CHAFSR_TO)) 1388 recoverable = 0; 1389 } 1390 1391 /* Log errors. */ 1392 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1393 1394 if (!recoverable) 1395 panic("Irrecoverable Fast-ECC error trap.\n"); 1396 1397 /* Flush E-cache to kick the error trap handlers out. */ 1398 cheetah_flush_ecache(); 1399 } 1400 1401 /* Try to fix a correctable error by pushing the line out from 1402 * the E-cache. Recheck error reporting registers to see if the 1403 * problem is intermittent. 1404 */ 1405 static int cheetah_fix_ce(unsigned long physaddr) 1406 { 1407 unsigned long orig_estate; 1408 unsigned long alias1, alias2; 1409 int ret; 1410 1411 /* Make sure correctable error traps are disabled. */ 1412 __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t" 1413 "andn %0, %1, %%g1\n\t" 1414 "stxa %%g1, [%%g0] %2\n\t" 1415 "membar #Sync" 1416 : "=&r" (orig_estate) 1417 : "i" (ESTATE_ERROR_CEEN), 1418 "i" (ASI_ESTATE_ERROR_EN) 1419 : "g1"); 1420 1421 /* We calculate alias addresses that will force the 1422 * cache line in question out of the E-cache. Then 1423 * we bring it back in with an atomic instruction so 1424 * that we get it in some modified/exclusive state, 1425 * then we displace it again to try and get proper ECC 1426 * pushed back into the system. 1427 */ 1428 physaddr &= ~(8UL - 1UL); 1429 alias1 = (ecache_flush_physbase + 1430 (physaddr & ((ecache_flush_size >> 1) - 1))); 1431 alias2 = alias1 + (ecache_flush_size >> 1); 1432 __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t" 1433 "ldxa [%1] %3, %%g0\n\t" 1434 "casxa [%2] %3, %%g0, %%g0\n\t" 1435 "ldxa [%0] %3, %%g0\n\t" 1436 "ldxa [%1] %3, %%g0\n\t" 1437 "membar #Sync" 1438 : /* no outputs */ 1439 : "r" (alias1), "r" (alias2), 1440 "r" (physaddr), "i" (ASI_PHYS_USE_EC)); 1441 1442 /* Did that trigger another error? */ 1443 if (cheetah_recheck_errors(NULL)) { 1444 /* Try one more time. */ 1445 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t" 1446 "membar #Sync" 1447 : : "r" (physaddr), "i" (ASI_PHYS_USE_EC)); 1448 if (cheetah_recheck_errors(NULL)) 1449 ret = 2; 1450 else 1451 ret = 1; 1452 } else { 1453 /* No new error, intermittent problem. */ 1454 ret = 0; 1455 } 1456 1457 /* Restore error enables. */ 1458 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1459 "membar #Sync" 1460 : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN)); 1461 1462 return ret; 1463 } 1464 1465 /* Return non-zero if PADDR is a valid physical memory address. */ 1466 static int cheetah_check_main_memory(unsigned long paddr) 1467 { 1468 unsigned long vaddr = PAGE_OFFSET + paddr; 1469 1470 if (vaddr > (unsigned long) high_memory) 1471 return 0; 1472 1473 return kern_addr_valid(vaddr); 1474 } 1475 1476 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1477 { 1478 struct cheetah_err_info local_snapshot, *p; 1479 int recoverable, is_memory; 1480 1481 p = cheetah_get_error_log(afsr); 1482 if (!p) { 1483 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n", 1484 afsr, afar); 1485 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1486 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1487 prom_halt(); 1488 } 1489 1490 /* Grab snapshot of logged error. */ 1491 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1492 1493 /* If the current trap snapshot does not match what the 1494 * trap handler passed along into our args, big trouble. 1495 * In such a case, mark the local copy as invalid. 1496 * 1497 * Else, it matches and we mark the afsr in the non-local 1498 * copy as invalid so we may log new error traps there. 1499 */ 1500 if (p->afsr != afsr || p->afar != afar) 1501 local_snapshot.afsr = CHAFSR_INVALID; 1502 else 1503 p->afsr = CHAFSR_INVALID; 1504 1505 is_memory = cheetah_check_main_memory(afar); 1506 1507 if (is_memory && (afsr & CHAFSR_CE) != 0UL) { 1508 /* XXX Might want to log the results of this operation 1509 * XXX somewhere... -DaveM 1510 */ 1511 cheetah_fix_ce(afar); 1512 } 1513 1514 { 1515 int flush_all, flush_line; 1516 1517 flush_all = flush_line = 0; 1518 if ((afsr & CHAFSR_EDC) != 0UL) { 1519 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC) 1520 flush_line = 1; 1521 else 1522 flush_all = 1; 1523 } else if ((afsr & CHAFSR_CPC) != 0UL) { 1524 if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC) 1525 flush_line = 1; 1526 else 1527 flush_all = 1; 1528 } 1529 1530 /* Trap handler only disabled I-cache, flush it. */ 1531 cheetah_flush_icache(); 1532 1533 /* Re-enable I-cache */ 1534 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1535 "or %%g1, %1, %%g1\n\t" 1536 "stxa %%g1, [%%g0] %0\n\t" 1537 "membar #Sync" 1538 : /* no outputs */ 1539 : "i" (ASI_DCU_CONTROL_REG), 1540 "i" (DCU_IC) 1541 : "g1"); 1542 1543 if (flush_all) 1544 cheetah_flush_ecache(); 1545 else if (flush_line) 1546 cheetah_flush_ecache_line(afar); 1547 } 1548 1549 /* Re-enable error reporting */ 1550 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1551 "or %%g1, %1, %%g1\n\t" 1552 "stxa %%g1, [%%g0] %0\n\t" 1553 "membar #Sync" 1554 : /* no outputs */ 1555 : "i" (ASI_ESTATE_ERROR_EN), 1556 "i" (ESTATE_ERROR_CEEN) 1557 : "g1"); 1558 1559 /* Decide if we can continue after handling this trap and 1560 * logging the error. 1561 */ 1562 recoverable = 1; 1563 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1564 recoverable = 0; 1565 1566 /* Re-check AFSR/AFAR */ 1567 (void) cheetah_recheck_errors(&local_snapshot); 1568 1569 /* Log errors. */ 1570 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1571 1572 if (!recoverable) 1573 panic("Irrecoverable Correctable-ECC error trap.