1 /* arch/sparc64/kernel/traps.c 2 * 3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com) 5 */ 6 7 /* 8 * I like traps on v9, :)))) 9 */ 10 11 #include <linux/module.h> 12 #include <linux/sched.h> 13 #include <linux/linkage.h> 14 #include <linux/kernel.h> 15 #include <linux/signal.h> 16 #include <linux/smp.h> 17 #include <linux/mm.h> 18 #include <linux/init.h> 19 #include <linux/kdebug.h> 20 #include <linux/ftrace.h> 21 #include <linux/reboot.h> 22 #include <linux/gfp.h> 23 #include <linux/context_tracking.h> 24 25 #include <asm/smp.h> 26 #include <asm/delay.h> 27 #include <asm/ptrace.h> 28 #include <asm/oplib.h> 29 #include <asm/page.h> 30 #include <asm/pgtable.h> 31 #include <asm/unistd.h> 32 #include <asm/uaccess.h> 33 #include <asm/fpumacro.h> 34 #include <asm/lsu.h> 35 #include <asm/dcu.h> 36 #include <asm/estate.h> 37 #include <asm/chafsr.h> 38 #include <asm/sfafsr.h> 39 #include <asm/psrcompat.h> 40 #include <asm/processor.h> 41 #include <asm/timer.h> 42 #include <asm/head.h> 43 #include <asm/prom.h> 44 #include <asm/memctrl.h> 45 #include <asm/cacheflush.h> 46 #include <asm/setup.h> 47 48 #include "entry.h" 49 #include "kernel.h" 50 #include "kstack.h" 51 52 /* When an irrecoverable trap occurs at tl > 0, the trap entry 53 * code logs the trap state registers at every level in the trap 54 * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout 55 * is as follows: 56 */ 57 struct tl1_traplog { 58 struct { 59 unsigned long tstate; 60 unsigned long tpc; 61 unsigned long tnpc; 62 unsigned long tt; 63 } trapstack[4]; 64 unsigned long tl; 65 }; 66 67 static void dump_tl1_traplog(struct tl1_traplog *p) 68 { 69 int i, limit; 70 71 printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, " 72 "dumping track stack.\n", p->tl); 73 74 limit = (tlb_type == hypervisor) ? 2 : 4; 75 for (i = 0; i < limit; i++) { 76 printk(KERN_EMERG 77 "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] " 78 "TNPC[%016lx] TT[%lx]\n", 79 i + 1, 80 p->trapstack[i].tstate, p->trapstack[i].tpc, 81 p->trapstack[i].tnpc, p->trapstack[i].tt); 82 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc); 83 } 84 } 85 86 void bad_trap(struct pt_regs *regs, long lvl) 87 { 88 char buffer[32]; 89 siginfo_t info; 90 91 if (notify_die(DIE_TRAP, "bad trap", regs, 92 0, lvl, SIGTRAP) == NOTIFY_STOP) 93 return; 94 95 if (lvl < 0x100) { 96 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl); 97 die_if_kernel(buffer, regs); 98 } 99 100 lvl -= 0x100; 101 if (regs->tstate & TSTATE_PRIV) { 102 sprintf(buffer, "Kernel bad sw trap %lx", lvl); 103 die_if_kernel(buffer, regs); 104 } 105 if (test_thread_flag(TIF_32BIT)) { 106 regs->tpc &= 0xffffffff; 107 regs->tnpc &= 0xffffffff; 108 } 109 info.si_signo = SIGILL; 110 info.si_errno = 0; 111 info.si_code = ILL_ILLTRP; 112 info.si_addr = (void __user *)regs->tpc; 113 info.si_trapno = lvl; 114 force_sig_info(SIGILL, &info, current); 115 } 116 117 void bad_trap_tl1(struct pt_regs *regs, long lvl) 118 { 119 char buffer[32]; 120 121 if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs, 122 0, lvl, SIGTRAP) == NOTIFY_STOP) 123 return; 124 125 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 126 127 sprintf (buffer, "Bad trap %lx at tl>0", lvl); 128 die_if_kernel (buffer, regs); 129 } 130 131 #ifdef CONFIG_DEBUG_BUGVERBOSE 132 void do_BUG(const char *file, int line) 133 { 134 bust_spinlocks(1); 135 printk("kernel BUG at %s:%d!\n", file, line); 136 } 137 EXPORT_SYMBOL(do_BUG); 138 #endif 139 140 static DEFINE_SPINLOCK(dimm_handler_lock); 141 static dimm_printer_t dimm_handler; 142 143 static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen) 144 { 145 unsigned long flags; 146 int ret = -ENODEV; 147 148 spin_lock_irqsave(&dimm_handler_lock, flags); 149 if (dimm_handler) { 150 ret = dimm_handler(synd_code, paddr, buf, buflen); 151 } else if (tlb_type == spitfire) { 152 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1) 153 ret = -EINVAL; 154 else 155 ret = 0; 156 } else 157 ret = -ENODEV; 158 spin_unlock_irqrestore(&dimm_handler_lock, flags); 159 160 return ret; 161 } 162 163 int register_dimm_printer(dimm_printer_t func) 164 { 165 unsigned long flags; 166 int ret = 0; 167 168 spin_lock_irqsave(&dimm_handler_lock, flags); 169 if (!dimm_handler) 170 dimm_handler = func; 171 else 172 ret = -EEXIST; 173 spin_unlock_irqrestore(&dimm_handler_lock, flags); 174 175 return ret; 176 } 177 EXPORT_SYMBOL_GPL(register_dimm_printer); 178 179 void unregister_dimm_printer(dimm_printer_t func) 180 { 181 unsigned long flags; 182 183 spin_lock_irqsave(&dimm_handler_lock, flags); 184 if (dimm_handler == func) 185 dimm_handler = NULL; 186 spin_unlock_irqrestore(&dimm_handler_lock, flags); 187 } 188 EXPORT_SYMBOL_GPL(unregister_dimm_printer); 189 190 void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 191 { 192 enum ctx_state prev_state = exception_enter(); 193 siginfo_t info; 194 195 if (notify_die(DIE_TRAP, "instruction access exception", regs, 196 0, 0x8, SIGTRAP) == NOTIFY_STOP) 197 goto out; 198 199 if (regs->tstate & TSTATE_PRIV) { 200 printk("spitfire_insn_access_exception: SFSR[%016lx] " 201 "SFAR[%016lx], going.\n", sfsr, sfar); 202 die_if_kernel("Iax", regs); 203 } 204 if (test_thread_flag(TIF_32BIT)) { 205 regs->tpc &= 0xffffffff; 206 regs->tnpc &= 0xffffffff; 207 } 208 info.si_signo = SIGSEGV; 209 info.si_errno = 0; 210 info.si_code = SEGV_MAPERR; 211 info.si_addr = (void __user *)regs->tpc; 212 info.si_trapno = 0; 213 force_sig_info(SIGSEGV, &info, current); 214 out: 215 exception_exit(prev_state); 216 } 217 218 void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 219 { 220 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 221 0, 0x8, SIGTRAP) == NOTIFY_STOP) 222 return; 223 224 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 225 spitfire_insn_access_exception(regs, sfsr, sfar); 226 } 227 228 void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 229 { 230 unsigned short type = (type_ctx >> 16); 231 unsigned short ctx = (type_ctx & 0xffff); 232 siginfo_t info; 233 234 if (notify_die(DIE_TRAP, "instruction access exception", regs, 235 0, 0x8, SIGTRAP) == NOTIFY_STOP) 236 return; 237 238 if (regs->tstate & TSTATE_PRIV) { 239 printk("sun4v_insn_access_exception: ADDR[%016lx] " 240 "CTX[%04x] TYPE[%04x], going.\n", 241 addr, ctx, type); 242 die_if_kernel("Iax", regs); 243 } 244 245 if (test_thread_flag(TIF_32BIT)) { 246 regs->tpc &= 0xffffffff; 247 regs->tnpc &= 0xffffffff; 248 } 249 info.si_signo = SIGSEGV; 250 info.si_errno = 0; 251 info.si_code = SEGV_MAPERR; 252 info.si_addr = (void __user *) addr; 253 info.si_trapno = 0; 254 force_sig_info(SIGSEGV, &info, current); 255 } 256 257 void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 258 { 259 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs, 260 0, 0x8, SIGTRAP) == NOTIFY_STOP) 261 return; 262 263 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 264 sun4v_insn_access_exception(regs, addr, type_ctx); 265 } 266 267 void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 268 { 269 enum ctx_state prev_state = exception_enter(); 270 siginfo_t info; 271 272 if (notify_die(DIE_TRAP, "data access exception", regs, 273 0, 0x30, SIGTRAP) == NOTIFY_STOP) 274 goto out; 275 276 if (regs->tstate & TSTATE_PRIV) { 277 /* Test if this comes from uaccess places. */ 278 const struct exception_table_entry *entry; 279 280 entry = search_exception_tables(regs->tpc); 281 if (entry) { 282 /* Ouch, somebody is trying VM hole tricks on us... */ 283 #ifdef DEBUG_EXCEPTIONS 284 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); 285 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 286 regs->tpc, entry->fixup); 287 #endif 288 regs->tpc = entry->fixup; 289 regs->tnpc = regs->tpc + 4; 290 goto out; 291 } 292 /* Shit... */ 293 printk("spitfire_data_access_exception: SFSR[%016lx] " 294 "SFAR[%016lx], going.\n", sfsr, sfar); 295 die_if_kernel("Dax", regs); 296 } 297 298 info.si_signo = SIGSEGV; 299 info.si_errno = 0; 300 info.si_code = SEGV_MAPERR; 301 info.si_addr = (void __user *)sfar; 302 info.si_trapno = 0; 303 force_sig_info(SIGSEGV, &info, current); 304 out: 305 exception_exit(prev_state); 306 } 307 308 void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar) 309 { 310 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 311 0, 0x30, SIGTRAP) == NOTIFY_STOP) 312 return; 313 314 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 315 spitfire_data_access_exception(regs, sfsr, sfar); 316 } 317 318 void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 319 { 320 unsigned short type = (type_ctx >> 16); 321 unsigned short ctx = (type_ctx & 0xffff); 322 siginfo_t info; 323 324 if (notify_die(DIE_TRAP, "data access exception", regs, 325 0, 0x8, SIGTRAP) == NOTIFY_STOP) 326 return; 327 328 if (regs->tstate & TSTATE_PRIV) { 329 /* Test if this comes from uaccess places. */ 330 const struct exception_table_entry *entry; 331 332 entry = search_exception_tables(regs->tpc); 333 if (entry) { 334 /* Ouch, somebody is trying VM hole tricks on us... */ 335 #ifdef DEBUG_EXCEPTIONS 336 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc); 337 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n", 338 regs->tpc, entry->fixup); 339 #endif 340 regs->tpc = entry->fixup; 341 regs->tnpc = regs->tpc + 4; 342 return; 343 } 344 printk("sun4v_data_access_exception: ADDR[%016lx] " 345 "CTX[%04x] TYPE[%04x], going.