1 /* time.c: UltraSparc timer and TOD clock support. 2 * 3 * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * 6 * Based largely on code which is: 7 * 8 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) 9 */ 10 11 #include <linux/errno.h> 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/kernel.h> 15 #include <linux/param.h> 16 #include <linux/string.h> 17 #include <linux/mm.h> 18 #include <linux/interrupt.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/init.h> 22 #include <linux/ioport.h> 23 #include <linux/mc146818rtc.h> 24 #include <linux/delay.h> 25 #include <linux/profile.h> 26 #include <linux/bcd.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpufreq.h> 29 #include <linux/percpu.h> 30 #include <linux/miscdevice.h> 31 #include <linux/rtc.h> 32 #include <linux/rtc/m48t59.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/clockchips.h> 35 #include <linux/clocksource.h> 36 #include <linux/of_device.h> 37 #include <linux/platform_device.h> 38 39 #include <asm/oplib.h> 40 #include <asm/timer.h> 41 #include <asm/irq.h> 42 #include <asm/io.h> 43 #include <asm/prom.h> 44 #include <asm/starfire.h> 45 #include <asm/smp.h> 46 #include <asm/sections.h> 47 #include <asm/cpudata.h> 48 #include <asm/uaccess.h> 49 #include <asm/irq_regs.h> 50 51 #include "entry.h" 52 53 DEFINE_SPINLOCK(rtc_lock); 54 55 #define TICK_PRIV_BIT (1UL << 63) 56 #define TICKCMP_IRQ_BIT (1UL << 63) 57 58 #ifdef CONFIG_SMP 59 unsigned long profile_pc(struct pt_regs *regs) 60 { 61 unsigned long pc = instruction_pointer(regs); 62 63 if (in_lock_functions(pc)) 64 return regs->u_regs[UREG_RETPC]; 65 return pc; 66 } 67 EXPORT_SYMBOL(profile_pc); 68 #endif 69 70 static void tick_disable_protection(void) 71 { 72 /* Set things up so user can access tick register for profiling 73 * purposes. Also workaround BB_ERRATA_1 by doing a dummy 74 * read back of %tick after writing it. 75 */ 76 __asm__ __volatile__( 77 " ba,pt %%xcc, 1f\n" 78 " nop\n" 79 " .align 64\n" 80 "1: rd %%tick, %%g2\n" 81 " add %%g2, 6, %%g2\n" 82 " andn %%g2, %0, %%g2\n" 83 " wrpr %%g2, 0, %%tick\n" 84 " rdpr %%tick, %%g0" 85 : /* no outputs */ 86 : "r" (TICK_PRIV_BIT) 87 : "g2"); 88 } 89 90 static void tick_disable_irq(void) 91 { 92 __asm__ __volatile__( 93 " ba,pt %%xcc, 1f\n" 94 " nop\n" 95 " .align 64\n" 96 "1: wr %0, 0x0, %%tick_cmpr\n" 97 " rd %%tick_cmpr, %%g0" 98 : /* no outputs */ 99 : "r" (TICKCMP_IRQ_BIT)); 100 } 101 102 static void tick_init_tick(void) 103 { 104 tick_disable_protection(); 105 tick_disable_irq(); 106 } 107 108 static unsigned long long tick_get_tick(void) 109 { 110 unsigned long ret; 111 112 __asm__ __volatile__("rd %%tick, %0\n\t" 113 "mov %0, %0" 114 : "=r" (ret)); 115 116 return ret & ~TICK_PRIV_BIT; 117 } 118 119 static int tick_add_compare(unsigned long adj) 120 { 121 unsigned long orig_tick, new_tick, new_compare; 122 123 __asm__ __volatile__("rd %%tick, %0" 124 : "=r" (orig_tick)); 125 126 orig_tick &= ~TICKCMP_IRQ_BIT; 127 128 /* Workaround for Spitfire Errata (#54 I think??), I discovered 129 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch 130 * number 103640. 