\n"); 1574 } 1575 1576 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1577 { 1578 struct cheetah_err_info local_snapshot, *p; 1579 int recoverable, is_memory; 1580 1581 #ifdef CONFIG_PCI 1582 /* Check for the special PCI poke sequence. */ 1583 if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { 1584 cheetah_flush_icache(); 1585 cheetah_flush_dcache(); 1586 1587 /* Re-enable I-cache/D-cache */ 1588 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1589 "or %%g1, %1, %%g1\n\t" 1590 "stxa %%g1, [%%g0] %0\n\t" 1591 "membar #Sync" 1592 : /* no outputs */ 1593 : "i" (ASI_DCU_CONTROL_REG), 1594 "i" (DCU_DC | DCU_IC) 1595 : "g1"); 1596 1597 /* Re-enable error reporting */ 1598 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1599 "or %%g1, %1, %%g1\n\t" 1600 "stxa %%g1, [%%g0] %0\n\t" 1601 "membar #Sync" 1602 : /* no outputs */ 1603 : "i" (ASI_ESTATE_ERROR_EN), 1604 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1605 : "g1"); 1606 1607 (void) cheetah_recheck_errors(NULL); 1608 1609 pci_poke_faulted = 1; 1610 regs->tpc += 4; 1611 regs->tnpc = regs->tpc + 4; 1612 return; 1613 } 1614 #endif 1615 1616 p = cheetah_get_error_log(afsr); 1617 if (!p) { 1618 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n", 1619 afsr, afar); 1620 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1621 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1622 prom_halt(); 1623 } 1624 1625 /* Grab snapshot of logged error. */ 1626 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1627 1628 /* If the current trap snapshot does not match what the 1629 * trap handler passed along into our args, big trouble. 1630 * In such a case, mark the local copy as invalid. 1631 * 1632 * Else, it matches and we mark the afsr in the non-local 1633 * copy as invalid so we may log new error traps there. 1634 */ 1635 if (p->afsr != afsr || p->afar != afar) 1636 local_snapshot.afsr = CHAFSR_INVALID; 1637 else 1638 p->afsr = CHAFSR_INVALID; 1639 1640 is_memory = cheetah_check_main_memory(afar); 1641 1642 { 1643 int flush_all, flush_line; 1644 1645 flush_all = flush_line = 0; 1646 if ((afsr & CHAFSR_EDU) != 0UL) { 1647 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU) 1648 flush_line = 1; 1649 else 1650 flush_all = 1; 1651 } else if ((afsr & CHAFSR_BERR) != 0UL) { 1652 if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR) 1653 flush_line = 1; 1654 else 1655 flush_all = 1; 1656 } 1657 1658 cheetah_flush_icache(); 1659 cheetah_flush_dcache(); 1660 1661 /* Re-enable I/D caches */ 1662 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1663 "or %%g1, %1, %%g1\n\t" 1664 "stxa %%g1, [%%g0] %0\n\t" 1665 "membar #Sync" 1666 : /* no outputs */ 1667 : "i" (ASI_DCU_CONTROL_REG), 1668 "i" (DCU_IC | DCU_DC) 1669 : "g1"); 1670 1671 if (flush_all) 1672 cheetah_flush_ecache(); 1673 else if (flush_line) 1674 cheetah_flush_ecache_line(afar); 1675 } 1676 1677 /* Re-enable error reporting */ 1678 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1679 "or %%g1, %1, %%g1\n\t" 1680 "stxa %%g1, [%%g0] %0\n\t" 1681 "membar #Sync" 1682 : /* no outputs */ 1683 : "i" (ASI_ESTATE_ERROR_EN), 1684 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1685 : "g1"); 1686 1687 /* Decide if we can continue after handling this trap and 1688 * logging the error. 1689 */ 1690 recoverable = 1; 1691 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1692 recoverable = 0; 1693 1694 /* Re-check AFSR/AFAR. What we are looking for here is whether a new 1695 * error was logged while we had error reporting traps disabled. 1696 */ 1697 if (cheetah_recheck_errors(&local_snapshot)) { 1698 unsigned long new_afsr = local_snapshot.afsr; 1699 1700 /* If we got a new asynchronous error, die... */ 1701 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | 1702 CHAFSR_WDU | CHAFSR_CPU | 1703 CHAFSR_IVU | CHAFSR_UE | 1704 CHAFSR_BERR | CHAFSR_TO)) 1705 recoverable = 0; 1706 } 1707 1708 /* Log errors. */ 1709 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1710 1711 /* "Recoverable" here means we try to yank the page from ever 1712 * being newly used again. This depends upon a few things: 1713 * 1) Must be main memory, and AFAR must be valid. 1714 * 2) If we trapped from user, OK. 1715 * 3) Else, if we trapped from kernel we must find exception 1716 * table entry (ie. we have to have been accessing user 1717 * space). 1718 * 1719 * If AFAR is not in main memory, or we trapped from kernel 1720 * and cannot find an exception table entry, it is unacceptable 1721 * to try and continue. 1722 */ 1723 if (recoverable && is_memory) { 1724 if ((regs->tstate & TSTATE_PRIV) == 0UL) { 1725 /* OK, usermode access. */ 1726 recoverable = 1; 1727 } else { 1728 const struct exception_table_entry *entry; 1729 1730 entry = search_exception_tables(regs->tpc); 1731 if (entry) { 1732 /* OK, kernel access to userspace. */ 1733 recoverable = 1; 1734 1735 } else { 1736 /* BAD, privileged state is corrupted. */ 1737 recoverable = 0; 1738 } 1739 1740 if (recoverable) { 1741 if (pfn_valid(afar >> PAGE_SHIFT)) 1742 get_page(pfn_to_page(afar >> PAGE_SHIFT)); 1743 else 1744 recoverable = 0; 1745 1746 /* Only perform fixup if we still have a 1747 * recoverable condition. 1748 */ 1749 if (recoverable) { 1750 regs->tpc = entry->fixup; 1751 regs->tnpc = regs->tpc + 4; 1752 } 1753 } 1754 } 1755 } else { 1756 recoverable = 0; 1757 } 1758 1759 if (!recoverable) 1760 panic("Irrecoverable deferred error trap.\n"); 1761 } 1762 1763 /* Handle a D/I cache parity error trap. TYPE is encoded as: 1764 * 1765 * Bit0: 0=dcache,1=icache 1766 * Bit1: 0=recoverable,1=unrecoverable 1767 * 1768 * The hardware has disabled both the I-cache and D-cache in 1769 * the %dcr register. 1770 */ 1771 void cheetah_plus_parity_error(int type, struct pt_regs *regs) 1772 { 1773 if (type & 0x1) 1774 __cheetah_flush_icache(); 1775 else 1776 cheetah_plus_zap_dcache_parity(); 1777 cheetah_flush_dcache(); 1778 1779 /* Re-enable I-cache/D-cache */ 1780 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1781 "or %%g1, %1, %%g1\n\t" 1782 "stxa %%g1, [%%g0] %0\n\t" 1783 "membar #Sync" 1784 : /* no outputs */ 1785 : "i" (ASI_DCU_CONTROL_REG), 1786 "i" (DCU_DC | DCU_IC) 1787 : "g1"); 1788 1789 if (type & 0x2) { 1790 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", 1791 smp_processor_id(), 1792 (type & 0x1) ? 