1 /* time.c: UltraSparc timer and TOD clock support. 2 * 3 * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) 5 * 6 * Based largely on code which is: 7 * 8 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) 9 */ 10 11 #include <linux/errno.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/kernel.h> 15 #include <linux/param.h> 16 #include <linux/string.h> 17 #include <linux/mm.h> 18 #include <linux/interrupt.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/init.h> 22 #include <linux/ioport.h> 23 #include <linux/mc146818rtc.h> 24 #include <linux/delay.h> 25 #include <linux/profile.h> 26 #include <linux/bcd.h> 27 #include <linux/jiffies.h> 28 #include <linux/cpufreq.h> 29 #include <linux/percpu.h> 30 #include <linux/miscdevice.h> 31 #include <linux/rtc.h> 32 #include <linux/rtc/m48t59.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/clockchips.h> 35 #include <linux/clocksource.h> 36 #include <linux/of_device.h> 37 #include <linux/platform_device.h> 38 #include <linux/ftrace.h> 39 40 #include <asm/oplib.h> 41 #include <asm/timer.h> 42 #include <asm/irq.h> 43 #include <asm/io.h> 44 #include <asm/prom.h> 45 #include <asm/starfire.h> 46 #include <asm/smp.h> 47 #include <asm/sections.h> 48 #include <asm/cpudata.h> 49 #include <asm/uaccess.h> 50 #include <asm/irq_regs.h> 51 52 #include "entry.h" 53 54 DEFINE_SPINLOCK(rtc_lock); 55 56 #define TICK_PRIV_BIT (1UL << 63) 57 #define TICKCMP_IRQ_BIT (1UL << 63) 58 59 #ifdef CONFIG_SMP 60 unsigned long profile_pc(struct pt_regs *regs) 61 { 62 unsigned long pc = instruction_pointer(regs); 63 64 if (in_lock_functions(pc)) 65 return regs->u_regs[UREG_RETPC]; 66 return pc; 67 } 68 EXPORT_SYMBOL(profile_pc); 69 #endif 70 71 static void tick_disable_protection(void) 72 { 73 /* Set things up so user can access tick register for profiling 74 * purposes. Also workaround BB_ERRATA_1 by doing a dummy 75 * read back of %tick after writing it. 76 */ 77 __asm__ __volatile__( 78 " ba,pt %%xcc, 1f\n" 79 " nop\n" 80 " .align 64\n" 81 "1: rd %%tick, %%g2\n" 82 " add %%g2, 6, %%g2\n" 83 " andn %%g2, %0, %%g2\n" 84 " wrpr %%g2, 0, %%tick\n" 85 " rdpr %%tick, %%g0" 86 : /* no outputs */ 87 : "r" (TICK_PRIV_BIT) 88 : "g2"); 89 } 90 91 static void tick_disable_irq(void) 92 { 93 __asm__ __volatile__( 94 " ba,pt %%xcc, 1f\n" 95 " nop\n" 96 " .align 64\n" 97 "1: wr %0, 0x0, %%tick_cmpr\n" 98 " rd %%tick_cmpr, %%g0" 99 : /* no outputs */ 100 : "r" (TICKCMP_IRQ_BIT)); 101 } 102 103 static void tick_init_tick(void) 104 { 105 tick_disable_protection(); 106 tick_disable_irq(); 107 } 108 109 static unsigned long long tick_get_tick(void) 110 { 111 unsigned long ret; 112 113 __asm__ __volatile__("rd %%tick, %0\n\t" 114 "mov %0, %0" 115 : "=r" (ret)); 116 117 return ret & ~TICK_PRIV_BIT; 118 } 119 120 static int tick_add_compare(unsigned long adj) 121 { 122 unsigned long orig_tick, new_tick, new_compare; 123 124 __asm__ __volatile__("rd %%tick, %0" 125 : "=r" (orig_tick)); 126 127 orig_tick &= ~TICKCMP_IRQ_BIT; 128 129 /* Workaround for Spitfire Errata (#54 I think??), I discovered 130 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch 131 * number 103640. 132 * 133 * On Blackbird writes to %tick_cmpr can fail, the 134 * workaround seems to be to execute the wr instruction 135 * at the start of an I-cache line, and perform a dummy 136 * read back from %tick_cmpr right after writing to it. -DaveM 137 */ 138 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t" 139 " add %1, %2, %0\n\t" 140 ".align 64\n" 141 "1:\n\t" 142 "wr %0, 0, %%tick_cmpr\n\t" 143 "rd %%tick_cmpr, %%g0\n\t" 144 : "=r" (new_compare) 145 : "r" (orig_tick), "r" (adj)); 146 147 __asm__ __volatile__("rd %%tick, %0" 148 : "=r" (new_tick)); 149 