131 * 132 * On Blackbird writes to %tick_cmpr can fail, the 133 * workaround seems to be to execute the wr instruction 134 * at the start of an I-cache line, and perform a dummy 135 * read back from %tick_cmpr right after writing to it. -DaveM 136 */ 137 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t" 138 " add %1, %2, %0\n\t" 139 ".align 64\n" 140 "1:\n\t" 141 "wr %0, 0, %%tick_cmpr\n\t" 142 "rd %%tick_cmpr, %%g0\n\t" 143 : "=r" (new_compare) 144 : "r" (orig_tick), "r" (adj)); 145 146 __asm__ __volatile__("rd %%tick, %0" 147 : "=r" (new_tick)); 148 new_tick &= ~TICKCMP_IRQ_BIT; 149 150 return ((long)(new_tick - (orig_tick+adj))) > 0L; 151 } 152 153 static unsigned long tick_add_tick(unsigned long adj) 154 { 155 unsigned long new_tick; 156 157 /* Also need to handle Blackbird bug here too. */ 158 __asm__ __volatile__("rd %%tick, %0\n\t" 159 "add %0, %1, %0\n\t" 160 "wrpr %0, 0, %%tick\n\t" 161 : "=&r" (new_tick) 162 : "r" (adj)); 163 164 return new_tick; 165 } 166 167 static struct sparc64_tick_ops tick_operations __read_mostly = { 168 .name = "tick", 169 .init_tick = tick_init_tick, 170 .disable_irq = tick_disable_irq, 171 .get_tick = tick_get_tick, 172 .add_tick = tick_add_tick, 173 .add_compare = tick_add_compare, 174 .softint_mask = 1UL << 0, 175 }; 176 177 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations; 178 EXPORT_SYMBOL(tick_ops); 179 180 static void stick_disable_irq(void) 181 { 182 __asm__ __volatile__( 183 "wr %0, 0x0, %%asr25" 184 : /* no outputs */ 185 : "r" (TICKCMP_IRQ_BIT)); 186 } 187 188 static void stick_init_tick(void) 189 { 190 /* Writes to the %tick and %stick register are not 191 * allowed on sun4v. The Hypervisor controls that 192 * bit, per-strand. 193 */ 194 if (tlb_type != hypervisor) { 195 tick_disable_protection(); 196 tick_disable_irq(); 197 198 /* Let the user get at STICK too. */ 199 __asm__ __volatile__( 200 " rd %%asr24, %%g2\n" 201 " andn %%g2, %0, %%g2\n" 202 " wr %%g2, 0, %%asr24" 203 : /* no outputs */ 204 : "r" (TICK_PRIV_BIT) 205 : "g1", "g2"); 206 } 207 208 stick_disable_irq(); 209 } 210 211 static unsigned long long stick_get_tick(void) 212 { 213 unsigned long ret; 214 215 __asm__ __volatile__("rd %%asr24, %0" 216 : "=r" (ret)); 217 218 return ret & ~TICK_PRIV_BIT; 219 } 220 221 static unsigned long stick_add_tick(unsigned long adj) 222 { 223 unsigned long new_tick; 224 225 __asm__ __volatile__("rd %%asr24, %0\n\t" 226 "add %0, %1, %0\n\t" 227 "wr %0, 0, %%asr24\n\t" 228 : "=&r" (new_tick) 229 : "r" (adj)); 230 231 return new_tick; 232 } 233 234 static int stick_add_compare(unsigned long adj) 235 { 236 unsigned long orig_tick, new_tick; 237 238 __asm__ __volatile__("rd %%asr24, %0" 239 : "=r" (orig_tick)); 240 orig_tick &= ~TICKCMP_IRQ_BIT; 241 242 __asm__ __volatile__("wr %0, 0, %%asr25" 243 : /* no outputs */ 244 : "r" (orig_tick + adj)); 245 246 __asm__ __volatile__("rd %%asr24, %0" 247 : "=r" (new_tick)); 248 new_tick &= ~TICKCMP_IRQ_BIT; 249 250 return ((long)(new_tick - (orig_tick+adj))) > 0L; 251 } 252 253 static struct sparc64_tick_ops stick_operations __read_mostly = { 254 .name = "stick", 255 .init_tick = stick_init_tick, 256 .disable_irq = stick_disable_irq, 257 .get_tick = stick_get_tick, 258 .add_tick = stick_add_tick, 259 .add_compare = stick_add_compare, 260 .softint_mask = 1UL << 16, 261 }; 262 263 /* On Hummingbird the STICK/STICK_CMPR register is implemented 264 * in I/O space. There are two 64-bit registers each, the 265 * first holds the low 32-bits of the value and the second holds 266 * the high 32-bits. 267 * 268 * Since STICK is constantly updating, we have to access it carefully. 269 * 270 * The sequence we use to read is: 271 * 1) read high 272 * 2) read low 273 * 3) read high again, if it rolled re-read both low and high again. 