'I' : 'D', 1793 regs->tpc); 1794 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc); 1795 panic("Irrecoverable Cheetah+ parity error."); 1796 } 1797 1798 printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", 1799 smp_processor_id(), 1800 (type & 0x1) ? 'I' : 'D', 1801 regs->tpc); 1802 printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc); 1803 } 1804 1805 struct sun4v_error_entry { 1806 /* Unique error handle */ 1807 /*0x00*/u64 err_handle; 1808 1809 /* %stick value at the time of the error */ 1810 /*0x08*/u64 err_stick; 1811 1812 /*0x10*/u8 reserved_1[3]; 1813 1814 /* Error type */ 1815 /*0x13*/u8 err_type; 1816 #define SUN4V_ERR_TYPE_UNDEFINED 0 1817 #define SUN4V_ERR_TYPE_UNCORRECTED_RES 1 1818 #define SUN4V_ERR_TYPE_PRECISE_NONRES 2 1819 #define SUN4V_ERR_TYPE_DEFERRED_NONRES 3 1820 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4 1821 #define SUN4V_ERR_TYPE_DUMP_CORE 5 1822 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6 1823 #define SUN4V_ERR_TYPE_NUM 7 1824 1825 /* Error attributes */ 1826 /*0x14*/u32 err_attrs; 1827 #define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001 1828 #define SUN4V_ERR_ATTRS_MEMORY 0x00000002 1829 #define SUN4V_ERR_ATTRS_PIO 0x00000004 1830 #define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008 1831 #define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010 1832 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020 1833 #define SUN4V_ERR_ATTRS_ASR 0x00000040 1834 #define SUN4V_ERR_ATTRS_ASI 0x00000080 1835 #define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100 1836 #define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600 1837 #define SUN4V_ERR_ATTRS_MCD 0x00000800 1838 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9 1839 #define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000 1840 #define SUN4V_ERR_ATTRS_MODE_SHFT 24 1841 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000 1842 1843 #define SUN4V_ERR_SPSTATE_FAULTED 0 1844 #define SUN4V_ERR_SPSTATE_AVAILABLE 1 1845 #define SUN4V_ERR_SPSTATE_NOT_PRESENT 2 1846 1847 #define SUN4V_ERR_MODE_USER 1 1848 #define SUN4V_ERR_MODE_PRIV 2 1849 1850 /* Real address of the memory region or PIO transaction */ 1851 /*0x18*/u64 err_raddr; 1852 1853 /* Size of the operation triggering the error, in bytes */ 1854 /*0x20*/u32 err_size; 1855 1856 /* ID of the CPU */ 1857 /*0x24*/u16 err_cpu; 1858 1859 /* Grace periof for shutdown, in seconds */ 1860 /*0x26*/u16 err_secs; 1861 1862 /* Value of the %asi register */ 1863 /*0x28*/u8 err_asi; 1864 1865 /*0x29*/u8 reserved_2; 1866 1867 /* Value of the ASR register number */ 1868 /*0x2a*/u16 err_asr; 1869 #define SUN4V_ERR_ASR_VALID 0x8000 1870 1871 /*0x2c*/u32 reserved_3; 1872 /*0x30*/u64 reserved_4; 1873 /*0x38*/u64 reserved_5; 1874 }; 1875 1876 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0); 1877 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0); 1878 1879 static const char *sun4v_err_type_to_str(u8 type) 1880 { 1881 static const char *types[SUN4V_ERR_TYPE_NUM] = { 1882 "undefined", 1883 "uncorrected resumable", 1884 "precise nonresumable", 1885 "deferred nonresumable", 1886 "shutdown request", 1887 "dump core", 1888 "SP state change", 1889 }; 1890 1891 if (type < SUN4V_ERR_TYPE_NUM) 1892 return types[type]; 1893 1894 return "unknown"; 1895 } 1896 1897 static void sun4v_emit_err_attr_strings(u32 attrs) 1898 { 1899 static const char *attr_names[] = { 1900 "processor", 1901 "memory", 1902 "PIO", 1903 "int-registers", 1904 "fpu-registers", 1905 "shutdown-request", 1906 "ASR", 1907 "ASI", 1908 "priv-reg", 1909 }; 1910 static const char *sp_states[] = { 1911 "sp-faulted", 1912 "sp-available", 1913 "sp-not-present", 1914 "sp-state-reserved", 1915 }; 1916 static const char *modes[] = { 1917 "mode-reserved0", 1918 "user", 1919 "priv", 1920 "mode-reserved1", 1921 }; 1922 u32 sp_state, mode; 1923 int i; 1924 1925 for (i = 0; i < ARRAY_SIZE(attr_names); i++) { 1926 if (attrs & (1U << i)) { 1927 const char *s = attr_names[i]; 1928 1929 pr_cont("%s ", s); 1930 } 1931 } 1932 1933 sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >> 1934 SUN4V_ERR_ATTRS_SPSTATE_SHFT); 1935 pr_cont("%s ", sp_states[sp_state]); 1936 1937 mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >> 1938 SUN4V_ERR_ATTRS_MODE_SHFT); 1939 pr_cont("%s ", modes[mode]); 1940 1941 if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) 1942 pr_cont("res-queue-full "); 1943 } 1944 1945 /* When the report contains a real-address of "-1" it means that the 1946 * hardware did not provide the address. So we compute the effective 1947 * address of the load or store instruction at regs->tpc and report 1948 * that. Usually when this happens it's a PIO and in such a case we 1949 * are using physical addresses with bypass ASIs anyways, so what we 1950 * report here is exactly what we want. 1951 */ 1952 static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs) 1953 { 1954 unsigned int insn; 1955 u64 addr; 1956 1957 if (!