\n", 346 addr, ctx, type); 347 die_if_kernel("Dax", regs); 348 } 349 350 if (test_thread_flag(TIF_32BIT)) { 351 regs->tpc &= 0xffffffff; 352 regs->tnpc &= 0xffffffff; 353 } 354 info.si_signo = SIGSEGV; 355 info.si_errno = 0; 356 info.si_code = SEGV_MAPERR; 357 info.si_addr = (void __user *) addr; 358 info.si_trapno = 0; 359 force_sig_info(SIGSEGV, &info, current); 360 } 361 362 void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 363 { 364 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs, 365 0, 0x8, SIGTRAP) == NOTIFY_STOP) 366 return; 367 368 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 369 sun4v_data_access_exception(regs, addr, type_ctx); 370 } 371 372 #ifdef CONFIG_PCI 373 #include "pci_impl.h" 374 #endif 375 376 /* When access exceptions happen, we must do this. */ 377 static void spitfire_clean_and_reenable_l1_caches(void) 378 { 379 unsigned long va; 380 381 if (tlb_type != spitfire) 382 BUG(); 383 384 /* Clean 'em. */ 385 for (va = 0; va < (PAGE_SIZE << 1); va += 32) { 386 spitfire_put_icache_tag(va, 0x0); 387 spitfire_put_dcache_tag(va, 0x0); 388 } 389 390 /* Re-enable in LSU. */ 391 __asm__ __volatile__("flush %%g6\n\t" 392 "membar #Sync\n\t" 393 "stxa %0, [%%g0] %1\n\t" 394 "membar #Sync" 395 : /* no outputs */ 396 : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC | 397 LSU_CONTROL_IM | LSU_CONTROL_DM), 398 "i" (ASI_LSU_CONTROL) 399 : "memory"); 400 } 401 402 static void spitfire_enable_estate_errors(void) 403 { 404 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 405 "membar #Sync" 406 : /* no outputs */ 407 : "r" (ESTATE_ERR_ALL), 408 "i" (ASI_ESTATE_ERROR_EN)); 409 } 410 411 static char ecc_syndrome_table[] = { 412 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49, 413 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a, 414 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48, 415 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c, 416 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48, 417 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29, 418 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b, 419 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48, 420 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48, 421 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e, 422 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b, 423 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 424 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36, 425 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48, 426 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48, 427 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 428 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48, 429 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b, 430 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32, 431 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48, 432 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b, 433 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48, 434 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48, 435 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b, 436 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49, 437 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48, 438 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48, 439 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 440 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48, 441 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b, 442 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b, 443 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a 444 }; 445 446 static char *syndrome_unknown = "<Unknown>"; 447 448 static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit) 449 { 450 unsigned short scode; 451 char memmod_str[64], *p; 452 453 if (udbl & bit) { 454 scode = ecc_syndrome_table[udbl & 0xff]; 455 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) 456 p = syndrome_unknown; 457 else 458 p = memmod_str; 459 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] " 460 "Memory Module \"%s\"\n", 461 smp_processor_id(), scode, p); 462 } 463 464 if (udbh & bit) { 465 scode = ecc_syndrome_table[udbh & 0xff]; 466 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0) 467 p = syndrome_unknown; 468 else 469 p = memmod_str; 470 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] " 471 "Memory Module \"%s\"\n", 472 smp_processor_id(), scode, p); 473 } 474 475 } 476 477 static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs) 478 { 479 480 printk(KERN_WARNING "CPU[%d]: Correctable ECC Error " 481 "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n", 482 smp_processor_id(), afsr, afar, udbl, udbh, tl1); 483 484 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE); 485 486 /* We always log it, even if someone is listening for this 487 * trap. 488 */ 489 notify_die(DIE_TRAP, "Correctable ECC Error", regs, 490 0, TRAP_TYPE_CEE, SIGTRAP); 491 492 /* The Correctable ECC Error trap does not disable I/D caches. So 493 * we only have to restore the ESTATE Error Enable register. 494 */ 495 spitfire_enable_estate_errors(); 496 } 497 498 static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs) 499 { 500 siginfo_t info; 501 502 printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] " 503 "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n", 504 smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1); 505 506 /* XXX add more human friendly logging of the error status 507 * XXX as is implemented for cheetah 508 */ 509 510 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE); 511 512 /* We always log it, even if someone is listening for this 513 * trap. 514 */ 515 notify_die(DIE_TRAP, "Uncorrectable Error", regs, 516 0, tt, SIGTRAP); 517 518 if (regs->tstate & TSTATE_PRIV) { 519 if (tl1) 520 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 521 die_if_kernel("UE", regs); 522 } 523 524 /* XXX need more intelligent processing here, such as is implemented 525 * XXX for cheetah errors, in fact if the E-cache still holds the 526 * XXX line with bad parity this will loop 527 */ 528 529 spitfire_clean_and_reenable_l1_caches(); 530 spitfire_enable_estate_errors(); 531 532 if (test_thread_flag(TIF_32BIT)) { 533 regs->tpc &= 0xffffffff; 534 regs->tnpc &= 0xffffffff; 535 } 536 info.si_signo = SIGBUS; 537 info.si_errno = 0; 538 info.si_code = BUS_OBJERR; 539 info.si_addr = (void *)0; 540 info.si_trapno = 0; 541 force_sig_info(SIGBUS, &info, current); 542 } 543 544 void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar) 545 { 546 unsigned long afsr, tt, udbh, udbl; 547 int tl1; 548 549 afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT; 550 tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT; 551 tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0; 552 udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT; 553 udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT; 554 555 #ifdef CONFIG_PCI 556 if (tt == TRAP_TYPE_DAE && 557 pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { 558 spitfire_clean_and_reenable_l1_caches(); 559 spitfire_enable_estate_errors(); 560 561 pci_poke_faulted = 1; 562 regs->tnpc = regs->tpc + 4; 563 return; 564 } 565 #endif 566 567 if (afsr & SFAFSR_UE) 568 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs); 569 570 if (tt == TRAP_TYPE_CEE) { 571 /* Handle the case where we took a CEE trap, but ACK'd 572 * only the UE state in the UDB error registers. 573 */ 574 if (afsr & SFAFSR_UE) { 575 if (udbh & UDBE_CE) { 576 __asm__ __volatile__( 577 "stxa %0, [%1] %2\n\t" 578 "membar #Sync" 579 : /* no outputs */ 580 : "r" (udbh & UDBE_CE), 581 "r" (0x0), "i" (ASI_UDB_ERROR_W)); 582 } 583 if (udbl & UDBE_CE) { 584 __asm__ __volatile__( 585 "stxa %0, [%1] %2\n\t" 586 "membar #Sync" 587 : /* no outputs */ 588 : "r" (udbl & UDBE_CE), 589 "r" (0x18), "i" (ASI_UDB_ERROR_W)); 590 } 591 } 592 593 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs); 594 } 595 } 596 597 int cheetah_pcache_forced_on; 598 599 void cheetah_enable_pcache(void) 600 { 601 unsigned long dcr; 602 603 printk("CHEETAH: Enabling P-Cache on cpu %d.\n", 604 smp_processor_id()); 605 606 __asm__ __volatile__("ldxa [%%g0] %1, %0" 607 : "=r" (dcr) 608 : "i" (ASI_DCU_CONTROL_REG)); 609 dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL); 610 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 611 "membar #Sync" 612 : /* no outputs */ 613 : "r" (dcr), "i" (ASI_DCU_CONTROL_REG)); 614 } 615 616 /* Cheetah error trap handling. */ 617 static unsigned long ecache_flush_physbase; 618 static unsigned long ecache_flush_linesize; 619 static unsigned long ecache_flush_size; 620 621 /* This table is ordered in priority of errors and matches the 622 * AFAR overwrite policy as well. 623 */ 624 625 struct afsr_error_table { 626 unsigned long mask; 627 const char *name; 628 }; 629 630 static const char CHAFSR_PERR_msg[] = 631 "System interface protocol error"; 632 static const char CHAFSR_IERR_msg[] = 633 "Internal processor error"; 634 static const char CHAFSR_ISAP_msg[] = 635 "System request parity error on incoming address"; 636 static const char CHAFSR_UCU_msg[] = 637 "Uncorrectable E-cache ECC error for ifetch/data"; 638 static const char CHAFSR_UCC_msg[] = 639 "SW Correctable E-cache ECC error for ifetch/data"; 640 static const char CHAFSR_UE_msg[] = 641 "Uncorrectable system bus data ECC error for read"; 642 static const char CHAFSR_EDU_msg[] = 643 "Uncorrectable E-cache ECC error for stmerge/blkld"; 644 static const char CHAFSR_EMU_msg[] = 645 "Uncorrectable system bus MTAG error"; 646 static const char CHAFSR_WDU_msg[] = 647 "Uncorrectable E-cache ECC error for writeback"; 648 static const char CHAFSR_CPU_msg[] = 649 "Uncorrectable ECC error for copyout"; 650 static const char CHAFSR_CE_msg[] = 651 "HW corrected system bus data ECC error for read"; 652 static const char CHAFSR_EDC_msg[] = 653 "HW corrected E-cache ECC error for stmerge/blkld"; 654 static const char CHAFSR_EMC_msg[] = 655 "HW corrected system bus MTAG ECC error"; 656 static const char CHAFSR_WDC_msg[] = 657 "HW corrected E-cache ECC error for writeback"; 658 static const char CHAFSR_CPC_msg[] = 659 "HW corrected ECC error for copyout"; 660 static const char CHAFSR_TO_msg[] = 661 "Unmapped error from system bus"; 662 static const char CHAFSR_BERR_msg[] = 663 "Bus error response from system bus"; 664 static const char CHAFSR_IVC_msg[] = 665 "HW corrected system bus data ECC error for ivec read"; 666 static const char CHAFSR_IVU_msg[] = 667 "Uncorrectable system bus data ECC error for ivec read"; 668 static struct afsr_error_table __cheetah_error_table[] = { 669 { CHAFSR_PERR, CHAFSR_PERR_msg }, 670 { CHAFSR_IERR, CHAFSR_IERR_msg }, 671 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 672 { CHAFSR_UCU, CHAFSR_UCU_msg }, 673 { CHAFSR_UCC, CHAFSR_UCC_msg }, 674 { CHAFSR_UE, CHAFSR_UE_msg }, 675 { CHAFSR_EDU, CHAFSR_EDU_msg }, 676 { CHAFSR_EMU, CHAFSR_EMU_msg }, 677 { CHAFSR_WDU, CHAFSR_WDU_msg }, 678 { CHAFSR_CPU, CHAFSR_CPU_msg }, 679 { CHAFSR_CE, CHAFSR_CE_msg }, 680 { CHAFSR_EDC, CHAFSR_EDC_msg }, 681 { CHAFSR_EMC, CHAFSR_EMC_msg }, 682 { CHAFSR_WDC, CHAFSR_WDC_msg }, 683 { CHAFSR_CPC, CHAFSR_CPC_msg }, 684 { CHAFSR_TO, CHAFSR_TO_msg }, 685 { CHAFSR_BERR, CHAFSR_BERR_msg }, 686 /* These two do not update the AFAR. */ 687 { CHAFSR_IVC, CHAFSR_IVC_msg }, 688 { CHAFSR_IVU, CHAFSR_IVU_msg }, 689 { 0, NULL }, 690 }; 691 static const char CHPAFSR_DTO_msg[] = 692 "System bus unmapped error for prefetch/storequeue-read"; 693 static const char CHPAFSR_DBERR_msg[] = 694 "System bus error for prefetch/storequeue-read"; 695 static const char CHPAFSR_THCE_msg[] = 696 "Hardware corrected E-cache Tag ECC error"; 697 static const char CHPAFSR_TSCE_msg[] = 698 "SW handled correctable E-cache Tag ECC error"; 699 static const char CHPAFSR_TUE_msg[] = 700 "Uncorrectable E-cache Tag ECC error"; 701 static const char CHPAFSR_DUE_msg[] = 702 "System bus uncorrectable data ECC error due to prefetch/store-fill"; 703 static struct afsr_error_table __cheetah_plus_error_table[] = { 704 { CHAFSR_PERR, CHAFSR_PERR_msg }, 705 { CHAFSR_IERR, CHAFSR_IERR_msg }, 706 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 707 { CHAFSR_UCU, CHAFSR_UCU_msg }, 708 { CHAFSR_UCC, CHAFSR_UCC_msg }, 709 { CHAFSR_UE, CHAFSR_UE_msg }, 710 { CHAFSR_EDU, CHAFSR_EDU_msg }, 711 { CHAFSR_EMU, CHAFSR_EMU_msg }, 712 { CHAFSR_WDU, CHAFSR_WDU_msg }, 713 { CHAFSR_CPU, CHAFSR_CPU_msg }, 714 { CHAFSR_CE, CHAFSR_CE_msg }, 715 { CHAFSR_EDC, CHAFSR_EDC_msg }, 716 { CHAFSR_EMC, CHAFSR_EMC_msg }, 717 { CHAFSR_WDC, CHAFSR_WDC_msg }, 718 { CHAFSR_CPC, CHAFSR_CPC_msg }, 719 { CHAFSR_TO, CHAFSR_TO_msg }, 720 { CHAFSR_BERR, CHAFSR_BERR_msg }, 721 { CHPAFSR_DTO, CHPAFSR_DTO_msg }, 722 { CHPAFSR_DBERR, CHPAFSR_DBERR_msg }, 723 { CHPAFSR_THCE, CHPAFSR_THCE_msg }, 724 { CHPAFSR_TSCE, CHPAFSR_TSCE_msg }, 725 { CHPAFSR_TUE, CHPAFSR_TUE_msg }, 726 { CHPAFSR_DUE, CHPAFSR_DUE_msg }, 727 /* These two do not update the AFAR. */ 728 { CHAFSR_IVC, CHAFSR_IVC_msg }, 729 { CHAFSR_IVU, CHAFSR_IVU_msg }, 730 { 0, NULL }, 731 }; 732 static const char JPAFSR_JETO_msg[] = 733 "System interface protocol error, hw timeout caused"; 734 static const char JPAFSR_SCE_msg[] = 735 "Parity error on system snoop results"; 736 static const char JPAFSR_JEIC_msg[] = 737 "System interface protocol error, illegal command detected"; 738 static const char JPAFSR_JEIT_msg[] = 739 "System interface protocol error, illegal ADTYPE detected"; 740 static const char JPAFSR_OM_msg[] = 741 "Out of range memory error has occurred"; 742 static const char JPAFSR_ETP_msg[] = 743 "Parity error on L2 cache tag SRAM"; 744 static const char JPAFSR_UMS_msg[] = 745 "Error due to unsupported store"; 746 static const char JPAFSR_RUE_msg[] = 747 "Uncorrectable ECC error from remote cache/memory"; 748 static const char JPAFSR_RCE_msg[] = 749 "Correctable ECC error from remote cache/memory"; 750 static const char JPAFSR_BP_msg[] = 751 "JBUS parity error on returned read data"; 752 static const char JPAFSR_WBP_msg[] = 753 "JBUS parity error on data for writeback or block store"; 754 static const char JPAFSR_FRC_msg[] = 755 "Foreign read to DRAM incurring correctable ECC error"; 756 static const char JPAFSR_FRU_msg[] = 757 "Foreign read to DRAM incurring uncorrectable ECC error"; 758 static struct afsr_error_table __jalapeno_error_table[] = { 759 { JPAFSR_JETO, JPAFSR_JETO_msg }, 760 { JPAFSR_SCE, JPAFSR_SCE_msg }, 761 { JPAFSR_JEIC, JPAFSR_JEIC_msg }, 762 { JPAFSR_JEIT, JPAFSR_JEIT_msg }, 763 { CHAFSR_PERR, CHAFSR_PERR_msg }, 764 { CHAFSR_IERR, CHAFSR_IERR_msg }, 765 { CHAFSR_ISAP, CHAFSR_ISAP_msg }, 766 { CHAFSR_UCU, CHAFSR_UCU_msg }, 767 { CHAFSR_UCC, CHAFSR_UCC_msg }, 768 { CHAFSR_UE, CHAFSR_UE_msg }, 769 { CHAFSR_EDU, CHAFSR_EDU_msg }, 770 { JPAFSR_OM, JPAFSR_OM_msg }, 771 { CHAFSR_WDU, CHAFSR_WDU_msg }, 772 { CHAFSR_CPU, CHAFSR_CPU_msg }, 773 { CHAFSR_CE, CHAFSR_CE_msg }, 774 { CHAFSR_EDC, CHAFSR_EDC_msg }, 775 { JPAFSR_ETP, JPAFSR_ETP_msg }, 776 { CHAFSR_WDC, CHAFSR_WDC_msg }, 777 { CHAFSR_CPC, CHAFSR_CPC_msg }, 778 { CHAFSR_TO, CHAFSR_TO_msg }, 779 { CHAFSR_BERR, CHAFSR_BERR_msg }, 780 { JPAFSR_UMS, JPAFSR_UMS_msg }, 781 { JPAFSR_RUE, JPAFSR_RUE_msg }, 782 { JPAFSR_RCE, JPAFSR_RCE_msg }, 783 { JPAFSR_BP, JPAFSR_BP_msg }, 784 { JPAFSR_WBP, JPAFSR_WBP_msg }, 785 { JPAFSR_FRC, JPAFSR_FRC_msg }, 786 { JPAFSR_FRU, JPAFSR_FRU_msg }, 787 /* These two do not update the AFAR. */ 788 { CHAFSR_IVU, CHAFSR_IVU_msg }, 789 { 0, NULL }, 790 }; 791 static struct afsr_error_table *cheetah_error_table; 792 static unsigned long cheetah_afsr_errors; 793 794 struct cheetah_err_info *cheetah_error_log; 795 796 static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr) 797 { 798 struct cheetah_err_info *p; 799 int cpu = smp_processor_id(); 800 801 if (!cheetah_error_log) 802 return NULL; 803 804 p = cheetah_error_log + (cpu * 2); 805 if ((afsr & CHAFSR_TL1) != 0UL) 806 p++; 807 808 return p; 809 } 810 811 extern unsigned int tl0_icpe[], tl1_icpe[]; 812 extern unsigned int tl0_dcpe[], tl1_dcpe[]; 813 extern unsigned int tl0_fecc[], tl1_fecc[]; 814 extern unsigned int tl0_cee[], tl1_cee[]; 815 extern unsigned int tl0_iae[], tl1_iae[]; 816 extern unsigned int tl0_dae[], tl1_dae[]; 817 extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[]; 818 extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[]; 819 extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[]; 820 extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[]; 821 extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[]; 822 823 void __init cheetah_ecache_flush_init(void) 824 { 825 unsigned long largest_size, smallest_linesize, order, ver; 826 int i, sz; 827 828 /* Scan all cpu device tree nodes, note two values: 829 * 1) largest E-cache size 830 * 2) smallest E-cache line size 831 */ 832 largest_size = 0UL; 833 smallest_linesize = ~0UL; 834 835 for (i = 0; i < NR_CPUS; i++) { 836 unsigned long val; 837 838 val = cpu_data(i).ecache_size; 839 if (!val) 840 continue; 841 842 if (val > largest_size) 843 largest_size = val; 844 845 val = cpu_data(i).ecache_line_size; 846 if (val < smallest_linesize) 847 smallest_linesize = val; 848 849 } 850 851 if (largest_size == 0UL || smallest_linesize == ~0UL) { 852 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache " 853 "parameters.\n"); 854 prom_halt(); 855 } 856 857 ecache_flush_size = (2 * largest_size); 858 ecache_flush_linesize = smallest_linesize; 859 860 ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size); 861 862 if (ecache_flush_physbase == ~0UL) { 863 prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte " 864 "contiguous physical memory.\n", 865 ecache_flush_size); 866 prom_halt(); 867 } 868 869 /* Now allocate error trap reporting scoreboard. */ 870 sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info)); 871 for (order = 0; order < MAX_ORDER; order++) { 872 if ((PAGE_SIZE << order) >= sz) 873 break; 874 } 875 cheetah_error_log = (struct cheetah_err_info *) 876 __get_free_pages(GFP_KERNEL, order); 877 if (!cheetah_error_log) { 878 prom_printf("cheetah_ecache_flush_init: Failed to allocate " 879 "error logging scoreboard (%d bytes).\n", sz); 880 prom_halt(); 881 } 882 memset(cheetah_error_log, 0, PAGE_SIZE << order); 883 884 /* Mark all AFSRs as invalid so that the trap handler will 885 * log new new information there. 886 */ 887 for (i = 0; i < 2 * NR_CPUS; i++) 888 cheetah_error_log[i].afsr = CHAFSR_INVALID; 889 890 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 891 if ((ver >> 32) == __JALAPENO_ID || 892 (ver >> 32) == __SERRANO_ID) { 893 cheetah_error_table = &__jalapeno_error_table[0]; 894 cheetah_afsr_errors = JPAFSR_ERRORS; 895 } else if ((ver >> 32) == 0x003e0015) { 896 cheetah_error_table = &__cheetah_plus_error_table[0]; 897 cheetah_afsr_errors = CHPAFSR_ERRORS; 898 } else { 899 cheetah_error_table = &__cheetah_error_table[0]; 900 cheetah_afsr_errors = CHAFSR_ERRORS; 901 } 902 903 /* Now patch trap tables. */ 904 memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4)); 905 memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4)); 906 memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4)); 907 memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4)); 908 memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4)); 909 memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4)); 910 memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4)); 911 memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4)); 912 if (tlb_type == cheetah_plus) { 913 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4)); 914 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4)); 915 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4)); 916 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4)); 917 } 918 flushi(PAGE_OFFSET); 919 } 920 921 static void cheetah_flush_ecache(void) 922 { 923 unsigned long flush_base = ecache_flush_physbase; 924 unsigned long flush_linesize = ecache_flush_linesize; 925 unsigned long flush_size = ecache_flush_size; 926 927 __asm__ __volatile__("1: subcc %0, %4, %0\n\t" 928 " bne,pt %%xcc, 1b\n\t" 929 " ldxa [%2 + %0] %3, %%g0\n\t" 930 : "=&r" (flush_size) 931 : "0" (flush_size), "r" (flush_base), 932 "i" (ASI_PHYS_USE_EC), "r" (flush_linesize)); 933 } 934 935 static void cheetah_flush_ecache_line(unsigned long physaddr) 936 { 937 unsigned long alias; 938 939 physaddr &= ~(8UL - 1UL); 940 physaddr = (ecache_flush_physbase + 941 (physaddr & ((ecache_flush_size>>1UL) - 1UL))); 942 alias = physaddr + (ecache_flush_size >> 1UL); 943 __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t" 944 "ldxa [%1] %2, %%g0\n\t" 945 "membar #Sync" 946 : /* no outputs */ 947 : "r" (physaddr), "r" (alias), 948 "i" (ASI_PHYS_USE_EC)); 949 } 950 951 /* Unfortunately, the diagnostic access to the I-cache tags we need to 952 * use to clear the thing interferes with I-cache coherency transactions. 953 * 954 * So we must only flush the I-cache when it is disabled. 955 */ 956 static void __cheetah_flush_icache(void) 957 { 958 unsigned int icache_size, icache_line_size; 959 unsigned long addr; 960 961 icache_size = local_cpu_data().icache_size; 962 icache_line_size = local_cpu_data().icache_line_size; 963 964 /* Clear the valid bits in all the tags. */ 965 for (addr = 0; addr < icache_size; addr += icache_line_size) { 966 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 967 "membar #Sync" 968 : /* no outputs */ 969 : "r" (addr | (2 << 3)), 970 "i" (ASI_IC_TAG)); 971 } 972 } 973 974 static void cheetah_flush_icache(void) 975 { 976 unsigned long dcu_save; 977 978 /* Save current DCU, disable I-cache. */ 979 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 980 "or %0, %2, %%g1\n\t" 981 "stxa %%g1, [%%g0] %1\n\t" 982 "membar #Sync" 983 : "=r" (dcu_save) 984 : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC) 985 : "g1"); 986 987 __cheetah_flush_icache(); 988 989 /* Restore DCU register */ 990 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 991 "membar #Sync" 992 : /* no outputs */ 993 : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG)); 994 } 995 996 static void cheetah_flush_dcache(void) 997 { 998 unsigned int dcache_size, dcache_line_size; 999 unsigned long addr; 1000 1001 dcache_size = local_cpu_data().dcache_size; 1002 dcache_line_size = local_cpu_data().dcache_line_size; 1003 1004 for (addr = 0; addr < dcache_size; addr += dcache_line_size) { 1005 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" 1006 "membar #Sync" 1007 : /* no outputs */ 1008 : "r" (addr), "i" (ASI_DCACHE_TAG)); 1009 } 1010 } 1011 1012 /* In order to make the even parity correct we must do two things. 1013 * First, we clear DC_data_parity and set DC_utag to an appropriate value. 1014 * Next, we clear out all 32-bytes of data for that line. Data of 1015 * all-zero + tag parity value of zero == correct parity. 1016 */ 1017 static void cheetah_plus_zap_dcache_parity(void) 1018 { 1019 unsigned int dcache_size, dcache_line_size; 1020 unsigned long addr; 1021 1022 dcache_size = local_cpu_data().dcache_size; 1023 dcache_line_size = local_cpu_data().dcache_line_size; 1024 1025 for (addr = 0; addr < dcache_size; addr += dcache_line_size) { 1026 unsigned long tag = (addr >> 14); 1027 unsigned long line; 1028 1029 __asm__ __volatile__("membar #Sync\n\t" 1030 "stxa %0, [%1] %2\n\t" 1031 "membar #Sync" 1032 : /* no outputs */ 1033 : "r" (tag), "r" (addr), 1034 "i" (ASI_DCACHE_UTAG)); 1035 for (line = addr; line < addr + dcache_line_size; line += 8) 1036 __asm__ __volatile__("membar #Sync\n\t" 1037 "stxa %%g0, [%0] %1\n\t" 1038 "membar #Sync" 1039 : /* no outputs */ 1040 : "r" (line), 1041 "i" (ASI_DCACHE_DATA)); 1042 } 1043 } 1044 1045 /* Conversion tables used to frob Cheetah AFSR syndrome values into 1046 * something palatable to the memory controller driver get_unumber 1047 * routine. 