new_tick &= ~TICKCMP_IRQ_BIT; 150 151 return ((long)(new_tick - (orig_tick+adj))) > 0L; 152 } 153 154 static unsigned long tick_add_tick(unsigned long adj) 155 { 156 unsigned long new_tick; 157 158 /* Also need to handle Blackbird bug here too. */ 159 __asm__ __volatile__("rd %%tick, %0\n\t" 160 "add %0, %1, %0\n\t" 161 "wrpr %0, 0, %%tick\n\t" 162 : "=&r" (new_tick) 163 : "r" (adj)); 164 165 return new_tick; 166 } 167 168 static struct sparc64_tick_ops tick_operations __read_mostly = { 169 .name = "tick", 170 .init_tick = tick_init_tick, 171 .disable_irq = tick_disable_irq, 172 .get_tick = tick_get_tick, 173 .add_tick = tick_add_tick, 174 .add_compare = tick_add_compare, 175 .softint_mask = 1UL << 0, 176 }; 177 178 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations; 179 EXPORT_SYMBOL(tick_ops); 180 181 static void stick_disable_irq(void) 182 { 183 __asm__ __volatile__( 184 "wr %0, 0x0, %%asr25" 185 : /* no outputs */ 186 : "r" (TICKCMP_IRQ_BIT)); 187 } 188 189 static void stick_init_tick(void) 190 { 191 /* Writes to the %tick and %stick register are not 192 * allowed on sun4v. The Hypervisor controls that 193 * bit, per-strand. 194 */ 195 if (tlb_type != hypervisor) { 196 tick_disable_protection(); 197 tick_disable_irq(); 198 199 /* Let the user get at STICK too. */ 200 __asm__ __volatile__( 201 " rd %%asr24, %%g2\n" 202 " andn %%g2, %0, %%g2\n" 203 " wr %%g2, 0, %%asr24" 204 : /* no outputs */ 205 : "r" (TICK_PRIV_BIT) 206 : "g1", "g2"); 207 } 208 209 stick_disable_irq(); 210 } 211 212 static unsigned long long stick_get_tick(void) 213 { 214 unsigned long ret; 215 216 __asm__ __volatile__("rd %%asr24, %0" 217 : "=r" (ret)); 218 219 return ret & ~TICK_PRIV_BIT; 220 } 221 222 static unsigned long stick_add_tick(unsigned long adj) 223 { 224 unsigned long new_tick; 225 226 __asm__ __volatile__("rd %%asr24, %0\n\t" 227 "add %0, %1, %0\n\t" 228 "wr %0, 0, %%asr24\n\t" 229 : "=&r" (new_tick) 230 : "r" (adj)); 231 232 return new_tick; 233 } 234 235 static int stick_add_compare(unsigned long adj) 236 { 237 unsigned long orig_tick, new_tick; 238 239 __asm__ __volatile__("rd %%asr24, %0" 240 : "=r" (orig_tick)); 241 orig_tick &= ~TICKCMP_IRQ_BIT; 242 243 __asm__ __volatile__("wr %0, 0, %%asr25" 244 : /* no outputs */ 245 : "r" (orig_tick + adj)); 246 247 __asm__ __volatile__("rd %%asr24, %0" 248 : "=r" (new_tick)); 249 new_tick &= ~TICKCMP_IRQ_BIT; 250 251 return ((long)(new_tick - (orig_tick+adj))) > 0L; 252 } 253 254 static struct sparc64_tick_ops stick_operations __read_mostly = { 255 .name = "stick", 256 .init_tick = stick_init_tick, 257 .disable_irq = stick_disable_irq, 258 .get_tick = stick_get_tick, 259 .add_tick = stick_add_tick, 260 .add_compare = stick_add_compare, 261 .softint_mask = 1UL << 16, 262 }; 263 264 /* On Hummingbird the STICK/STICK_CMPR register is implemented 265 * in I/O space. There are two 64-bit registers each, the 266 * first holds the low 32-bits of the value and the second holds 267 * the high 32-bits. 268 * 269 * Since STICK is constantly updating, we have to access it carefully. 270 * 271 * The sequence we use to read is: 272 * 1) read high 273 * 2) read low 274 * 3) read high again, if it rolled re-read both low and high again. 