(regs->tstate & TSTATE_PRIV)) 1958 return; 1959 1960 insn = *(unsigned int *) regs->tpc; 1961 1962 addr = compute_effective_address(regs, insn, 0); 1963 1964 printk("%s: insn effective address [0x%016llx]\n", 1965 pfx, addr); 1966 } 1967 1968 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent, 1969 int cpu, const char *pfx, atomic_t *ocnt) 1970 { 1971 u64 *raw_ptr = (u64 *) ent; 1972 u32 attrs; 1973 int cnt; 1974 1975 printk("%s: Reporting on cpu %d\n", pfx, cpu); 1976 printk("%s: TPC [0x%016lx] <%pS>\n", 1977 pfx, regs->tpc, (void *) regs->tpc); 1978 1979 printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n", 1980 pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]); 1981 printk("%s: %016llx:%016llx:%016llx:%016llx]\n", 1982 pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]); 1983 1984 printk("%s: handle [0x%016llx] stick [0x%016llx]\n", 1985 pfx, ent->err_handle, ent->err_stick); 1986 1987 printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type)); 1988 1989 attrs = ent->err_attrs; 1990 printk("%s: attrs [0x%08x] < ", pfx, attrs); 1991 sun4v_emit_err_attr_strings(attrs); 1992 pr_cont(">\n"); 1993 1994 /* Various fields in the error report are only valid if 1995 * certain attribute bits are set. 1996 */ 1997 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | 1998 SUN4V_ERR_ATTRS_PIO | 1999 SUN4V_ERR_ATTRS_ASI)) { 2000 printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr); 2001 2002 if (ent->err_raddr == ~(u64)0) 2003 sun4v_report_real_raddr(pfx, regs); 2004 } 2005 2006 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI)) 2007 printk("%s: size [0x%x]\n", pfx, ent->err_size); 2008 2009 if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR | 2010 SUN4V_ERR_ATTRS_INT_REGISTERS | 2011 SUN4V_ERR_ATTRS_FPU_REGISTERS | 2012 SUN4V_ERR_ATTRS_PRIV_REG)) 2013 printk("%s: cpu[%u]\n", pfx, ent->err_cpu); 2014 2015 if (attrs & SUN4V_ERR_ATTRS_ASI) 2016 printk("%s: asi [0x%02x]\n", pfx, ent->err_asi); 2017 2018 if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS | 2019 SUN4V_ERR_ATTRS_FPU_REGISTERS | 2020 SUN4V_ERR_ATTRS_PRIV_REG)) && 2021 (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0) 2022 printk("%s: reg [0x%04x]\n", 2023 pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID); 2024 2025 show_regs(regs); 2026 2027 if ((cnt = atomic_read(ocnt)) != 0) { 2028 atomic_set(ocnt, 0); 2029 wmb(); 2030 printk("%s: Queue overflowed %d times.\n", 2031 pfx, cnt); 2032 } 2033 } 2034 2035 /* Handle memory corruption detected error which is vectored in 2036 * through resumable error trap. 2037 */ 2038 void do_mcd_err(struct pt_regs *regs, struct sun4v_error_entry ent) 2039 { 2040 if (notify_die(DIE_TRAP, "MCD error", regs, 0, 0x34, 2041 SIGSEGV) == NOTIFY_STOP) 2042 return; 2043 2044 if (regs->tstate & TSTATE_PRIV) { 2045 /* MCD exception could happen because the task was 2046 * running a system call with MCD enabled and passed a 2047 * non-versioned pointer or pointer with bad version 2048 * tag to the system call. In such cases, hypervisor 2049 * places the address of offending instruction in the 2050 * resumable error report. This is a deferred error, 2051 * so the read/write that caused the trap was potentially 2052 * retired long time back and we may have no choice 2053 * but to send SIGSEGV to the process. 2054 */ 2055 const struct exception_table_entry *entry; 2056 2057 entry = search_exception_tables(regs->tpc); 2058 if (entry) { 2059 /* Looks like a bad syscall parameter */ 2060 #ifdef DEBUG_EXCEPTIONS 2061 pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n", 2062 regs->tpc); 2063 pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 2064 ent.err_raddr, entry->fixup); 2065 #endif 2066 regs->tpc = entry->fixup; 2067 regs->tnpc = regs->tpc + 4; 2068 return; 2069 } 2070 } 2071 2072 /* Send SIGSEGV to the userspace process with the right signal 2073 * code 2074 */ 2075 force_sig_fault(SIGSEGV, SEGV_ADIDERR, (void __user *)ent.err_raddr, 2076 0, current); 2077 } 2078 2079 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. 2080 * Log the event and clear the first word of the entry. 2081 */ 2082 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset) 2083 { 2084 enum ctx_state prev_state = exception_enter(); 2085 struct sun4v_error_entry *ent, local_copy; 2086 struct trap_per_cpu *tb; 2087 unsigned long paddr; 2088 int cpu; 2089 2090 cpu = get_cpu(); 2091 2092 tb = &trap_block[cpu]; 2093 paddr = tb->resum_kernel_buf_pa + offset; 2094 ent = __va(paddr); 2095 2096 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); 2097 2098 /* We have a local copy now, so release the entry. */ 2099 ent->err_handle = 0; 2100 wmb(); 2101 2102 put_cpu(); 2103 2104 if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) { 2105 /* We should really take the seconds field of 2106 * the error report and use it for the shutdown 2107 * invocation, but for now do the same thing we 2108 * do for a DS shutdown request. 2109 */ 2110 pr_info("Shutdown request, %u seconds...\n", 2111 local_copy.err_secs); 2112 orderly_poweroff(true); 2113 goto out; 2114 } 2115 2116 /* If this is a memory corruption detected error vectored in 2117 * by HV through resumable error trap, call the handler 2118 */ 2119 if (local_copy.err_attrs & SUN4V_ERR_ATTRS_MCD) { 2120 do_mcd_err(regs, local_copy); 2121 return; 2122 } 2123 2124 sun4v_log_error(regs, &local_copy, cpu, 2125 KERN_ERR "RESUMABLE ERROR", 2126 &sun4v_resum_oflow_cnt); 2127 out: 2128 exception_exit(prev_state); 2129 } 2130 2131 /* If we try to printk() we'll probably make matters worse, by trying 2132 * to retake locks this cpu already holds or causing more errors. So 2133 * just bump a counter, and we'll report these counter bumps above. 2134 */ 2135 void sun4v_resum_overflow(struct pt_regs *regs) 2136 { 2137 atomic_inc(&sun4v_resum_oflow_cnt); 2138 } 2139 2140 /* Given a set of registers, get the virtual addressi that was being accessed 2141 * by the faulting instructions at tpc. 2142 */ 2143 static unsigned long sun4v_get_vaddr(struct pt_regs *regs) 2144 { 2145 unsigned int insn; 2146 2147 if (!copy_from_user(&insn, (void __user *)regs->tpc, 4)) { 2148 return compute_effective_address(regs, insn, 2149 (insn >> 25) & 0x1f); 2150 } 2151 return 0; 2152 } 2153 2154 /* Attempt to handle non-resumable errors generated from userspace. 2155 * Returns true if the signal was handled, false otherwise. 2156 */ 2157 bool sun4v_nonresum_error_user_handled(struct pt_regs *regs, 2158 struct sun4v_error_entry *ent) { 2159 2160 unsigned int attrs = ent->err_attrs; 2161 2162 if (attrs & SUN4V_ERR_ATTRS_MEMORY) { 2163 unsigned long addr = ent->err_raddr; 2164 2165 if (addr == ~(u64)0) { 2166 /* This seems highly unlikely to ever occur */ 2167 pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory error detected in unknown location!