1048 */ 1049 #define MT0 137 1050 #define MT1 138 1051 #define MT2 139 1052 #define NONE 254 1053 #define MTC0 140 1054 #define MTC1 141 1055 #define MTC2 142 1056 #define MTC3 143 1057 #define C0 128 1058 #define C1 129 1059 #define C2 130 1060 #define C3 131 1061 #define C4 132 1062 #define C5 133 1063 #define C6 134 1064 #define C7 135 1065 #define C8 136 1066 #define M2 144 1067 #define M3 145 1068 #define M4 146 1069 #define M 147 1070 static unsigned char cheetah_ecc_syntab[] = { 1071 /*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M, 1072 /*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16, 1073 /*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10, 1074 /*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M, 1075 /*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6, 1076 /*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4, 1077 /*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4, 1078 /*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3, 1079 /*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5, 1080 /*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M, 1081 /*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2, 1082 /*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3, 1083 /*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M, 1084 /*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3, 1085 /*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M, 1086 /*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M, 1087 /*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4, 1088 /*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M, 1089 /*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2, 1090 /*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M, 1091 /*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4, 1092 /*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3, 1093 /*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3, 1094 /*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2, 1095 /*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4, 1096 /*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M, 1097 /*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3, 1098 /*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M, 1099 /*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3, 1100 /*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M, 1101 /*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M, 1102 /*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M 1103 }; 1104 static unsigned char cheetah_mtag_syntab[] = { 1105 NONE, MTC0, 1106 MTC1, NONE, 1107 MTC2, NONE, 1108 NONE, MT0, 1109 MTC3, NONE, 1110 NONE, MT1, 1111 NONE, MT2, 1112 NONE, NONE 1113 }; 1114 1115 /* Return the highest priority error conditon mentioned. */ 1116 static inline unsigned long cheetah_get_hipri(unsigned long afsr) 1117 { 1118 unsigned long tmp = 0; 1119 int i; 1120 1121 for (i = 0; cheetah_error_table[i].mask; i++) { 1122 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL) 1123 return tmp; 1124 } 1125 return tmp; 1126 } 1127 1128 static const char *cheetah_get_string(unsigned long bit) 1129 { 1130 int i; 1131 1132 for (i = 0; cheetah_error_table[i].mask; i++) { 1133 if ((bit & cheetah_error_table[i].mask) != 0UL) 1134 return cheetah_error_table[i].name; 1135 } 1136 return "???"; 1137 } 1138 1139 static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info, 1140 unsigned long afsr, unsigned long afar, int recoverable) 1141 { 1142 unsigned long hipri; 1143 char unum[256]; 1144 1145 printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n", 1146 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1147 afsr, afar, 1148 (afsr & CHAFSR_TL1) ? 1 : 0); 1149 printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n", 1150 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1151 regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate); 1152 printk("%s" "ERROR(%d): ", 1153 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id()); 1154 printk("TPC<%pS>\n", (void *) regs->tpc); 1155 printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n", 1156 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1157 (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT, 1158 (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT, 1159 (afsr & CHAFSR_ME) ? ", Multiple Errors" : "", 1160 (afsr & CHAFSR_PRIV) ? ", Privileged" : ""); 1161 hipri = cheetah_get_hipri(afsr); 1162 printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n", 1163 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1164 hipri, cheetah_get_string(hipri)); 1165 1166 /* Try to get unumber if relevant. */ 1167 #define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \ 1168 CHAFSR_CPC | CHAFSR_CPU | \ 1169 CHAFSR_UE | CHAFSR_CE | \ 1170 CHAFSR_EDC | CHAFSR_EDU | \ 1171 CHAFSR_UCC | CHAFSR_UCU | \ 1172 CHAFSR_WDU | CHAFSR_WDC) 1173 #define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU) 1174 if (afsr & ESYND_ERRORS) { 1175 int syndrome; 1176 int ret; 1177 1178 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT; 1179 syndrome = cheetah_ecc_syntab[syndrome]; 1180 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); 1181 if (ret != -1) 1182 printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n", 1183 (recoverable ? KERN_WARNING : KERN_CRIT), 1184 smp_processor_id(), unum); 1185 } else if (afsr & MSYND_ERRORS) { 1186 int syndrome; 1187 int ret; 1188 1189 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT; 1190 syndrome = cheetah_mtag_syntab[syndrome]; 1191 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum)); 1192 if (ret != -1) 1193 printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n", 1194 (recoverable ? KERN_WARNING : KERN_CRIT), 1195 smp_processor_id(), unum); 1196 } 1197 1198 /* Now dump the cache snapshots. */ 1199 printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n", 1200 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1201 (int) info->dcache_index, 1202 info->dcache_tag, 1203 info->dcache_utag, 1204 info->dcache_stag); 1205 printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", 1206 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1207 info->dcache_data[0], 1208 info->dcache_data[1], 1209 info->dcache_data[2], 1210 info->dcache_data[3]); 1211 printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] " 1212 "u[%016llx] l[%016llx]\n", 1213 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1214 (int) info->icache_index, 1215 info->icache_tag, 1216 info->icache_utag, 1217 info->icache_stag, 1218 info->icache_upper, 1219 info->icache_lower); 1220 printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n", 1221 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1222 info->icache_data[0], 1223 info->icache_data[1], 1224 info->icache_data[2], 1225 info->icache_data[3]); 1226 printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n", 1227 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1228 info->icache_data[4], 1229 info->icache_data[5], 1230 info->icache_data[6], 1231 info->icache_data[7]); 1232 printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n", 1233 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1234 (int) info->ecache_index, info->ecache_tag); 1235 printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n", 1236 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(), 1237 info->ecache_data[0], 1238 info->ecache_data[1], 1239 info->ecache_data[2], 1240 info->ecache_data[3]); 1241 1242 afsr = (afsr & ~hipri) & cheetah_afsr_errors; 1243 while (afsr != 0UL) { 1244 unsigned long bit = cheetah_get_hipri(afsr); 1245 1246 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n", 1247 (recoverable ? KERN_WARNING : KERN_CRIT), 1248 bit, cheetah_get_string(bit)); 1249 1250 afsr &= ~bit; 1251 } 1252 1253 if (!recoverable) 1254 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n"); 1255 } 1256 1257 static int cheetah_recheck_errors(struct cheetah_err_info *logp) 1258 { 1259 unsigned long afsr, afar; 1260 int ret = 0; 1261 1262 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1263 : "=r" (afsr) 1264 : "i" (ASI_AFSR)); 1265 if ((afsr & cheetah_afsr_errors) != 0) { 1266 if (logp != NULL) { 1267 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t" 1268 : "=r" (afar) 1269 : "i" (ASI_AFAR)); 1270 logp->afsr = afsr; 1271 logp->afar = afar; 1272 } 1273 ret = 1; 1274 } 1275 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1276 "membar #Sync\n\t" 1277 : : "r" (afsr), "i" (ASI_AFSR)); 1278 1279 return ret; 1280 } 1281 1282 void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1283 { 1284 struct cheetah_err_info local_snapshot, *p; 1285 int recoverable; 1286 1287 /* Flush E-cache */ 1288 cheetah_flush_ecache(); 1289 1290 p = cheetah_get_error_log(afsr); 1291 if (!p) { 1292 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n", 1293 afsr, afar); 1294 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1295 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1296 prom_halt(); 1297 } 1298 1299 /* Grab snapshot of logged error. */ 1300 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1301 1302 /* If the current trap snapshot does not match what the 1303 * trap handler passed along into our args, big trouble. 1304 * In such a case, mark the local copy as invalid. 1305 * 1306 * Else, it matches and we mark the afsr in the non-local 1307 * copy as invalid so we may log new error traps there. 1308 */ 1309 if (p->afsr != afsr || p->afar != afar) 1310 local_snapshot.afsr = CHAFSR_INVALID; 1311 else 1312 p->afsr = CHAFSR_INVALID; 1313 1314 cheetah_flush_icache(); 1315 cheetah_flush_dcache(); 1316 1317 /* Re-enable I-cache/D-cache */ 1318 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1319 "or %%g1, %1, %%g1\n\t" 1320 "stxa %%g1, [%%g0] %0\n\t" 1321 "membar #Sync" 1322 : /* no outputs */ 1323 : "i" (ASI_DCU_CONTROL_REG), 1324 "i" (DCU_DC | DCU_IC) 1325 : "g1"); 1326 1327 /* Re-enable error reporting */ 1328 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1329 "or %%g1, %1, %%g1\n\t" 1330 "stxa %%g1, [%%g0] %0\n\t" 1331 "membar #Sync" 1332 : /* no outputs */ 1333 : "i" (ASI_ESTATE_ERROR_EN), 1334 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1335 : "g1"); 1336 1337 /* Decide if we can continue after handling this trap and 1338 * logging the error. 1339 */ 1340 recoverable = 1; 1341 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1342 recoverable = 0; 1343 1344 /* Re-check AFSR/AFAR. What we are looking for here is whether a new 1345 * error was logged while we had error reporting traps disabled. 