274 * 275 * Writing STICK safely is also tricky: 276 * 1) write low to zero 277 * 2) write high 278 * 3) write low 279 */ 280 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL 281 #define HBIRD_STICK_ADDR 0x1fe0000f070UL 282 283 static unsigned long __hbird_read_stick(void) 284 { 285 unsigned long ret, tmp1, tmp2, tmp3; 286 unsigned long addr = HBIRD_STICK_ADDR+8; 287 288 __asm__ __volatile__("ldxa [%1] %5, %2\n" 289 "1:\n\t" 290 "sub %1, 0x8, %1\n\t" 291 "ldxa [%1] %5, %3\n\t" 292 "add %1, 0x8, %1\n\t" 293 "ldxa [%1] %5, %4\n\t" 294 "cmp %4, %2\n\t" 295 "bne,a,pn %%xcc, 1b\n\t" 296 " mov %4, %2\n\t" 297 "sllx %4, 32, %4\n\t" 298 "or %3, %4, %0\n\t" 299 : "=&r" (ret), "=&r" (addr), 300 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3) 301 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr)); 302 303 return ret; 304 } 305 306 static void __hbird_write_stick(unsigned long val) 307 { 308 unsigned long low = (val & 0xffffffffUL); 309 unsigned long high = (val >> 32UL); 310 unsigned long addr = HBIRD_STICK_ADDR; 311 312 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t" 313 "add %0, 0x8, %0\n\t" 314 "stxa %3, [%0] %4\n\t" 315 "sub %0, 0x8, %0\n\t" 316 "stxa %2, [%0] %4" 317 : "=&r" (addr) 318 : "0" (addr), "r" (low), "r" (high), 319 "i" (ASI_PHYS_BYPASS_EC_E)); 320 } 321 322 static void __hbird_write_compare(unsigned long val) 323 { 324 unsigned long low = (val & 0xffffffffUL); 325 unsigned long high = (val >> 32UL); 326 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL; 327 328 __asm__ __volatile__("stxa %3, [%0] %4\n\t" 329 "sub %0, 0x8, %0\n\t" 330 "stxa %2, [%0] %4" 331 : "=&r" (addr) 332 : "0" (addr), "r" (low), "r" (high), 333 "i" (ASI_PHYS_BYPASS_EC_E)); 334 } 335 336 static void hbtick_disable_irq(void) 337 { 338 __hbird_write_compare(TICKCMP_IRQ_BIT); 339 } 340 341 static void hbtick_init_tick(void) 342 { 343 tick_disable_protection(); 344 345 /* XXX This seems to be necessary to 'jumpstart' Hummingbird 346 * XXX into actually sending STICK interrupts. I think because 347 * XXX of how we store %tick_cmpr in head.S this somehow resets the 348 * XXX {TICK + STICK} interrupt mux. -DaveM 349 */ 350 __hbird_write_stick(__hbird_read_stick()); 351 352 hbtick_disable_irq(); 353 } 354 355 static unsigned long long hbtick_get_tick(void) 356 { 357 return __hbird_read_stick() & ~TICK_PRIV_BIT; 358 } 359 360 static unsigned long hbtick_add_tick(unsigned long adj) 361 { 362 unsigned long val; 363 364 val = __hbird_read_stick() + adj; 365 __hbird_write_stick(val); 366 367 return val; 368 } 369 370 static int hbtick_add_compare(unsigned long adj) 371 { 372 unsigned long val = __hbird_read_stick(); 373 unsigned long val2; 374 375 val &= ~TICKCMP_IRQ_BIT; 376 val += adj; 377 __hbird_write_compare(val); 378 379 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT; 380 381 return ((long)(val2 - val)) > 0L; 382 } 383 384 static struct sparc64_tick_ops hbtick_operations __read_mostly = { 385 .name = "hbtick", 386 .init_tick = hbtick_init_tick, 387 .disable_irq = hbtick_disable_irq, 388 .get_tick = hbtick_get_tick, 389 .add_tick = hbtick_add_tick, 390 .add_compare = hbtick_add_compare, 391 .softint_mask = 1UL << 0, 392 }; 393 394 static unsigned long timer_ticks_per_nsec_quotient __read_mostly; 395 396 int update_persistent_clock(struct timespec now) 397 { 398 struct rtc_device *rtc = rtc_class_open("rtc0"); 399 int err = -1; 400 401 if (rtc) { 402 err = rtc_set_mmss(rtc, now.tv_sec); 403 rtc_class_close(rtc); 404 } 405 406 return err; 407 } 408 409 unsigned long cmos_regs; 410 EXPORT_SYMBOL(cmos_regs); 411 412 static struct resource rtc_cmos_resource; 413 414 static struct platform_device rtc_cmos_device = { 415 .name = "rtc_cmos", 416 .id = -1, 417 .resource = &rtc_cmos_resource, 418 .num_resources = 1, 419 }; 420 421 static int __devinit rtc_probe(struct of_device *op, const struct of_device_id *match) 422 { 423 struct resource *r; 424 425 printk(KERN_INFO "%s: RTC regs at 0x%llx\n", 426 op->node->full_name, op->resource[0].start); 427 428 /* The CMOS RTC driver only accepts IORESOURCE_IO, so cons 429 * up a fake resource so that the probe works for all cases. 