\n"); 2168 } else { 2169 unsigned long page_cnt = DIV_ROUND_UP(ent->err_size, 2170 PAGE_SIZE); 2171 2172 /* Break the unfortunate news. */ 2173 pr_emerg("SUN4V NON-RECOVERABLE ERROR: Memory failed at %016lX\n", 2174 addr); 2175 pr_emerg("SUN4V NON-RECOVERABLE ERROR: Claiming %lu ages.\n", 2176 page_cnt); 2177 2178 while (page_cnt-- > 0) { 2179 if (pfn_valid(addr >> PAGE_SHIFT)) 2180 get_page(pfn_to_page(addr >> PAGE_SHIFT)); 2181 addr += PAGE_SIZE; 2182 } 2183 } 2184 force_sig(SIGKILL, current); 2185 2186 return true; 2187 } 2188 if (attrs & SUN4V_ERR_ATTRS_PIO) { 2189 force_sig_fault(SIGBUS, BUS_ADRERR, 2190 (void __user *)sun4v_get_vaddr(regs), 0, current); 2191 return true; 2192 } 2193 2194 /* Default to doing nothing */ 2195 return false; 2196 } 2197 2198 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. 2199 * Log the event, clear the first word of the entry, and die. 2200 */ 2201 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset) 2202 { 2203 struct sun4v_error_entry *ent, local_copy; 2204 struct trap_per_cpu *tb; 2205 unsigned long paddr; 2206 int cpu; 2207 2208 cpu = get_cpu(); 2209 2210 tb = &trap_block[cpu]; 2211 paddr = tb->nonresum_kernel_buf_pa + offset; 2212 ent = __va(paddr); 2213 2214 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); 2215 2216 /* We have a local copy now, so release the entry. */ 2217 ent->err_handle = 0; 2218 wmb(); 2219 2220 put_cpu(); 2221 2222 if (!(regs->tstate & TSTATE_PRIV) && 2223 sun4v_nonresum_error_user_handled(regs, &local_copy)) { 2224 /* DON'T PANIC: This userspace error was handled. */ 2225 return; 2226 } 2227 2228 #ifdef CONFIG_PCI 2229 /* Check for the special PCI poke sequence. */ 2230 if (pci_poke_in_progress && pci_poke_cpu == cpu) { 2231 pci_poke_faulted = 1; 2232 regs->tpc += 4; 2233 regs->tnpc = regs->tpc + 4; 2234 return; 2235 } 2236 #endif 2237 2238 sun4v_log_error(regs, &local_copy, cpu, 2239 KERN_EMERG "NON-RESUMABLE ERROR", 2240 &sun4v_nonresum_oflow_cnt); 2241 2242 panic("Non-resumable error."); 2243 } 2244 2245 /* If we try to printk() we'll probably make matters worse, by trying 2246 * to retake locks this cpu already holds or causing more errors. So 2247 * just bump a counter, and we'll report these counter bumps above. 2248 */ 2249 void sun4v_nonresum_overflow(struct pt_regs *regs) 2250 { 2251 /* XXX Actually even this can make not that much sense. Perhaps 2252 * XXX we should just pull the plug and panic directly from here? 2253 */ 2254 atomic_inc(&sun4v_nonresum_oflow_cnt); 2255 } 2256 2257 static void sun4v_tlb_error(struct pt_regs *regs) 2258 { 2259 die_if_kernel("TLB/TSB error", regs); 2260 } 2261 2262 unsigned long sun4v_err_itlb_vaddr; 2263 unsigned long sun4v_err_itlb_ctx; 2264 unsigned long sun4v_err_itlb_pte; 2265 unsigned long sun4v_err_itlb_error; 2266 2267 void sun4v_itlb_error_report(struct pt_regs *regs, int tl) 2268 { 2269 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2270 2271 printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n", 2272 regs->tpc, tl); 2273 printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc); 2274 printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]); 2275 printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n", 2276 (void *) regs->u_regs[UREG_I7]); 2277 printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] " 2278 "pte[%lx] error[%lx]\n", 2279 sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx, 2280 sun4v_err_itlb_pte, sun4v_err_itlb_error); 2281 2282 sun4v_tlb_error(regs); 2283 } 2284 2285 unsigned long sun4v_err_dtlb_vaddr; 2286 unsigned long sun4v_err_dtlb_ctx; 2287 unsigned long sun4v_err_dtlb_pte; 2288 unsigned long sun4v_err_dtlb_error; 2289 2290 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl) 2291 { 2292 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2293 2294 printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n", 2295 regs->tpc, tl); 2296 printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc); 2297 printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]); 2298 printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n", 2299 (void *) regs->u_regs[UREG_I7]); 2300 printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] " 2301 "pte[%lx] error[%lx]\n", 2302 sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx, 2303 sun4v_err_dtlb_pte, sun4v_err_dtlb_error); 2304 2305 sun4v_tlb_error(regs); 2306 } 2307 2308 void hypervisor_tlbop_error(unsigned long err, unsigned long op) 2309 { 2310 printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n", 2311 err, op); 2312 } 2313 2314 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op) 2315 { 2316 printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n", 2317 err, op); 2318 } 2319 2320 static void do_fpe_common(struct pt_regs *regs) 2321 { 2322 if (regs->tstate & TSTATE_PRIV) { 2323 regs->tpc = regs->tnpc; 2324 regs->tnpc += 4; 2325 } else { 2326 unsigned long fsr = current_thread_info()->xfsr[0]; 2327 int code; 2328 2329 if (test_thread_flag(TIF_32BIT)) { 2330 regs->tpc &= 0xffffffff; 2331 regs->tnpc &= 0xffffffff; 2332 } 2333 code = FPE_FLTUNK; 2334 if ((fsr & 0x1c000) == (1 << 14)) { 2335 if (fsr & 0x10) 2336 code = FPE_FLTINV; 2337 else if (fsr & 0x08) 2338 code = FPE_FLTOVF; 2339 else if (fsr & 0x04) 2340 code = FPE_FLTUND; 2341 else if (fsr & 0x02) 2342 code = FPE_FLTDIV; 2343 else if (fsr & 0x01) 2344 code = FPE_FLTRES; 2345 } 2346 force_sig_fault(SIGFPE, code, 2347 (void __user *)regs->tpc, 0, current); 2348 } 2349 } 2350 2351 void do_fpieee(struct pt_regs *regs) 2352 { 2353 enum ctx_state prev_state = exception_enter(); 2354 2355 if (notify_die(DIE_TRAP, "fpu exception ieee", regs, 2356 0, 0x24, SIGFPE) == NOTIFY_STOP) 