1346 */ 1347 if (cheetah_recheck_errors(&local_snapshot)) { 1348 unsigned long new_afsr = local_snapshot.afsr; 1349 1350 /* If we got a new asynchronous error, die... */ 1351 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | 1352 CHAFSR_WDU | CHAFSR_CPU | 1353 CHAFSR_IVU | CHAFSR_UE | 1354 CHAFSR_BERR | CHAFSR_TO)) 1355 recoverable = 0; 1356 } 1357 1358 /* Log errors. */ 1359 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1360 1361 if (!recoverable) 1362 panic("Irrecoverable Fast-ECC error trap.\n"); 1363 1364 /* Flush E-cache to kick the error trap handlers out. */ 1365 cheetah_flush_ecache(); 1366 } 1367 1368 /* Try to fix a correctable error by pushing the line out from 1369 * the E-cache. Recheck error reporting registers to see if the 1370 * problem is intermittent. 1371 */ 1372 static int cheetah_fix_ce(unsigned long physaddr) 1373 { 1374 unsigned long orig_estate; 1375 unsigned long alias1, alias2; 1376 int ret; 1377 1378 /* Make sure correctable error traps are disabled. */ 1379 __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t" 1380 "andn %0, %1, %%g1\n\t" 1381 "stxa %%g1, [%%g0] %2\n\t" 1382 "membar #Sync" 1383 : "=&r" (orig_estate) 1384 : "i" (ESTATE_ERROR_CEEN), 1385 "i" (ASI_ESTATE_ERROR_EN) 1386 : "g1"); 1387 1388 /* We calculate alias addresses that will force the 1389 * cache line in question out of the E-cache. Then 1390 * we bring it back in with an atomic instruction so 1391 * that we get it in some modified/exclusive state, 1392 * then we displace it again to try and get proper ECC 1393 * pushed back into the system. 1394 */ 1395 physaddr &= ~(8UL - 1UL); 1396 alias1 = (ecache_flush_physbase + 1397 (physaddr & ((ecache_flush_size >> 1) - 1))); 1398 alias2 = alias1 + (ecache_flush_size >> 1); 1399 __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t" 1400 "ldxa [%1] %3, %%g0\n\t" 1401 "casxa [%2] %3, %%g0, %%g0\n\t" 1402 "ldxa [%0] %3, %%g0\n\t" 1403 "ldxa [%1] %3, %%g0\n\t" 1404 "membar #Sync" 1405 : /* no outputs */ 1406 : "r" (alias1), "r" (alias2), 1407 "r" (physaddr), "i" (ASI_PHYS_USE_EC)); 1408 1409 /* Did that trigger another error? */ 1410 if (cheetah_recheck_errors(NULL)) { 1411 /* Try one more time. */ 1412 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t" 1413 "membar #Sync" 1414 : : "r" (physaddr), "i" (ASI_PHYS_USE_EC)); 1415 if (cheetah_recheck_errors(NULL)) 1416 ret = 2; 1417 else 1418 ret = 1; 1419 } else { 1420 /* No new error, intermittent problem. */ 1421 ret = 0; 1422 } 1423 1424 /* Restore error enables. */ 1425 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t" 1426 "membar #Sync" 1427 : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN)); 1428 1429 return ret; 1430 } 1431 1432 /* Return non-zero if PADDR is a valid physical memory address. */ 1433 static int cheetah_check_main_memory(unsigned long paddr) 1434 { 1435 unsigned long vaddr = PAGE_OFFSET + paddr; 1436 1437 if (vaddr > (unsigned long) high_memory) 1438 return 0; 1439 1440 return kern_addr_valid(vaddr); 1441 } 1442 1443 void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1444 { 1445 struct cheetah_err_info local_snapshot, *p; 1446 int recoverable, is_memory; 1447 1448 p = cheetah_get_error_log(afsr); 1449 if (!p) { 1450 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n", 1451 afsr, afar); 1452 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1453 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1454 prom_halt(); 1455 } 1456 1457 /* Grab snapshot of logged error. */ 1458 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1459 1460 /* If the current trap snapshot does not match what the 1461 * trap handler passed along into our args, big trouble. 1462 * In such a case, mark the local copy as invalid. 1463 * 1464 * Else, it matches and we mark the afsr in the non-local 1465 * copy as invalid so we may log new error traps there. 1466 */ 1467 if (p->afsr != afsr || p->afar != afar) 1468 local_snapshot.afsr = CHAFSR_INVALID; 1469 else 1470 p->afsr = CHAFSR_INVALID; 1471 1472 is_memory = cheetah_check_main_memory(afar); 1473 1474 if (is_memory && (afsr & CHAFSR_CE) != 0UL) { 1475 /* XXX Might want to log the results of this operation 1476 * XXX somewhere... -DaveM 1477 */ 1478 cheetah_fix_ce(afar); 1479 } 1480 1481 { 1482 int flush_all, flush_line; 1483 1484 flush_all = flush_line = 0; 1485 if ((afsr & CHAFSR_EDC) != 0UL) { 1486 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC) 1487 flush_line = 1; 1488 else 1489 flush_all = 1; 1490 } else if ((afsr & CHAFSR_CPC) != 0UL) { 1491 if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC) 1492 flush_line = 1; 1493 else 1494 flush_all = 1; 1495 } 1496 1497 /* Trap handler only disabled I-cache, flush it. */ 1498 cheetah_flush_icache(); 1499 1500 /* Re-enable I-cache */ 1501 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1502 "or %%g1, %1, %%g1\n\t" 1503 "stxa %%g1, [%%g0] %0\n\t" 1504 "membar #Sync" 1505 : /* no outputs */ 1506 : "i" (ASI_DCU_CONTROL_REG), 1507 "i" (DCU_IC) 1508 : "g1"); 1509 1510 if (flush_all) 1511 cheetah_flush_ecache(); 1512 else if (flush_line) 1513 cheetah_flush_ecache_line(afar); 1514 } 1515 1516 /* Re-enable error reporting */ 1517 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1518 "or %%g1, %1, %%g1\n\t" 1519 "stxa %%g1, [%%g0] %0\n\t" 1520 "membar #Sync" 1521 : /* no outputs */ 1522 : "i" (ASI_ESTATE_ERROR_EN), 1523 "i" (ESTATE_ERROR_CEEN) 1524 : "g1"); 1525 1526 /* Decide if we can continue after handling this trap and 1527 * logging the error. 1528 */ 1529 recoverable = 1; 1530 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1531 recoverable = 0; 1532 1533 /* Re-check AFSR/AFAR */ 1534 (void) cheetah_recheck_errors(&local_snapshot); 1535 1536 /* Log errors. */ 1537 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1538 1539 if (!recoverable) 1540 panic("Irrecoverable Correctable-ECC error trap.\n"); 1541 } 1542 1543 void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar) 1544 { 1545 struct cheetah_err_info local_snapshot, *p; 1546 int recoverable, is_memory; 1547 1548 #ifdef CONFIG_PCI 1549 /* Check for the special PCI poke sequence. */ 1550 if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) { 1551 cheetah_flush_icache(); 1552 cheetah_flush_dcache(); 1553 1554 /* Re-enable I-cache/D-cache */ 1555 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1556 "or %%g1, %1, %%g1\n\t" 1557 "stxa %%g1, [%%g0] %0\n\t" 1558 "membar #Sync" 1559 : /* no outputs */ 1560 : "i" (ASI_DCU_CONTROL_REG), 1561 "i" (DCU_DC | DCU_IC) 1562 : "g1"); 1563 1564 /* Re-enable error reporting */ 1565 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1566 "or %%g1, %1, %%g1\n\t" 1567 "stxa %%g1, [%%g0] %0\n\t" 1568 "membar #Sync" 1569 : /* no outputs */ 1570 : "i" (ASI_ESTATE_ERROR_EN), 1571 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1572 : "g1"); 1573 1574 (void) cheetah_recheck_errors(NULL); 1575 1576 pci_poke_faulted = 1; 1577 regs->tpc += 4; 1578 regs->tnpc = regs->tpc + 4; 1579 return; 1580 } 1581 #endif 1582 1583 p = cheetah_get_error_log(afsr); 1584 if (!p) { 1585 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n", 1586 afsr, afar); 1587 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n", 1588 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate); 1589 prom_halt(); 1590 } 1591 1592 /* Grab snapshot of logged error. */ 1593 memcpy(&local_snapshot, p, sizeof(local_snapshot)); 1594 1595 /* If the current trap snapshot does not match what the 1596 * trap handler passed along into our args, big trouble. 1597 * In such a case, mark the local copy as invalid. 1598 * 1599 * Else, it matches and we mark the afsr in the non-local 1600 * copy as invalid so we may log new error traps there. 1601 */ 1602 if (p->afsr != afsr || p->afar != afar) 1603 local_snapshot.afsr = CHAFSR_INVALID; 1604 else 1605 p->afsr = CHAFSR_INVALID; 1606 1607 is_memory = cheetah_check_main_memory(afar); 1608 1609 { 1610 int flush_all, flush_line; 1611 1612 flush_all = flush_line = 0; 1613 if ((afsr & CHAFSR_EDU) != 0UL) { 1614 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU) 1615 flush_line = 1; 1616 else 1617 flush_all = 1; 1618 } else if ((afsr & CHAFSR_BERR) != 0UL) { 1619 if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR) 1620 flush_line = 1; 1621 else 1622 flush_all = 1; 1623 } 1624 1625 cheetah_flush_icache(); 1626 cheetah_flush_dcache(); 1627 1628 /* Re-enable I/D caches */ 1629 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1630 "or %%g1, %1, %%g1\n\t" 1631 "stxa %%g1, [%%g0] %0\n\t" 1632 "membar #Sync" 1633 : /* no outputs */ 1634 : "i" (ASI_DCU_CONTROL_REG), 1635 "i" (DCU_IC | DCU_DC) 1636 : "g1"); 1637 1638 if (flush_all) 1639 cheetah_flush_ecache(); 1640 else if (flush_line) 1641 cheetah_flush_ecache_line(afar); 1642 } 1643 1644 /* Re-enable error reporting */ 1645 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1646 "or %%g1, %1, %%g1\n\t" 1647 "stxa %%g1, [%%g0] %0\n\t" 1648 "membar #Sync" 1649 : /* no outputs */ 1650 : "i" (ASI_ESTATE_ERROR_EN), 1651 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN) 1652 : "g1"); 1653 1654 /* Decide if we can continue after handling this trap and 1655 * logging the error. 1656 */ 1657 recoverable = 1; 1658 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP)) 1659 recoverable = 0; 1660 1661 /* Re-check AFSR/AFAR. What we are looking for here is whether a new 1662 * error was logged while we had error reporting traps disabled. 1663 */ 1664 if (cheetah_recheck_errors(&local_snapshot)) { 1665 unsigned long new_afsr = local_snapshot.afsr; 1666 1667 /* If we got a new asynchronous error, die... */ 1668 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU | 1669 CHAFSR_WDU | CHAFSR_CPU | 1670 CHAFSR_IVU | CHAFSR_UE | 1671 CHAFSR_BERR | CHAFSR_TO)) 1672 recoverable = 0; 1673 } 1674 1675 /* Log errors. */ 1676 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable); 1677 1678 /* "Recoverable" here means we try to yank the page from ever 1679 * being newly used again. This depends upon a few things: 1680 * 1) Must be main memory, and AFAR must be valid. 1681 * 2) If we trapped from user, OK. 1682 * 3) Else, if we trapped from kernel we must find exception 1683 * table entry (ie. we have to have been accessing user 1684 * space). 1685 * 1686 * If AFAR is not in main memory, or we trapped from kernel 1687 * and cannot find an exception table entry, it is unacceptable 1688 * to try and continue. 1689 */ 1690 if (recoverable && is_memory) { 1691 if ((regs->tstate & TSTATE_PRIV) == 0UL) { 1692 /* OK, usermode access. */ 1693 recoverable = 1; 1694 } else { 1695 const struct exception_table_entry *entry; 1696 1697 entry = search_exception_tables(regs->tpc); 1698 if (entry) { 1699 /* OK, kernel access to userspace. */ 1700 recoverable = 1; 1701 1702 } else { 1703 /* BAD, privileged state is corrupted. */ 1704 recoverable = 0; 1705 } 1706 1707 if (recoverable) { 1708 if (pfn_valid(afar >> PAGE_SHIFT)) 1709 get_page(pfn_to_page(afar >> PAGE_SHIFT)); 1710 else 1711 recoverable = 0; 1712 1713 /* Only perform fixup if we still have a 1714 * recoverable condition. 