275 * 276 * Writing STICK safely is also tricky: 277 * 1) write low to zero 278 * 2) write high 279 * 3) write low 280 */ 281 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL 282 #define HBIRD_STICK_ADDR 0x1fe0000f070UL 283 284 static unsigned long __hbird_read_stick(void) 285 { 286 unsigned long ret, tmp1, tmp2, tmp3; 287 unsigned long addr = HBIRD_STICK_ADDR+8; 288 289 __asm__ __volatile__("ldxa [%1] %5, %2\n" 290 "1:\n\t" 291 "sub %1, 0x8, %1\n\t" 292 "ldxa [%1] %5, %3\n\t" 293 "add %1, 0x8, %1\n\t" 294 "ldxa [%1] %5, %4\n\t" 295 "cmp %4, %2\n\t" 296 "bne,a,pn %%xcc, 1b\n\t" 297 " mov %4, %2\n\t" 298 "sllx %4, 32, %4\n\t" 299 "or %3, %4, %0\n\t" 300 : "=&r" (ret), "=&r" (addr), 301 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3) 302 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr)); 303 304 return ret; 305 } 306 307 static void __hbird_write_stick(unsigned long val) 308 { 309 unsigned long low = (val & 0xffffffffUL); 310 unsigned long high = (val >> 32UL); 311 unsigned long addr = HBIRD_STICK_ADDR; 312 313 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t" 314 "add %0, 0x8, %0\n\t" 315 "stxa %3, [%0] %4\n\t" 316 "sub %0, 0x8, %0\n\t" 317 "stxa %2, [%0] %4" 318 : "=&r" (addr) 319 : "0" (addr), "r" (low), "r" (high), 320 "i" (ASI_PHYS_BYPASS_EC_E)); 321 } 322 323 static void __hbird_write_compare(unsigned long val) 324 { 325 unsigned long low = (val & 0xffffffffUL); 326 unsigned long high = (val >> 32UL); 327 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL; 328 329 __asm__ __volatile__("stxa %3, [%0] %4\n\t" 330 "sub %0, 0x8, %0\n\t" 331 "stxa %2, [%0] %4" 332 : "=&r" (addr) 333 : "0" (addr), "r" (low), "r" (high), 334 "i" (ASI_PHYS_BYPASS_EC_E)); 335 } 336 337 static void hbtick_disable_irq(void) 338 { 339 __hbird_write_compare(TICKCMP_IRQ_BIT); 340 } 341 342 static void hbtick_init_tick(void) 343 { 344 tick_disable_protection(); 345 346 /* XXX This seems to be necessary to 'jumpstart' Hummingbird 347 * XXX into actually sending STICK interrupts. I think because 348 * XXX of how we store %tick_cmpr in head.S this somehow resets the 349 * XXX {TICK + STICK} interrupt mux. -DaveM 350 */ 351 __hbird_write_stick(__hbird_read_stick()); 352 353 hbtick_disable_irq(); 354 } 355 356 static unsigned long long hbtick_get_tick(void) 357 { 358 return __hbird_read_stick() & ~TICK_PRIV_BIT; 359 } 360 361 static unsigned long hbtick_add_tick(unsigned long adj) 362 { 363 unsigned long val; 364 365 val = __hbird_read_stick() + adj; 366 __hbird_write_stick(val); 367 368 return val; 369 } 370 371 static int hbtick_add_compare(unsigned long adj) 372 { 373 unsigned long val = __hbird_read_stick(); 374 unsigned long val2; 375 376 val &= ~TICKCMP_IRQ_BIT; 377 val += adj; 378 __hbird_write_compare(val); 379 380 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT; 381 382 return ((long)(val2 - val)) > 0L; 383 } 384 385 static struct sparc64_tick_ops hbtick_operations __read_mostly = { 386 .name = "hbtick", 387 .init_tick = hbtick_init_tick, 388 .disable_irq = hbtick_disable_irq, 389 .get_tick = hbtick_get_tick, 390 .add_tick = hbtick_add_tick, 391 .add_compare = hbtick_add_compare, 392 .softint_mask = 1UL << 0, 393 }; 394 395 static unsigned long timer_ticks_per_nsec_quotient __read_mostly; 396 397 int update_persistent_clock(struct timespec now) 398 { 399 struct rtc_device *rtc = rtc_class_open("rtc0"); 400 int err = -1; 401 402 if (rtc) { 403 err = rtc_set_mmss(rtc, now.tv_sec); 404 rtc_class_close(rtc); 405 } 406 407 return err; 408 } 409 410 unsigned long cmos_regs; 411 EXPORT_SYMBOL(cmos_regs); 412 413 static struct resource rtc_cmos_resource; 414 415 static struct platform_device rtc_cmos_device = { 416 .name = "rtc_cmos", 417 .id = -1, 418 .resource = &rtc_cmos_resource, 419 .num_resources = 1, 420 }; 421 422 static int rtc_probe(struct platform_device *op) 423 { 424 struct resource *r; 425 426 printk(KERN_INFO "%s: RTC regs at 0x%llx\n", 427 op->dev.of_node->full_name, op->resource[0].start); 428 429 /* The CMOS RTC driver only accepts IORESOURCE_IO, so cons 430 * up a fake resource so that the probe works for all cases. 