2357 goto out; 2358 2359 do_fpe_common(regs); 2360 out: 2361 exception_exit(prev_state); 2362 } 2363 2364 void do_fpother(struct pt_regs *regs) 2365 { 2366 enum ctx_state prev_state = exception_enter(); 2367 struct fpustate *f = FPUSTATE; 2368 int ret = 0; 2369 2370 if (notify_die(DIE_TRAP, "fpu exception other", regs, 2371 0, 0x25, SIGFPE) == NOTIFY_STOP) 2372 goto out; 2373 2374 switch ((current_thread_info()->xfsr[0] & 0x1c000)) { 2375 case (2 << 14): /* unfinished_FPop */ 2376 case (3 << 14): /* unimplemented_FPop */ 2377 ret = do_mathemu(regs, f, false); 2378 break; 2379 } 2380 if (ret) 2381 goto out; 2382 do_fpe_common(regs); 2383 out: 2384 exception_exit(prev_state); 2385 } 2386 2387 void do_tof(struct pt_regs *regs) 2388 { 2389 enum ctx_state prev_state = exception_enter(); 2390 2391 if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs, 2392 0, 0x26, SIGEMT) == NOTIFY_STOP) 2393 goto out; 2394 2395 if (regs->tstate & TSTATE_PRIV) 2396 die_if_kernel("Penguin overflow trap from kernel mode", regs); 2397 if (test_thread_flag(TIF_32BIT)) { 2398 regs->tpc &= 0xffffffff; 2399 regs->tnpc &= 0xffffffff; 2400 } 2401 force_sig_fault(SIGEMT, EMT_TAGOVF, 2402 (void __user *)regs->tpc, 0, current); 2403 out: 2404 exception_exit(prev_state); 2405 } 2406 2407 void do_div0(struct pt_regs *regs) 2408 { 2409 enum ctx_state prev_state = exception_enter(); 2410 2411 if (notify_die(DIE_TRAP, "integer division by zero", regs, 2412 0, 0x28, SIGFPE) == NOTIFY_STOP) 2413 goto out; 2414 2415 if (regs->tstate & TSTATE_PRIV) 2416 die_if_kernel("TL0: Kernel divide by zero.", regs); 2417 if (test_thread_flag(TIF_32BIT)) { 2418 regs->tpc &= 0xffffffff; 2419 regs->tnpc &= 0xffffffff; 2420 } 2421 force_sig_fault(SIGFPE, FPE_INTDIV, 2422 (void __user *)regs->tpc, 0, current); 2423 out: 2424 exception_exit(prev_state); 2425 } 2426 2427 static void instruction_dump(unsigned int *pc) 2428 { 2429 int i; 2430 2431 if ((((unsigned long) pc) & 3)) 2432 return; 2433 2434 printk("Instruction DUMP:"); 2435 for (i = -3; i < 6; i++) 2436 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>'); 2437 printk("\n"); 2438 } 2439 2440 static void user_instruction_dump(unsigned int __user *pc) 2441 { 2442 int i; 2443 unsigned int buf[9]; 2444 2445 if ((((unsigned long) pc) & 3)) 2446 return; 2447 2448 if (copy_from_user(buf, pc - 3, sizeof(buf))) 2449 return; 2450 2451 printk("Instruction DUMP:"); 2452 for (i = 0; i < 9; i++) 2453 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>'); 2454 printk("\n"); 2455 } 2456 2457 void show_stack(struct task_struct *tsk, unsigned long *_ksp) 2458 { 2459 unsigned long fp, ksp; 2460 struct thread_info *tp; 2461 int count = 0; 2462 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2463 int graph = 0; 2464 #endif 2465 2466 ksp = (unsigned long) _ksp; 2467 if (!tsk) 2468 tsk = current; 2469 tp = task_thread_info(tsk); 2470 if (ksp == 0UL) { 2471 if (tsk == current) 2472 asm("mov %%fp, %0" : "=r" (ksp)); 2473 else 2474 ksp = tp->ksp; 2475 } 2476 if (tp == current_thread_info()) 2477 flushw_all(); 2478 2479 fp = ksp + STACK_BIAS; 2480 2481 printk("Call Trace:\n"); 2482 do { 2483 struct sparc_stackf *sf; 2484 struct pt_regs *regs; 2485 unsigned long pc; 2486 2487 if (!kstack_valid(tp, fp)) 2488 break; 2489 sf = (struct sparc_stackf *) fp; 2490 regs = (struct pt_regs *) (sf + 1); 2491 2492 if (kstack_is_trap_frame(tp, regs)) { 2493 if (!(regs->tstate & TSTATE_PRIV)) 2494 break; 2495 pc = regs->tpc; 2496 fp = regs->u_regs[UREG_I6] + STACK_BIAS; 2497 } else { 2498 pc = sf->callers_pc; 2499 fp = (unsigned long)sf->fp + STACK_BIAS; 2500 } 2501 2502 printk(" [%016lx] %pS\n", pc, (void *) pc); 2503 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2504 if ((pc + 8UL) == (unsigned long) &return_to_handler) { 2505 struct ftrace_ret_stack *ret_stack; 2506 ret_stack = ftrace_graph_get_ret_stack(tsk, graph); 2507 if (ret_stack) { 2508 pc = ret_stack->ret; 2509 printk(" [%016lx] %pS\n", pc, (void *) pc); 2510 graph++; 2511 } 2512 } 2513 #endif 2514 } while (++count < 16); 2515 } 2516 2517 static inline struct reg_window *kernel_stack_up(struct reg_window *rw) 2518 { 2519 unsigned long fp = rw->ins[6]; 2520 2521 if (!fp) 2522 return NULL; 2523 2524 return (struct reg_window *) (fp + STACK_BIAS); 2525 } 2526 2527 void __noreturn die_if_kernel(char *str, struct pt_regs *regs) 2528 { 2529 static int die_counter; 2530 int count = 0; 2531 2532 /* Amuse the user. */ 2533 printk( 2534 " \\|/ ____ \\|/\n" 2535 " \"@'/ .. \\`@\"\n" 2536 " /_| \\__/ |_\\\n" 2537 " \\__U_/\n"); 2538 2539 printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter); 2540 notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV); 2541 __asm__ __volatile__("flushw"); 2542 show_regs(regs); 2543 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 2544 if (regs->tstate & TSTATE_PRIV) { 2545 struct thread_info *tp = current_thread_info(); 2546 struct reg_window *rw = (struct reg_window *) 2547 (regs->u_regs[UREG_FP] + STACK_BIAS); 2548 2549 /* Stop the back trace when we hit userland or we 2550 * find some badly aligned kernel stack. 