1715 */ 1716 if (recoverable) { 1717 regs->tpc = entry->fixup; 1718 regs->tnpc = regs->tpc + 4; 1719 } 1720 } 1721 } 1722 } else { 1723 recoverable = 0; 1724 } 1725 1726 if (!recoverable) 1727 panic("Irrecoverable deferred error trap.\n"); 1728 } 1729 1730 /* Handle a D/I cache parity error trap. TYPE is encoded as: 1731 * 1732 * Bit0: 0=dcache,1=icache 1733 * Bit1: 0=recoverable,1=unrecoverable 1734 * 1735 * The hardware has disabled both the I-cache and D-cache in 1736 * the %dcr register. 1737 */ 1738 void cheetah_plus_parity_error(int type, struct pt_regs *regs) 1739 { 1740 if (type & 0x1) 1741 __cheetah_flush_icache(); 1742 else 1743 cheetah_plus_zap_dcache_parity(); 1744 cheetah_flush_dcache(); 1745 1746 /* Re-enable I-cache/D-cache */ 1747 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t" 1748 "or %%g1, %1, %%g1\n\t" 1749 "stxa %%g1, [%%g0] %0\n\t" 1750 "membar #Sync" 1751 : /* no outputs */ 1752 : "i" (ASI_DCU_CONTROL_REG), 1753 "i" (DCU_DC | DCU_IC) 1754 : "g1"); 1755 1756 if (type & 0x2) { 1757 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", 1758 smp_processor_id(), 1759 (type & 0x1) ? 'I' : 'D', 1760 regs->tpc); 1761 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc); 1762 panic("Irrecoverable Cheetah+ parity error."); 1763 } 1764 1765 printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n", 1766 smp_processor_id(), 1767 (type & 0x1) ? 'I' : 'D', 1768 regs->tpc); 1769 printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc); 1770 } 1771 1772 struct sun4v_error_entry { 1773 /* Unique error handle */ 1774 /*0x00*/u64 err_handle; 1775 1776 /* %stick value at the time of the error */ 1777 /*0x08*/u64 err_stick; 1778 1779 /*0x10*/u8 reserved_1[3]; 1780 1781 /* Error type */ 1782 /*0x13*/u8 err_type; 1783 #define SUN4V_ERR_TYPE_UNDEFINED 0 1784 #define SUN4V_ERR_TYPE_UNCORRECTED_RES 1 1785 #define SUN4V_ERR_TYPE_PRECISE_NONRES 2 1786 #define SUN4V_ERR_TYPE_DEFERRED_NONRES 3 1787 #define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4 1788 #define SUN4V_ERR_TYPE_DUMP_CORE 5 1789 #define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6 1790 #define SUN4V_ERR_TYPE_NUM 7 1791 1792 /* Error attributes */ 1793 /*0x14*/u32 err_attrs; 1794 #define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001 1795 #define SUN4V_ERR_ATTRS_MEMORY 0x00000002 1796 #define SUN4V_ERR_ATTRS_PIO 0x00000004 1797 #define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008 1798 #define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010 1799 #define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020 1800 #define SUN4V_ERR_ATTRS_ASR 0x00000040 1801 #define SUN4V_ERR_ATTRS_ASI 0x00000080 1802 #define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100 1803 #define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600 1804 #define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9 1805 #define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000 1806 #define SUN4V_ERR_ATTRS_MODE_SHFT 24 1807 #define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000 1808 1809 #define SUN4V_ERR_SPSTATE_FAULTED 0 1810 #define SUN4V_ERR_SPSTATE_AVAILABLE 1 1811 #define SUN4V_ERR_SPSTATE_NOT_PRESENT 2 1812 1813 #define SUN4V_ERR_MODE_USER 1 1814 #define SUN4V_ERR_MODE_PRIV 2 1815 1816 /* Real address of the memory region or PIO transaction */ 1817 /*0x18*/u64 err_raddr; 1818 1819 /* Size of the operation triggering the error, in bytes */ 1820 /*0x20*/u32 err_size; 1821 1822 /* ID of the CPU */ 1823 /*0x24*/u16 err_cpu; 1824 1825 /* Grace periof for shutdown, in seconds */ 1826 /*0x26*/u16 err_secs; 1827 1828 /* Value of the %asi register */ 1829 /*0x28*/u8 err_asi; 1830 1831 /*0x29*/u8 reserved_2; 1832 1833 /* Value of the ASR register number */ 1834 /*0x2a*/u16 err_asr; 1835 #define SUN4V_ERR_ASR_VALID 0x8000 1836 1837 /*0x2c*/u32 reserved_3; 1838 /*0x30*/u64 reserved_4; 1839 /*0x38*/u64 reserved_5; 1840 }; 1841 1842 static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0); 1843 static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0); 1844 1845 static const char *sun4v_err_type_to_str(u8 type) 1846 { 1847 static const char *types[SUN4V_ERR_TYPE_NUM] = { 1848 "undefined", 1849 "uncorrected resumable", 1850 "precise nonresumable", 1851 "deferred nonresumable", 1852 "shutdown request", 1853 "dump core", 1854 "SP state change", 1855 }; 1856 1857 if (type < SUN4V_ERR_TYPE_NUM) 1858 return types[type]; 1859 1860 return "unknown"; 1861 } 1862 1863 static void sun4v_emit_err_attr_strings(u32 attrs) 1864 { 1865 static const char *attr_names[] = { 1866 "processor", 1867 "memory", 1868 "PIO", 1869 "int-registers", 1870 "fpu-registers", 1871 "shutdown-request", 1872 "ASR", 1873 "ASI", 1874 "priv-reg", 1875 }; 1876 static const char *sp_states[] = { 1877 "sp-faulted", 1878 "sp-available", 1879 "sp-not-present", 1880 "sp-state-reserved", 1881 }; 1882 static const char *modes[] = { 1883 "mode-reserved0", 1884 "user", 1885 "priv", 1886 "mode-reserved1", 1887 }; 1888 u32 sp_state, mode; 1889 int i; 1890 1891 for (i = 0; i < ARRAY_SIZE(attr_names); i++) { 1892 if (attrs & (1U << i)) { 1893 const char *s = attr_names[i]; 1894 1895 pr_cont("%s ", s); 1896 } 1897 } 1898 1899 sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >> 1900 SUN4V_ERR_ATTRS_SPSTATE_SHFT); 1901 pr_cont("%s ", sp_states[sp_state]); 1902 1903 mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >> 1904 SUN4V_ERR_ATTRS_MODE_SHFT); 1905 pr_cont("%s ", modes[mode]); 1906 1907 if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL) 1908 pr_cont("res-queue-full "); 1909 } 1910 1911 /* When the report contains a real-address of "-1" it means that the 1912 * hardware did not provide the address. So we compute the effective 1913 * address of the load or store instruction at regs->tpc and report 1914 * that. Usually when this happens it's a PIO and in such a case we 1915 * are using physical addresses with bypass ASIs anyways, so what we 1916 * report here is exactly what we want. 1917 */ 1918 static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs) 1919 { 1920 unsigned int insn; 1921 u64 addr; 1922 1923 if (!(regs->tstate & TSTATE_PRIV)) 1924 return; 1925 1926 insn = *(unsigned int *) regs->tpc; 1927 1928 addr = compute_effective_address(regs, insn, 0); 1929 1930 printk("%s: insn effective address [0x%016llx]\n", 1931 pfx, addr); 1932 } 1933 1934 static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent, 1935 int cpu, const char *pfx, atomic_t *ocnt) 1936 { 1937 u64 *raw_ptr = (u64 *) ent; 1938 u32 attrs; 1939 int cnt; 1940 1941 printk("%s: Reporting on cpu %d\n", pfx, cpu); 1942 printk("%s: TPC [0x%016lx] <%pS>\n", 1943 pfx, regs->tpc, (void *) regs->tpc); 1944 1945 printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n", 1946 pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]); 1947 printk("%s: %016llx:%016llx:%016llx:%016llx]\n", 1948 pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]); 1949 1950 printk("%s: handle [0x%016llx] stick [0x%016llx]\n", 1951 pfx, ent->err_handle, ent->err_stick); 1952 1953 printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type)); 1954 1955 attrs = ent->err_attrs; 1956 printk("%s: attrs [0x%08x] < ", pfx, attrs); 1957 sun4v_emit_err_attr_strings(attrs); 1958 pr_cont(">\n"); 1959 1960 /* Various fields in the error report are only valid if 1961 * certain attribute bits are set. 1962 */ 1963 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | 1964 SUN4V_ERR_ATTRS_PIO | 1965 SUN4V_ERR_ATTRS_ASI)) { 1966 printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr); 1967 1968 if (ent->err_raddr == ~(u64)0) 1969 sun4v_report_real_raddr(pfx, regs); 1970 } 1971 1972 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI)) 1973 printk("%s: size [0x%x]\n", pfx, ent->err_size); 1974 1975 if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR | 1976 SUN4V_ERR_ATTRS_INT_REGISTERS | 1977 SUN4V_ERR_ATTRS_FPU_REGISTERS | 1978 SUN4V_ERR_ATTRS_PRIV_REG)) 1979 printk("%s: cpu[%u]\n", pfx, ent->err_cpu); 1980 1981 if (attrs & SUN4V_ERR_ATTRS_ASI) 1982 printk("%s: asi [0x%02x]\n", pfx, ent->err_asi); 1983 1984 if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS | 1985 SUN4V_ERR_ATTRS_FPU_REGISTERS | 1986 SUN4V_ERR_ATTRS_PRIV_REG)) && 1987 (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0) 1988 printk("%s: reg [0x%04x]\n", 1989 pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID); 1990 1991 show_regs(regs); 1992 1993 if ((cnt = atomic_read(ocnt)) != 0) { 1994 atomic_set(ocnt, 0); 1995 wmb(); 1996 printk("%s: Queue overflowed %d times.\n", 1997 pfx, cnt); 1998 } 1999 } 2000 2001 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. 2002 * Log the event and clear the first word of the entry. 2003 */ 2004 void sun4v_resum_error(struct pt_regs *regs, unsigned long offset) 2005 { 2006 enum ctx_state prev_state = exception_enter(); 2007 struct sun4v_error_entry *ent, local_copy; 2008 struct trap_per_cpu *tb; 2009 unsigned long paddr; 2010 int cpu; 2011 2012 cpu = get_cpu(); 2013 2014 tb = &trap_block[cpu]; 2015 paddr = tb->resum_kernel_buf_pa + offset; 2016 ent = __va(paddr); 2017 2018 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); 2019 2020 /* We have a local copy now, so release the entry. */ 2021 ent->err_handle = 0; 2022 wmb(); 2023 2024 put_cpu(); 2025 2026 if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) { 2027 /* We should really take the seconds field of 2028 * the error report and use it for the shutdown 2029 * invocation, but for now do the same thing we 2030 * do for a DS shutdown request. 2031 */ 2032 pr_info("Shutdown request, %u seconds...\n", 2033 local_copy.err_secs); 2034 orderly_poweroff(true); 2035 goto out; 2036 } 2037 2038 sun4v_log_error(regs, &local_copy, cpu, 2039 KERN_ERR "RESUMABLE ERROR", 2040 &sun4v_resum_oflow_cnt); 2041 out: 2042 exception_exit(prev_state); 2043 } 2044 2045 /* If we try to printk() we'll probably make matters worse, by trying 2046 * to retake locks this cpu already holds or causing more errors. So 2047 * just bump a counter, and we'll report these counter bumps above. 