430 * When the RTC is behind an ISA bus it will have IORESOURCE_IO 431 * already, whereas when it's behind EBUS is will be IORESOURCE_MEM. 432 */ 433 434 r = &rtc_cmos_resource; 435 r->flags = IORESOURCE_IO; 436 r->name = op->resource[0].name; 437 r->start = op->resource[0].start; 438 r->end = op->resource[0].end; 439 440 cmos_regs = op->resource[0].start; 441 return platform_device_register(&rtc_cmos_device); 442 } 443 444 static struct of_device_id __initdata rtc_match[] = { 445 { 446 .name = "rtc", 447 .compatible = "m5819", 448 }, 449 { 450 .name = "rtc", 451 .compatible = "isa-m5819p", 452 }, 453 { 454 .name = "rtc", 455 .compatible = "isa-m5823p", 456 }, 457 { 458 .name = "rtc", 459 .compatible = "ds1287", 460 }, 461 {}, 462 }; 463 464 static struct of_platform_driver rtc_driver = { 465 .match_table = rtc_match, 466 .probe = rtc_probe, 467 .driver = { 468 .name = "rtc", 469 }, 470 }; 471 472 static struct platform_device rtc_bq4802_device = { 473 .name = "rtc-bq4802", 474 .id = -1, 475 .num_resources = 1, 476 }; 477 478 static int __devinit bq4802_probe(struct of_device *op, const struct of_device_id *match) 479 { 480 481 printk(KERN_INFO "%s: BQ4802 regs at 0x%llx\n", 482 op->node->full_name, op->resource[0].start); 483 484 rtc_bq4802_device.resource = &op->resource[0]; 485 return platform_device_register(&rtc_bq4802_device); 486 } 487 488 static struct of_device_id __initdata bq4802_match[] = { 489 { 490 .name = "rtc", 491 .compatible = "bq4802", 492 }, 493 {}, 494 }; 495 496 static struct of_platform_driver bq4802_driver = { 497 .match_table = bq4802_match, 498 .probe = bq4802_probe, 499 .driver = { 500 .name = "bq4802", 501 }, 502 }; 503 504 static unsigned char mostek_read_byte(struct device *dev, u32 ofs) 505 { 506 struct platform_device *pdev = to_platform_device(dev); 507 void __iomem *regs = (void __iomem *) pdev->resource[0].start; 508 509 return readb(regs + ofs); 510 } 511 512 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val) 513 { 514 struct platform_device *pdev = to_platform_device(dev); 515 void __iomem *regs = (void __iomem *) pdev->resource[0].start; 516 517 writeb(val, regs + ofs); 518 } 519 520 static struct m48t59_plat_data m48t59_data = { 521 .read_byte = mostek_read_byte, 522 .write_byte = mostek_write_byte, 523 }; 524 525 static struct platform_device m48t59_rtc = { 526 .name = "rtc-m48t59", 527 .id = 0, 528 .num_resources = 1, 529 .dev = { 530 .platform_data = &m48t59_data, 531 }, 532 }; 533 534 static int __devinit mostek_probe(struct of_device *op, const struct of_device_id *match) 535 { 536 struct device_node *dp = op->node; 537 538 /* On an Enterprise system there can be multiple mostek clocks. 539 * We should only match the one that is on the central FHC bus. 540 */ 541 if (!strcmp(dp->parent->name, "fhc") && 542 strcmp(dp->parent->parent->name, "central") != 0) 543 return -ENODEV; 544 545 printk(KERN_INFO "%s: Mostek regs at 0x%llx\n", 546 dp->full_name, op->resource[0].start); 547 548 m48t59_rtc.resource = &op->resource[0]; 549 return platform_device_register(&m48t59_rtc); 550 } 551 552 static struct of_device_id __initdata mostek_match[] = { 553 { 554 .name = "eeprom", 555 }, 556 {}, 557 }; 558 559 static struct of_platform_driver mostek_driver = { 560 .match_table = mostek_match, 561 .probe = mostek_probe, 562 .driver = { 563 .name = "mostek", 564 }, 565 }; 566 567 static struct platform_device rtc_sun4v_device = { 568 .name = "rtc-sun4v", 569 .id = -1, 570 }; 571 572 static struct platform_device rtc_starfire_device = { 573 .name = "rtc-starfire", 