2551 */ 2552 while (rw && 2553 count++ < 30 && 2554 kstack_valid(tp, (unsigned long) rw)) { 2555 printk("Caller[%016lx]: %pS\n", rw->ins[7], 2556 (void *) rw->ins[7]); 2557 2558 rw = kernel_stack_up(rw); 2559 } 2560 instruction_dump ((unsigned int *) regs->tpc); 2561 } else { 2562 if (test_thread_flag(TIF_32BIT)) { 2563 regs->tpc &= 0xffffffff; 2564 regs->tnpc &= 0xffffffff; 2565 } 2566 user_instruction_dump ((unsigned int __user *) regs->tpc); 2567 } 2568 if (panic_on_oops) 2569 panic("Fatal exception"); 2570 if (regs->tstate & TSTATE_PRIV) 2571 do_exit(SIGKILL); 2572 do_exit(SIGSEGV); 2573 } 2574 EXPORT_SYMBOL(die_if_kernel); 2575 2576 #define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19)) 2577 #define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19)) 2578 2579 void do_illegal_instruction(struct pt_regs *regs) 2580 { 2581 enum ctx_state prev_state = exception_enter(); 2582 unsigned long pc = regs->tpc; 2583 unsigned long tstate = regs->tstate; 2584 u32 insn; 2585 2586 if (notify_die(DIE_TRAP, "illegal instruction", regs, 2587 0, 0x10, SIGILL) == NOTIFY_STOP) 2588 goto out; 2589 2590 if (tstate & TSTATE_PRIV) 2591 die_if_kernel("Kernel illegal instruction", regs); 2592 if (test_thread_flag(TIF_32BIT)) 2593 pc = (u32)pc; 2594 if (get_user(insn, (u32 __user *) pc) != -EFAULT) { 2595 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ { 2596 if (handle_popc(insn, regs)) 2597 goto out; 2598 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ { 2599 if (handle_ldf_stq(insn, regs)) 2600 goto out; 2601 } else if (tlb_type == hypervisor) { 2602 if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) { 2603 if (!vis_emul(regs, insn)) 2604 goto out; 2605 } else { 2606 struct fpustate *f = FPUSTATE; 2607 2608 /* On UltraSPARC T2 and later, FPU insns which 2609 * are not implemented in HW signal an illegal 2610 * instruction trap and do not set the FP Trap 2611 * Trap in the %fsr to unimplemented_FPop. 2612 */ 2613 if (do_mathemu(regs, f, true)) 2614 goto out; 2615 } 2616 } 2617 } 2618 force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)pc, 0, current); 2619 out: 2620 exception_exit(prev_state); 2621 } 2622 2623 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) 2624 { 2625 enum ctx_state prev_state = exception_enter(); 2626 2627 if (notify_die(DIE_TRAP, "memory address unaligned", regs, 2628 0, 0x34, SIGSEGV) == NOTIFY_STOP) 2629 goto out; 2630 2631 if (regs->tstate & TSTATE_PRIV) { 2632 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); 2633 goto out; 2634 } 2635 if (is_no_fault_exception(regs)) 2636 return; 2637 2638 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)sfar, 0, current); 2639 out: 2640 exception_exit(prev_state); 2641 } 2642 2643 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 2644 { 2645 if (notify_die(DIE_TRAP, "memory address unaligned", regs, 2646 0, 0x34, SIGSEGV) == NOTIFY_STOP) 2647 return; 2648 2649 if (regs->tstate & TSTATE_PRIV) { 2650 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); 2651 return; 2652 } 2653 if (is_no_fault_exception(regs)) 2654 return; 2655 2656 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) addr, 0, current); 2657 } 2658 2659 /* sun4v_mem_corrupt_detect_precise() - Handle precise exception on an ADI 2660 * tag mismatch. 2661 * 2662 * ADI version tag mismatch on a load from memory always results in a 2663 * precise exception. Tag mismatch on a store to memory will result in 2664 * precise exception if MCDPER or PMCDPER is set to 1. 2665 */ 2666 void sun4v_mem_corrupt_detect_precise(struct pt_regs *regs, unsigned long addr, 2667 unsigned long context) 2668 { 2669 if (notify_die(DIE_TRAP, "memory corruption precise exception", regs, 2670 0, 0x8, SIGSEGV) == NOTIFY_STOP) 2671 return; 2672 2673 if (regs->tstate & TSTATE_PRIV) { 2674 /* MCD exception could happen because the task was running 2675 * a system call with MCD enabled and passed a non-versioned 2676 * pointer or pointer with bad version tag to the system 2677 * call. 2678 */ 2679 const struct exception_table_entry *entry; 2680 2681 entry = search_exception_tables(regs->tpc); 2682 if (entry) { 2683 /* Looks like a bad syscall parameter */ 2684 #ifdef DEBUG_EXCEPTIONS 2685 pr_emerg("Exception: PC<%016lx> faddr<UNKNOWN>\n", 2686 regs->tpc); 2687 pr_emerg("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 2688 regs->tpc, entry->fixup); 2689 #endif 2690 regs->tpc = entry->fixup; 2691 regs->tnpc = regs->tpc + 4; 2692 return; 2693 } 2694 pr_emerg("%s: ADDR[%016lx] CTX[%lx], going.\n", 2695 __func__, addr, context); 2696 die_if_kernel("MCD precise", regs); 2697 } 2698 2699 if (test_thread_flag(TIF_32BIT)) { 2700 regs->tpc &= 0xffffffff; 2701 regs->tnpc &= 0xffffffff; 2702 } 2703 force_sig_fault(SIGSEGV, SEGV_ADIPERR, (void __user *)addr, 0, current); 2704 } 2705 2706 void do_privop(struct pt_regs *regs) 2707 { 2708 enum ctx_state prev_state = exception_enter(); 2709 2710 if (notify_die(DIE_TRAP, "privileged operation", regs, 2711 0, 0x11, SIGILL) == NOTIFY_STOP) 2712 goto out; 2713 2714 if (test_thread_flag(TIF_32BIT)) { 2715 regs->tpc &= 0xffffffff; 2716 regs->tnpc &= 0xffffffff; 2717 } 2718 force_sig_fault(SIGILL, ILL_PRVOPC, 2719 (void __user *)regs->tpc, 0, current); 2720 out: 2721 exception_exit(prev_state); 2722 } 2723 2724 void do_privact(struct pt_regs *regs) 2725 { 2726 do_privop(regs); 2727 } 2728 2729 /* Trap level 1 stuff or other traps we should never see... */ 2730 void do_cee(struct pt_regs *regs) 2731 { 2732 exception_enter(); 2733 die_if_kernel("TL0: Cache Error Exception", regs); 2734 } 2735 2736 void do_div0_tl1(struct pt_regs *regs) 2737 { 2738 exception_enter(); 2739 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2740 die_if_kernel("TL1: DIV0 Exception", regs); 2741 } 2742 2743 void do_fpieee_tl1(struct pt_regs *regs) 2744 { 2745 exception_enter(); 2746 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2747 die_if_kernel("TL1: FPU IEEE Exception", regs); 2748 } 2749 2750 void do_fpother_tl1(struct pt_regs *regs) 2751 { 2752 exception_enter(); 2753 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2754 die_if_kernel("TL1: FPU Other Exception", regs); 2755 } 2756 2757 void do_ill_tl1(struct pt_regs *regs) 2758 { 2759 exception_enter(); 2760 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2761 die_if_kernel("TL1: Illegal Instruction Exception", regs); 2762 } 2763 2764 void do_irq_tl1(struct pt_regs *regs) 2765 { 2766 exception_enter(); 2767 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2768 die_if_kernel("TL1: IRQ Exception", regs); 2769 } 2770 2771 void do_lddfmna_tl1(struct pt_regs *regs) 2772 { 2773 exception_enter(); 