2048 */ 2049 void sun4v_resum_overflow(struct pt_regs *regs) 2050 { 2051 atomic_inc(&sun4v_resum_oflow_cnt); 2052 } 2053 2054 /* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate. 2055 * Log the event, clear the first word of the entry, and die. 2056 */ 2057 void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset) 2058 { 2059 struct sun4v_error_entry *ent, local_copy; 2060 struct trap_per_cpu *tb; 2061 unsigned long paddr; 2062 int cpu; 2063 2064 cpu = get_cpu(); 2065 2066 tb = &trap_block[cpu]; 2067 paddr = tb->nonresum_kernel_buf_pa + offset; 2068 ent = __va(paddr); 2069 2070 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry)); 2071 2072 /* We have a local copy now, so release the entry. */ 2073 ent->err_handle = 0; 2074 wmb(); 2075 2076 put_cpu(); 2077 2078 #ifdef CONFIG_PCI 2079 /* Check for the special PCI poke sequence. */ 2080 if (pci_poke_in_progress && pci_poke_cpu == cpu) { 2081 pci_poke_faulted = 1; 2082 regs->tpc += 4; 2083 regs->tnpc = regs->tpc + 4; 2084 return; 2085 } 2086 #endif 2087 2088 sun4v_log_error(regs, &local_copy, cpu, 2089 KERN_EMERG "NON-RESUMABLE ERROR", 2090 &sun4v_nonresum_oflow_cnt); 2091 2092 panic("Non-resumable error."); 2093 } 2094 2095 /* If we try to printk() we'll probably make matters worse, by trying 2096 * to retake locks this cpu already holds or causing more errors. So 2097 * just bump a counter, and we'll report these counter bumps above. 2098 */ 2099 void sun4v_nonresum_overflow(struct pt_regs *regs) 2100 { 2101 /* XXX Actually even this can make not that much sense. Perhaps 2102 * XXX we should just pull the plug and panic directly from here? 2103 */ 2104 atomic_inc(&sun4v_nonresum_oflow_cnt); 2105 } 2106 2107 unsigned long sun4v_err_itlb_vaddr; 2108 unsigned long sun4v_err_itlb_ctx; 2109 unsigned long sun4v_err_itlb_pte; 2110 unsigned long sun4v_err_itlb_error; 2111 2112 void sun4v_itlb_error_report(struct pt_regs *regs, int tl) 2113 { 2114 if (tl > 1) 2115 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2116 2117 printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n", 2118 regs->tpc, tl); 2119 printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc); 2120 printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]); 2121 printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n", 2122 (void *) regs->u_regs[UREG_I7]); 2123 printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] " 2124 "pte[%lx] error[%lx]\n", 2125 sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx, 2126 sun4v_err_itlb_pte, sun4v_err_itlb_error); 2127 2128 prom_halt(); 2129 } 2130 2131 unsigned long sun4v_err_dtlb_vaddr; 2132 unsigned long sun4v_err_dtlb_ctx; 2133 unsigned long sun4v_err_dtlb_pte; 2134 unsigned long sun4v_err_dtlb_error; 2135 2136 void sun4v_dtlb_error_report(struct pt_regs *regs, int tl) 2137 { 2138 if (tl > 1) 2139 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2140 2141 printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n", 2142 regs->tpc, tl); 2143 printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc); 2144 printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]); 2145 printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n", 2146 (void *) regs->u_regs[UREG_I7]); 2147 printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] " 2148 "pte[%lx] error[%lx]\n", 2149 sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx, 2150 sun4v_err_dtlb_pte, sun4v_err_dtlb_error); 2151 2152 prom_halt(); 2153 } 2154 2155 void hypervisor_tlbop_error(unsigned long err, unsigned long op) 2156 { 2157 printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n", 2158 err, op); 2159 } 2160 2161 void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op) 2162 { 2163 printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n", 2164 err, op); 2165 } 2166 2167 static void do_fpe_common(struct pt_regs *regs) 2168 { 2169 if (regs->tstate & TSTATE_PRIV) { 2170 regs->tpc = regs->tnpc; 2171 regs->tnpc += 4; 2172 } else { 2173 unsigned long fsr = current_thread_info()->xfsr[0]; 2174 siginfo_t info; 2175 2176 if (test_thread_flag(TIF_32BIT)) { 2177 regs->tpc &= 0xffffffff; 2178 regs->tnpc &= 0xffffffff; 2179 } 2180 info.si_signo = SIGFPE; 2181 info.si_errno = 0; 2182 info.si_addr = (void __user *)regs->tpc; 2183 info.si_trapno = 0; 2184 info.si_code = __SI_FAULT; 2185 if ((fsr & 0x1c000) == (1 << 14)) { 2186 if (fsr & 0x10) 2187 info.si_code = FPE_FLTINV; 2188 else if (fsr & 0x08) 2189 info.si_code = FPE_FLTOVF; 2190 else if (fsr & 0x04) 2191 info.si_code = FPE_FLTUND; 2192 else if (fsr & 0x02) 2193 info.si_code = FPE_FLTDIV; 2194 else if (fsr & 0x01) 2195 info.si_code = FPE_FLTRES; 2196 } 2197 force_sig_info(SIGFPE, &info, current); 2198 } 2199 } 2200 2201 void do_fpieee(struct pt_regs *regs) 2202 { 2203 enum ctx_state prev_state = exception_enter(); 2204 2205 if (notify_die(DIE_TRAP, "fpu exception ieee", regs, 2206 0, 0x24, SIGFPE) == NOTIFY_STOP) 2207 goto out; 2208 2209 do_fpe_common(regs); 2210 out: 2211 exception_exit(prev_state); 2212 } 2213 2214 void do_fpother(struct pt_regs *regs) 2215 { 2216 enum ctx_state prev_state = exception_enter(); 2217 struct fpustate *f = FPUSTATE; 2218 int ret = 0; 2219 2220 if (notify_die(DIE_TRAP, "fpu exception other", regs, 2221 0, 0x25, SIGFPE) == NOTIFY_STOP) 2222 goto out; 2223 2224 switch ((current_thread_info()->xfsr[0] & 0x1c000)) { 2225 case (2 << 14): /* unfinished_FPop */ 2226 case (3 << 14): /* unimplemented_FPop */ 2227 ret = do_mathemu(regs, f, false); 2228 break; 2229 } 2230 if (ret) 2231 goto out; 2232 do_fpe_common(regs); 2233 out: 2234 exception_exit(prev_state); 2235 } 2236 2237 void do_tof(struct pt_regs *regs) 2238 { 2239 enum ctx_state prev_state = exception_enter(); 2240 siginfo_t info; 2241 2242 if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs, 2243 0, 0x26, SIGEMT) == NOTIFY_STOP) 2244 goto out; 2245 2246 if (regs->tstate & TSTATE_PRIV) 2247 die_if_kernel("Penguin overflow trap from kernel mode", regs); 2248 if (test_thread_flag(TIF_32BIT)) { 2249 regs->tpc &= 0xffffffff; 2250 regs->tnpc &= 0xffffffff; 2251 } 2252 info.si_signo = SIGEMT; 2253 info.si_errno = 0; 2254 info.si_code = EMT_TAGOVF; 2255 info.si_addr = (void __user *)regs->tpc; 2256 info.si_trapno = 0; 2257 force_sig_info(SIGEMT, &info, current); 2258 out: 2259 exception_exit(prev_state); 2260 } 2261 2262 void do_div0(struct pt_regs *regs) 2263 { 2264 enum ctx_state prev_state = exception_enter(); 2265 siginfo_t info; 2266 2267 if (notify_die(DIE_TRAP, "integer division by zero", regs, 2268 0, 0x28, SIGFPE) == NOTIFY_STOP) 2269 goto out; 2270 2271 if (regs->tstate & TSTATE_PRIV) 2272 die_if_kernel("TL0: Kernel divide by zero.", regs); 2273 if (test_thread_flag(TIF_32BIT)) { 2274 regs->tpc &= 0xffffffff; 2275 regs->tnpc &= 0xffffffff; 2276 } 2277 info.si_signo = SIGFPE; 2278 info.si_errno = 0; 2279 info.si_code = FPE_INTDIV; 2280 info.si_addr = (void __user *)regs->tpc; 2281 info.si_trapno = 0; 2282 force_sig_info(SIGFPE, &info, current); 2283 out: 2284 exception_exit(prev_state); 2285 } 2286 2287 static void instruction_dump(unsigned int *pc) 2288 { 2289 int i; 2290 2291 if ((((unsigned long) pc) & 3)) 2292 return; 2293 2294 printk("Instruction DUMP:"); 2295 for (i = -3; i < 6; i++) 2296 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>'); 2297 printk("\n"); 2298 } 2299 2300 static void user_instruction_dump(unsigned int __user *pc) 2301 { 2302 int i; 2303 unsigned int buf[9]; 2304 2305 if ((((unsigned long) pc) & 3)) 2306 return; 2307 2308 if (copy_from_user(buf, pc - 3, sizeof(buf))) 2309 return; 2310 2311 printk("Instruction DUMP:"); 2312 for (i = 0; i < 9; i++) 2313 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>'); 2314 printk("\n"); 2315 } 2316 2317 void show_stack(struct task_struct *tsk, unsigned long *_ksp) 2318 { 2319 unsigned long fp, ksp; 2320 struct thread_info *tp; 2321 int count = 0; 2322 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2323 int graph = 0; 2324 #endif 2325 2326 ksp = (unsigned long) _ksp; 2327 if (!tsk) 2328 tsk = current; 2329 tp = task_thread_info(tsk); 2330 if (ksp == 0UL) { 2331 if (tsk == current) 2332 asm("mov %%fp, %0" : "=r" (ksp)); 2333 else 2334 ksp = tp->ksp; 2335 } 2336 if (tp == current_thread_info()) 2337 flushw_all(); 2338 2339 fp = ksp + STACK_BIAS; 2340 2341 printk("Call Trace:\n"); 2342 do { 2343 struct sparc_stackf *sf; 2344 struct pt_regs *regs; 2345 unsigned long pc; 2346 2347 if (!kstack_valid(tp, fp)) 2348 break; 2349 sf = (struct sparc_stackf *) fp; 2350 regs = (struct pt_regs *) (sf + 1); 2351 2352 if (kstack_is_trap_frame(tp, regs)) { 2353 if (!(regs->tstate & TSTATE_PRIV)) 2354 break; 2355 pc = regs->tpc; 2356 fp = regs->u_regs[UREG_I6] + STACK_BIAS; 2357 } else { 2358 pc = sf->callers_pc; 2359 fp = (unsigned long)sf->fp + STACK_BIAS; 2360 } 2361 2362 printk(" [%016lx] %pS\n", pc, (void *) pc); 2363 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2364 if ((pc + 8UL) == (unsigned long) &return_to_handler) { 2365 int index = tsk->curr_ret_stack; 2366 if (tsk->ret_stack && index >= graph) { 2367 pc = tsk->ret_stack[index - graph].ret; 2368 printk(" [%016lx] %pS\n", pc, (void *) pc); 2369 graph++; 2370 } 2371 } 2372 #endif 2373 } while (++count < 16); 2374 } 2375 2376 static inline struct reg_window *kernel_stack_up(struct reg_window *rw) 2377 { 2378 unsigned long fp = rw->ins[6]; 2379 2380 if (!fp) 2381 return NULL; 2382 2383 return (struct reg_window *) (fp + STACK_BIAS); 2384 } 2385 2386 void __noreturn die_if_kernel(char *str, struct pt_regs *regs) 2387 { 2388 static int die_counter; 2389 int count = 0; 2390 2391 /* Amuse the user. */ 2392 printk( 2393 " \\|/ ____ \\|/\n" 2394 " \"@'/ .. \\`@\"\n" 2395 " /_| \\__/ |_\\\n" 2396 " \\__U_/\n"); 2397 2398 printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter); 2399 notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV); 2400 __asm__ __volatile__("flushw"); 2401 show_regs(regs); 2402 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 2403 if (regs->tstate & TSTATE_PRIV) { 2404 struct thread_info *tp = current_thread_info(); 2405 struct reg_window *rw = (struct reg_window *) 2406 (regs->u_regs[UREG_FP] + STACK_BIAS); 2407 2408 /* Stop the back trace when we hit userland or we 2409 * find some badly aligned kernel stack. 