574 .id = -1, 575 }; 576 577 static int __init clock_init(void) 578 { 579 if (this_is_starfire) 580 return platform_device_register(&rtc_starfire_device); 581 582 if (tlb_type == hypervisor) 583 return platform_device_register(&rtc_sun4v_device); 584 585 (void) of_register_driver(&rtc_driver, &of_platform_bus_type); 586 (void) of_register_driver(&mostek_driver, &of_platform_bus_type); 587 (void) of_register_driver(&bq4802_driver, &of_platform_bus_type); 588 589 return 0; 590 } 591 592 /* Must be after subsys_initcall() so that busses are probed. Must 593 * be before device_initcall() because things like the RTC driver 594 * need to see the clock registers. 595 */ 596 fs_initcall(clock_init); 597 598 /* This is gets the master TICK_INT timer going. */ 599 static unsigned long sparc64_init_timers(void) 600 { 601 struct device_node *dp; 602 unsigned long freq; 603 604 dp = of_find_node_by_path("/"); 605 if (tlb_type == spitfire) { 606 unsigned long ver, manuf, impl; 607 608 __asm__ __volatile__ ("rdpr %%ver, %0" 609 : "=&r" (ver)); 610 manuf = ((ver >> 48) & 0xffff); 611 impl = ((ver >> 32) & 0xffff); 612 if (manuf == 0x17 && impl == 0x13) { 613 /* Hummingbird, aka Ultra-IIe */ 614 tick_ops = &hbtick_operations; 615 freq = of_getintprop_default(dp, "stick-frequency", 0); 616 } else { 617 tick_ops = &tick_operations; 618 freq = local_cpu_data().clock_tick; 619 } 620 } else { 621 tick_ops = &stick_operations; 622 freq = of_getintprop_default(dp, "stick-frequency", 0); 623 } 624 625 return freq; 626 } 627 628 struct freq_table { 629 unsigned long clock_tick_ref; 630 unsigned int ref_freq; 631 }; 632 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 }; 633 634 unsigned long sparc64_get_clock_tick(unsigned int cpu) 635 { 636 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); 637 638 if (ft->clock_tick_ref) 639 return ft->clock_tick_ref; 640 return cpu_data(cpu).clock_tick; 641 } 642 EXPORT_SYMBOL(sparc64_get_clock_tick); 643 644 #ifdef CONFIG_CPU_FREQ 645 646 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 647 void *data) 648 { 649 struct cpufreq_freqs *freq = data; 650 unsigned int cpu = freq->cpu; 651 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); 652 653 if (!ft->ref_freq) { 654 ft->ref_freq = freq->old; 655 ft->clock_tick_ref = cpu_data(cpu).clock_tick; 656 } 657 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 658 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 659 (val == CPUFREQ_RESUMECHANGE)) { 660 cpu_data(cpu).clock_tick = 661 cpufreq_scale(ft->clock_tick_ref, 662 ft->ref_freq, 663 freq->new); 664 } 665 666 return 0; 667 } 668 669 static struct notifier_block sparc64_cpufreq_notifier_block = { 670 .notifier_call = sparc64_cpufreq_notifier 671 }; 672 673 static int __init register_sparc64_cpufreq_notifier(void) 674 { 675 676 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block, 677 CPUFREQ_TRANSITION_NOTIFIER); 678 return 0; 679 } 680 681 core_initcall(register_sparc64_cpufreq_notifier); 682 683 #endif /* CONFIG_CPU_FREQ */ 684 685 static int sparc64_next_event(unsigned long delta, 686 struct clock_event_device *evt) 687 { 688 return tick_ops->add_compare(delta) ? -ETIME : 0; 689 } 690 691 static void sparc64_timer_setup(enum clock_event_mode mode, 692 struct clock_event_device *evt) 693 { 694 switch (mode) { 695 case CLOCK_EVT_MODE_ONESHOT: 696 case CLOCK_EVT_MODE_RESUME: 697 break; 698 699 case CLOCK_EVT_MODE_SHUTDOWN: 700 tick_ops->disable_irq(); 701 break; 702 703 case CLOCK_EVT_MODE_PERIODIC: 704 case CLOCK_EVT_MODE_UNUSED: 705 WARN_ON(1); 706 break; 707 }; 708 } 709 710 static struct clock_event_device sparc64_clockevent = { 711 .features = CLOCK_EVT_FEAT_ONESHOT, 712 .set_mode = sparc64_timer_setup, 713 .set_next_event = sparc64_next_event, 714 .rating = 100, 715 .shift = 30, 716 .irq = -1, 717 }; 718 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events); 719 720 void timer_interrupt(int irq, struct pt_regs *regs) 721 { 722 struct pt_regs *old_regs = set_irq_regs(regs); 723 unsigned long tick_mask = tick_ops->softint_mask; 724 int cpu = smp_processor_id(); 725 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu); 726 727 clear_softint(tick_mask); 728 729 irq_enter(); 730 731 kstat_incr_irqs_this_cpu(0, irq_to_desc(0)); 732 733 if (unlikely(!evt->event_handler)) { 734 printk(KERN_WARNING 735 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu); 736 } else 737 evt->event_handler(evt); 738 739 irq_exit(); 740 741 set_irq_regs(old_regs); 742 } 743 744 void __devinit setup_sparc64_timer(void) 745 { 746 struct clock_event_device *sevt; 747 unsigned long pstate; 748 749 /* Guarantee that the following sequences execute 750 * uninterrupted. 751 */ 752 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 753 "wrpr %0, %1, %%pstate" 754 : "=r" (pstate) 755 : "i" (PSTATE_IE)); 756 757 tick_ops->init_tick(); 758 759 /* Restore PSTATE_IE. */ 760 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 761 : /* no outputs */ 762 : "r" (pstate)); 763 764 sevt = &__get_cpu_var(sparc64_events); 765 766 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt)); 767 sevt->cpumask = cpumask_of(smp_processor_id()); 768 769 clockevents_register_device(sevt); 770 } 771 772 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL 773 774 static struct clocksource clocksource_tick = { 775 .rating = 100, 776 .mask = CLOCKSOURCE_MASK(64), 777 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 778 }; 779 780 static unsigned long tb_ticks_per_usec __read_mostly; 781 782 void __delay(unsigned long loops) 783 { 784 unsigned long bclock, now; 785 786 bclock = tick_ops->get_tick(); 787 do { 788 now = tick_ops->get_tick(); 789 } while ((now-bclock) < loops); 790 } 791 EXPORT_SYMBOL(__delay); 792 793 void udelay(unsigned long usecs) 794 { 795 __delay(tb_ticks_per_usec * usecs); 796 } 797 EXPORT_SYMBOL(udelay); 798 799 static cycle_t clocksource_tick_read(struct clocksource *cs) 800 { 801 return tick_ops->get_tick(); 802 } 803 804 void __init time_init(void) 805 { 806 unsigned long freq = sparc64_init_timers(); 807 808 tb_ticks_per_usec = freq / USEC_PER_SEC; 809 810 timer_ticks_per_nsec_quotient = 811 clocksource_hz2mult(freq, SPARC64_NSEC_PER_CYC_SHIFT); 812 813 clocksource_tick.name = tick_ops->name; 814 clocksource_calc_mult_shift(&clocksource_tick, freq, 4); 815 clocksource_tick.read = clocksource_tick_read; 816 817 printk("clocksource: mult[%x] shift[%d]\n", 818 clocksource_tick.mult, clocksource_tick.shift); 819 820 clocksource_register(&clocksource_tick); 821 822 sparc64_clockevent.name = tick_ops->name; 823 clockevents_calc_mult_shift(&sparc64_clockevent, freq, 4); 824 825 sparc64_clockevent.max_delta_ns = 826 clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent); 827 sparc64_clockevent.min_delta_ns = 828 clockevent_delta2ns(0xF, &sparc64_clockevent); 829 830 printk("clockevent: mult[%x] shift[%d]\n", 831 sparc64_clockevent.mult, sparc64_clockevent.shift); 832 833 setup_sparc64_timer(); 834 } 835 836 unsigned long long sched_clock(void) 837 { 838 unsigned long ticks = tick_ops->get_tick(); 839 840 return (ticks * timer_ticks_per_nsec_quotient) 841 >> SPARC64_NSEC_PER_CYC_SHIFT; 842 } 843 844 int __devinit read_current_timer(unsigned long *timer_val) 845 { 846 *timer_val = tick_ops->get_tick(); 847 return 0; 848 } 849