2774 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2775 die_if_kernel("TL1: LDDF Exception", regs); 2776 } 2777 2778 void do_stdfmna_tl1(struct pt_regs *regs) 2779 { 2780 exception_enter(); 2781 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2782 die_if_kernel("TL1: STDF Exception", regs); 2783 } 2784 2785 void do_paw(struct pt_regs *regs) 2786 { 2787 exception_enter(); 2788 die_if_kernel("TL0: Phys Watchpoint Exception", regs); 2789 } 2790 2791 void do_paw_tl1(struct pt_regs *regs) 2792 { 2793 exception_enter(); 2794 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2795 die_if_kernel("TL1: Phys Watchpoint Exception", regs); 2796 } 2797 2798 void do_vaw(struct pt_regs *regs) 2799 { 2800 exception_enter(); 2801 die_if_kernel("TL0: Virt Watchpoint Exception", regs); 2802 } 2803 2804 void do_vaw_tl1(struct pt_regs *regs) 2805 { 2806 exception_enter(); 2807 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2808 die_if_kernel("TL1: Virt Watchpoint Exception", regs); 2809 } 2810 2811 void do_tof_tl1(struct pt_regs *regs) 2812 { 2813 exception_enter(); 2814 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2815 die_if_kernel("TL1: Tag Overflow Exception", regs); 2816 } 2817 2818 void do_getpsr(struct pt_regs *regs) 2819 { 2820 regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate); 2821 regs->tpc = regs->tnpc; 2822 regs->tnpc += 4; 2823 if (test_thread_flag(TIF_32BIT)) { 2824 regs->tpc &= 0xffffffff; 2825 regs->tnpc &= 0xffffffff; 2826 } 2827 } 2828 2829 u64 cpu_mondo_counter[NR_CPUS] = {0}; 2830 struct trap_per_cpu trap_block[NR_CPUS]; 2831 EXPORT_SYMBOL(trap_block); 2832 2833 /* This can get invoked before sched_init() so play it super safe 2834 * and use hard_smp_processor_id(). 2835 */ 2836 void notrace init_cur_cpu_trap(struct thread_info *t) 2837 { 2838 int cpu = hard_smp_processor_id(); 2839 struct trap_per_cpu *p = &trap_block[cpu]; 2840 2841 p->thread = t; 2842 p->pgd_paddr = 0; 2843 } 2844 2845 extern void thread_info_offsets_are_bolixed_dave(void); 2846 extern void trap_per_cpu_offsets_are_bolixed_dave(void); 2847 extern void tsb_config_offsets_are_bolixed_dave(void); 2848 2849 /* Only invoked on boot processor. */ 2850 void __init trap_init(void) 2851 { 2852 /* Compile time sanity check. */ 2853 BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) || 2854 TI_FLAGS != offsetof(struct thread_info, flags) || 2855 TI_CPU != offsetof(struct thread_info, cpu) || 2856 TI_FPSAVED != offsetof(struct thread_info, fpsaved) || 2857 TI_KSP != offsetof(struct thread_info, ksp) || 2858 TI_FAULT_ADDR != offsetof(struct thread_info, 2859 fault_address) || 2860 TI_KREGS != offsetof(struct thread_info, kregs) || 2861 TI_UTRAPS != offsetof(struct thread_info, utraps) || 2862 TI_REG_WINDOW != offsetof(struct thread_info, 2863 reg_window) || 2864 TI_RWIN_SPTRS != offsetof(struct thread_info, 2865 rwbuf_stkptrs) || 2866 TI_GSR != offsetof(struct thread_info, gsr) || 2867 TI_XFSR != offsetof(struct thread_info, xfsr) || 2868 TI_PRE_COUNT != offsetof(struct thread_info, 2869 preempt_count) || 2870 TI_NEW_CHILD != offsetof(struct thread_info, new_child) || 2871 TI_CURRENT_DS != offsetof(struct thread_info, 2872 current_ds) || 2873 TI_KUNA_REGS != offsetof(struct thread_info, 2874 kern_una_regs) || 2875 TI_KUNA_INSN != offsetof(struct thread_info, 2876 kern_una_insn) || 2877 TI_FPREGS != offsetof(struct thread_info, fpregs) || 2878 (TI_FPREGS & (64 - 1))); 2879 2880 BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, 2881 thread) || 2882 (TRAP_PER_CPU_PGD_PADDR != 2883 offsetof(struct trap_per_cpu, pgd_paddr)) || 2884 (TRAP_PER_CPU_CPU_MONDO_PA != 2885 offsetof(struct trap_per_cpu, cpu_mondo_pa)) || 2886 (TRAP_PER_CPU_DEV_MONDO_PA != 2887 offsetof(struct trap_per_cpu, dev_mondo_pa)) || 2888 (TRAP_PER_CPU_RESUM_MONDO_PA != 2889 offsetof(struct trap_per_cpu, resum_mondo_pa)) || 2890 (TRAP_PER_CPU_RESUM_KBUF_PA != 2891 offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) || 2892 (TRAP_PER_CPU_NONRESUM_MONDO_PA != 2893 offsetof(struct trap_per_cpu, nonresum_mondo_pa)) || 2894 (TRAP_PER_CPU_NONRESUM_KBUF_PA != 2895 offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) || 2896 (TRAP_PER_CPU_FAULT_INFO != 2897 offsetof(struct trap_per_cpu, fault_info)) || 2898 (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA != 2899 offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) || 2900 (TRAP_PER_CPU_CPU_LIST_PA != 2901 offsetof(struct trap_per_cpu, cpu_list_pa)) || 2902 (TRAP_PER_CPU_TSB_HUGE != 2903 offsetof(struct trap_per_cpu, tsb_huge)) || 2904 (TRAP_PER_CPU_TSB_HUGE_TEMP != 2905 offsetof(struct trap_per_cpu, tsb_huge_temp)) || 2906 (TRAP_PER_CPU_IRQ_WORKLIST_PA != 2907 offsetof(struct trap_per_cpu, irq_worklist_pa)) || 2908 (TRAP_PER_CPU_CPU_MONDO_QMASK != 2909 offsetof(struct trap_per_cpu, cpu_mondo_qmask)) || 2910 (TRAP_PER_CPU_DEV_MONDO_QMASK != 2911 offsetof(struct trap_per_cpu, dev_mondo_qmask)) || 2912 (TRAP_PER_CPU_RESUM_QMASK != 2913 offsetof(struct trap_per_cpu, resum_qmask)) || 2914 (TRAP_PER_CPU_NONRESUM_QMASK != 2915 offsetof(struct trap_per_cpu, nonresum_qmask)) || 2916 (TRAP_PER_CPU_PER_CPU_BASE != 2917 offsetof(struct trap_per_cpu, __per_cpu_base))); 2918 2919 BUILD_BUG_ON((TSB_CONFIG_TSB != 2920 offsetof(struct tsb_config, tsb)) || 2921 (TSB_CONFIG_RSS_LIMIT != 2922 offsetof(struct tsb_config, tsb_rss_limit)) || 2923 (TSB_CONFIG_NENTRIES != 2924 offsetof(struct tsb_config, tsb_nentries)) || 2925 (TSB_CONFIG_REG_VAL != 2926 offsetof(struct tsb_config, tsb_reg_val)) || 2927 (TSB_CONFIG_MAP_VADDR != 2928 offsetof(struct tsb_config, tsb_map_vaddr)) || 2929 (TSB_CONFIG_MAP_PTE != 2930 offsetof(struct tsb_config, tsb_map_pte))); 2931 2932 /* Attach to the address space of init_task. On SMP we 2933 * do this in smp.c:smp_callin for other cpus. 2934 */ 2935 mmgrab(&init_mm); 2936 current->active_mm = &init_mm; 2937 } 2938