2410 */ 2411 while (rw && 2412 count++ < 30 && 2413 kstack_valid(tp, (unsigned long) rw)) { 2414 printk("Caller[%016lx]: %pS\n", rw->ins[7], 2415 (void *) rw->ins[7]); 2416 2417 rw = kernel_stack_up(rw); 2418 } 2419 instruction_dump ((unsigned int *) regs->tpc); 2420 } else { 2421 if (test_thread_flag(TIF_32BIT)) { 2422 regs->tpc &= 0xffffffff; 2423 regs->tnpc &= 0xffffffff; 2424 } 2425 user_instruction_dump ((unsigned int __user *) regs->tpc); 2426 } 2427 if (regs->tstate & TSTATE_PRIV) 2428 do_exit(SIGKILL); 2429 do_exit(SIGSEGV); 2430 } 2431 EXPORT_SYMBOL(die_if_kernel); 2432 2433 #define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19)) 2434 #define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19)) 2435 2436 void do_illegal_instruction(struct pt_regs *regs) 2437 { 2438 enum ctx_state prev_state = exception_enter(); 2439 unsigned long pc = regs->tpc; 2440 unsigned long tstate = regs->tstate; 2441 u32 insn; 2442 siginfo_t info; 2443 2444 if (notify_die(DIE_TRAP, "illegal instruction", regs, 2445 0, 0x10, SIGILL) == NOTIFY_STOP) 2446 goto out; 2447 2448 if (tstate & TSTATE_PRIV) 2449 die_if_kernel("Kernel illegal instruction", regs); 2450 if (test_thread_flag(TIF_32BIT)) 2451 pc = (u32)pc; 2452 if (get_user(insn, (u32 __user *) pc) != -EFAULT) { 2453 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ { 2454 if (handle_popc(insn, regs)) 2455 goto out; 2456 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ { 2457 if (handle_ldf_stq(insn, regs)) 2458 goto out; 2459 } else if (tlb_type == hypervisor) { 2460 if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) { 2461 if (!vis_emul(regs, insn)) 2462 goto out; 2463 } else { 2464 struct fpustate *f = FPUSTATE; 2465 2466 /* On UltraSPARC T2 and later, FPU insns which 2467 * are not implemented in HW signal an illegal 2468 * instruction trap and do not set the FP Trap 2469 * Trap in the %fsr to unimplemented_FPop. 2470 */ 2471 if (do_mathemu(regs, f, true)) 2472 goto out; 2473 } 2474 } 2475 } 2476 info.si_signo = SIGILL; 2477 info.si_errno = 0; 2478 info.si_code = ILL_ILLOPC; 2479 info.si_addr = (void __user *)pc; 2480 info.si_trapno = 0; 2481 force_sig_info(SIGILL, &info, current); 2482 out: 2483 exception_exit(prev_state); 2484 } 2485 2486 void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr) 2487 { 2488 enum ctx_state prev_state = exception_enter(); 2489 siginfo_t info; 2490 2491 if (notify_die(DIE_TRAP, "memory address unaligned", regs, 2492 0, 0x34, SIGSEGV) == NOTIFY_STOP) 2493 goto out; 2494 2495 if (regs->tstate & TSTATE_PRIV) { 2496 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); 2497 goto out; 2498 } 2499 info.si_signo = SIGBUS; 2500 info.si_errno = 0; 2501 info.si_code = BUS_ADRALN; 2502 info.si_addr = (void __user *)sfar; 2503 info.si_trapno = 0; 2504 force_sig_info(SIGBUS, &info, current); 2505 out: 2506 exception_exit(prev_state); 2507 } 2508 2509 void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx) 2510 { 2511 siginfo_t info; 2512 2513 if (notify_die(DIE_TRAP, "memory address unaligned", regs, 2514 0, 0x34, SIGSEGV) == NOTIFY_STOP) 2515 return; 2516 2517 if (regs->tstate & TSTATE_PRIV) { 2518 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc)); 2519 return; 2520 } 2521 info.si_signo = SIGBUS; 2522 info.si_errno = 0; 2523 info.si_code = BUS_ADRALN; 2524 info.si_addr = (void __user *) addr; 2525 info.si_trapno = 0; 2526 force_sig_info(SIGBUS, &info, current); 2527 } 2528 2529 void do_privop(struct pt_regs *regs) 2530 { 2531 enum ctx_state prev_state = exception_enter(); 2532 siginfo_t info; 2533 2534 if (notify_die(DIE_TRAP, "privileged operation", regs, 2535 0, 0x11, SIGILL) == NOTIFY_STOP) 2536 goto out; 2537 2538 if (test_thread_flag(TIF_32BIT)) { 2539 regs->tpc &= 0xffffffff; 2540 regs->tnpc &= 0xffffffff; 2541 } 2542 info.si_signo = SIGILL; 2543 info.si_errno = 0; 2544 info.si_code = ILL_PRVOPC; 2545 info.si_addr = (void __user *)regs->tpc; 2546 info.si_trapno = 0; 2547 force_sig_info(SIGILL, &info, current); 2548 out: 2549 exception_exit(prev_state); 2550 } 2551 2552 void do_privact(struct pt_regs *regs) 2553 { 2554 do_privop(regs); 2555 } 2556 2557 /* Trap level 1 stuff or other traps we should never see... */ 2558 void do_cee(struct pt_regs *regs) 2559 { 2560 exception_enter(); 2561 die_if_kernel("TL0: Cache Error Exception", regs); 2562 } 2563 2564 void do_cee_tl1(struct pt_regs *regs) 2565 { 2566 exception_enter(); 2567 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2568 die_if_kernel("TL1: Cache Error Exception", regs); 2569 } 2570 2571 void do_dae_tl1(struct pt_regs *regs) 2572 { 2573 exception_enter(); 2574 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2575 die_if_kernel("TL1: Data Access Exception", regs); 2576 } 2577 2578 void do_iae_tl1(struct pt_regs *regs) 2579 { 2580 exception_enter(); 2581 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2582 die_if_kernel("TL1: Instruction Access Exception", regs); 2583 } 2584 2585 void do_div0_tl1(struct pt_regs *regs) 2586 { 2587 exception_enter(); 2588 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2589 die_if_kernel("TL1: DIV0 Exception", regs); 2590 } 2591 2592 void do_fpdis_tl1(struct pt_regs *regs) 2593 { 2594 exception_enter(); 2595 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2596 die_if_kernel("TL1: FPU Disabled", regs); 2597 } 2598 2599 void do_fpieee_tl1(struct pt_regs *regs) 2600 { 2601 exception_enter(); 2602 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2603 die_if_kernel("TL1: FPU IEEE Exception", regs); 2604 } 2605 2606 void do_fpother_tl1(struct pt_regs *regs) 2607 { 2608 exception_enter(); 2609 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2610 die_if_kernel("TL1: FPU Other Exception", regs); 2611 } 2612 2613 void do_ill_tl1(struct pt_regs *regs) 2614 { 2615 exception_enter(); 2616 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2617 die_if_kernel("TL1: Illegal Instruction Exception", regs); 2618 } 2619 2620 void do_irq_tl1(struct pt_regs *regs) 2621 { 2622 exception_enter(); 2623 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2624 die_if_kernel("TL1: IRQ Exception", regs); 2625 } 2626 2627 void do_lddfmna_tl1(struct pt_regs *regs) 2628 { 2629 exception_enter(); 2630 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2631 die_if_kernel("TL1: LDDF Exception", regs); 2632 } 2633 2634 void do_stdfmna_tl1(struct pt_regs *regs) 2635 { 2636 exception_enter(); 2637 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2638 die_if_kernel("TL1: STDF Exception", regs); 2639 } 2640 2641 void do_paw(struct pt_regs *regs) 2642 { 2643 exception_enter(); 2644 die_if_kernel("TL0: Phys Watchpoint Exception", regs); 2645 } 2646 2647 void do_paw_tl1(struct pt_regs *regs) 2648 { 2649 exception_enter(); 2650 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2651 die_if_kernel("TL1: Phys Watchpoint Exception", regs); 2652 } 2653 2654 void do_vaw(struct pt_regs *regs) 2655 { 2656 exception_enter(); 2657 die_if_kernel("TL0: Virt Watchpoint Exception", regs); 2658 } 2659 2660 void do_vaw_tl1(struct pt_regs *regs) 2661 { 2662 exception_enter(); 2663 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2664 die_if_kernel("TL1: Virt Watchpoint Exception", regs); 2665 } 2666 2667 void do_tof_tl1(struct pt_regs *regs) 2668 { 2669 exception_enter(); 2670 dump_tl1_traplog((struct tl1_traplog *)(regs + 1)); 2671 die_if_kernel("TL1: Tag Overflow Exception", regs); 2672 } 2673 2674 void do_getpsr(struct pt_regs *regs) 2675 { 2676 regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate); 2677 regs->tpc = regs->tnpc; 2678 regs->tnpc += 4; 2679 if (test_thread_flag(TIF_32BIT)) { 2680 regs->tpc &= 0xffffffff; 2681 regs->tnpc &= 0xffffffff; 2682 } 2683 } 2684 2685 struct trap_per_cpu trap_block[NR_CPUS]; 2686 EXPORT_SYMBOL(trap_block); 2687 2688 /* This can get invoked before sched_init() so play it super safe 2689 * and use hard_smp_processor_id(). 2690 */ 2691 void notrace init_cur_cpu_trap(struct thread_info *t) 2692 { 2693 int cpu = hard_smp_processor_id(); 2694 struct trap_per_cpu *p = &trap_block[cpu]; 2695 2696 p->thread = t; 2697 p->pgd_paddr = 0; 2698 } 2699 2700 extern void thread_info_offsets_are_bolixed_dave(void); 2701 extern void trap_per_cpu_offsets_are_bolixed_dave(void); 2702 extern void tsb_config_offsets_are_bolixed_dave(void); 2703 2704 /* Only invoked on boot processor. */ 2705 void __init trap_init(void) 2706 { 2707 /* Compile time sanity check. */ 2708 BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) || 2709 TI_FLAGS != offsetof(struct thread_info, flags) || 2710 TI_CPU != offsetof(struct thread_info, cpu) || 2711 TI_FPSAVED != offsetof(struct thread_info, fpsaved) || 2712 TI_KSP != offsetof(struct thread_info, ksp) || 2713 TI_FAULT_ADDR != offsetof(struct thread_info, 2714 fault_address) || 2715 TI_KREGS != offsetof(struct thread_info, kregs) || 2716 TI_UTRAPS != offsetof(struct thread_info, utraps) || 2717 TI_EXEC_DOMAIN != offsetof(struct thread_info, 2718 exec_domain) || 2719 TI_REG_WINDOW != offsetof(struct thread_info, 2720 reg_window) || 2721 TI_RWIN_SPTRS != offsetof(struct thread_info, 2722 rwbuf_stkptrs) || 2723 TI_GSR != offsetof(struct thread_info, gsr) || 2724 TI_XFSR != offsetof(struct thread_info, xfsr) || 2725 TI_PRE_COUNT != offsetof(struct thread_info, 2726 preempt_count) || 2727 TI_NEW_CHILD != offsetof(struct thread_info, new_child) || 2728 TI_CURRENT_DS != offsetof(struct thread_info, 2729 current_ds) || 2730 TI_RESTART_BLOCK != offsetof(struct thread_info, 2731 restart_block) || 2732 TI_KUNA_REGS != offsetof(struct thread_info, 2733 kern_una_regs) || 2734 TI_KUNA_INSN != offsetof(struct thread_info, 2735 kern_una_insn) || 2736 TI_FPREGS != offsetof(struct thread_info, fpregs) || 2737 (TI_FPREGS & (64 - 1))); 2738 2739 BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu, 2740 thread) || 2741 (TRAP_PER_CPU_PGD_PADDR != 2742 offsetof(struct trap_per_cpu, pgd_paddr)) || 2743 (TRAP_PER_CPU_CPU_MONDO_PA != 2744 offsetof(struct trap_per_cpu, cpu_mondo_pa)) || 2745 (TRAP_PER_CPU_DEV_MONDO_PA != 2746 offsetof(struct trap_per_cpu, dev_mondo_pa)) || 2747 (TRAP_PER_CPU_RESUM_MONDO_PA != 2748 offsetof(struct trap_per_cpu, resum_mondo_pa)) || 2749 (TRAP_PER_CPU_RESUM_KBUF_PA != 2750 offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) || 2751 (TRAP_PER_CPU_NONRESUM_MONDO_PA != 2752 offsetof(struct trap_per_cpu, nonresum_mondo_pa)) || 2753 (TRAP_PER_CPU_NONRESUM_KBUF_PA != 2754 offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) || 2755 (TRAP_PER_CPU_FAULT_INFO != 2756 offsetof(struct trap_per_cpu, fault_info)) || 2757 (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA != 2758 offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) || 2759 (TRAP_PER_CPU_CPU_LIST_PA != 2760 offsetof(struct trap_per_cpu, cpu_list_pa)) || 2761 (TRAP_PER_CPU_TSB_HUGE != 2762 offsetof(struct trap_per_cpu, tsb_huge)) || 2763 (TRAP_PER_CPU_TSB_HUGE_TEMP != 2764 offsetof(struct trap_per_cpu, tsb_huge_temp)) || 2765 (TRAP_PER_CPU_IRQ_WORKLIST_PA != 2766 offsetof(struct trap_per_cpu, irq_worklist_pa)) || 2767 (TRAP_PER_CPU_CPU_MONDO_QMASK != 2768 offsetof(struct trap_per_cpu, cpu_mondo_qmask)) || 2769 (TRAP_PER_CPU_DEV_MONDO_QMASK != 2770 offsetof(struct trap_per_cpu, dev_mondo_qmask)) || 2771 (TRAP_PER_CPU_RESUM_QMASK != 2772 offsetof(struct trap_per_cpu, resum_qmask)) || 2773 (TRAP_PER_CPU_NONRESUM_QMASK != 2774 offsetof(struct trap_per_cpu, nonresum_qmask)) || 2775 (TRAP_PER_CPU_PER_CPU_BASE != 2776 offsetof(struct trap_per_cpu, __per_cpu_base))); 2777 2778 BUILD_BUG_ON((TSB_CONFIG_TSB != 2779 offsetof(struct tsb_config, tsb)) || 2780 (TSB_CONFIG_RSS_LIMIT != 2781 offsetof(struct tsb_config, tsb_rss_limit)) || 2782 (TSB_CONFIG_NENTRIES != 2783 offsetof(struct tsb_config, tsb_nentries)) || 2784 (TSB_CONFIG_REG_VAL != 2785 offsetof(struct tsb_config, tsb_reg_val)) || 2786 (TSB_CONFIG_MAP_VADDR != 2787 offsetof(struct tsb_config, tsb_map_vaddr)) || 2788 (TSB_CONFIG_MAP_PTE != 2789 offsetof(struct tsb_config, tsb_map_pte))); 2790 2791 /* Attach to the address space of init_task. On SMP we 2792 * do this in smp.c:smp_callin for other cpus. 2793 */ 2794 atomic_inc(&init_mm.mm_count); 2795 current->active_mm = &init_mm; 2796 } 2797