431 * When the RTC is behind an ISA bus it will have IORESOURCE_IO 432 * already, whereas when it's behind EBUS is will be IORESOURCE_MEM. 433 */ 434 435 r = &rtc_cmos_resource; 436 r->flags = IORESOURCE_IO; 437 r->name = op->resource[0].name; 438 r->start = op->resource[0].start; 439 r->end = op->resource[0].end; 440 441 cmos_regs = op->resource[0].start; 442 return platform_device_register(&rtc_cmos_device); 443 } 444 445 static const struct of_device_id rtc_match[] = { 446 { 447 .name = "rtc", 448 .compatible = "m5819", 449 }, 450 { 451 .name = "rtc", 452 .compatible = "isa-m5819p", 453 }, 454 { 455 .name = "rtc", 456 .compatible = "isa-m5823p", 457 }, 458 { 459 .name = "rtc", 460 .compatible = "ds1287", 461 }, 462 {}, 463 }; 464 465 static struct platform_driver rtc_driver = { 466 .probe = rtc_probe, 467 .driver = { 468 .name = "rtc", 469 .owner = THIS_MODULE, 470 .of_match_table = rtc_match, 471 }, 472 }; 473 474 static struct platform_device rtc_bq4802_device = { 475 .name = "rtc-bq4802", 476 .id = -1, 477 .num_resources = 1, 478 }; 479 480 static int bq4802_probe(struct platform_device *op) 481 { 482 483 printk(KERN_INFO "%s: BQ4802 regs at 0x%llx\n", 484 op->dev.of_node->full_name, op->resource[0].start); 485 486 rtc_bq4802_device.resource = &op->resource[0]; 487 return platform_device_register(&rtc_bq4802_device); 488 } 489 490 static const struct of_device_id bq4802_match[] = { 491 { 492 .name = "rtc", 493 .compatible = "bq4802", 494 }, 495 {}, 496 }; 497 498 static struct platform_driver bq4802_driver = { 499 .probe = bq4802_probe, 500 .driver = { 501 .name = "bq4802", 502 .owner = THIS_MODULE, 503 .of_match_table = bq4802_match, 504 }, 505 }; 506 507 static unsigned char mostek_read_byte(struct device *dev, u32 ofs) 508 { 509 struct platform_device *pdev = to_platform_device(dev); 510 void __iomem *regs = (void __iomem *) pdev->resource[0].start; 511 512 return readb(regs + ofs); 513 } 514 515 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val) 516 { 517 struct platform_device *pdev = to_platform_device(dev); 518 void __iomem *regs = (void __iomem *) pdev->resource[0].start; 519 520 writeb(val, regs + ofs); 521 } 522 523 static struct m48t59_plat_data m48t59_data = { 524 .read_byte = mostek_read_byte, 525 .write_byte = mostek_write_byte, 526 }; 527 528 static struct platform_device m48t59_rtc = { 529 .name = "rtc-m48t59", 530 .id = 0, 531 .num_resources = 1, 532 .dev = { 533 .platform_data = &m48t59_data, 534 }, 535 }; 536 537 static int mostek_probe(struct platform_device *op) 538 { 539 struct device_node *dp = op->dev.of_node; 540 541 /* On an Enterprise system there can be multiple mostek clocks. 542 * We should only match the one that is on the central FHC bus. 543 */ 544 if (!strcmp(dp->parent->name, "fhc") && 545 strcmp(dp->parent->parent->name, "central") != 0) 546 return -ENODEV; 547 548 printk(KERN_INFO "%s: Mostek regs at 0x%llx\n", 549 dp->full_name, op->resource[0].start); 550 551 m48t59_rtc.resource = &op->resource[0]; 552 return platform_device_register(&m48t59_rtc); 553 } 554 555 static const struct of_device_id mostek_match[] = { 556 { 557 .name = "eeprom", 558 }, 559 {}, 560 }; 561 562 static struct platform_driver mostek_driver = { 563 .probe = mostek_probe, 564 .driver = { 565 .name = "mostek", 566 .owner = THIS_MODULE, 567 .of_match_table = mostek_match, 568 }, 569 }; 570 571 static struct platform_device rtc_sun4v_device = { 572 .name = "rtc-sun4v", 573 .id = -1, 574 }; 575 576 static struct platform_device rtc_starfire_device = { 577 .name = "rtc-starfire", 578 .id = -1, 579 }; 580 581 static int __init clock_init(void) 582 { 583 if (this_is_starfire) 584 return platform_device_register(&rtc_starfire_device); 585 586 if (tlb_type == hypervisor) 587 return platform_device_register(&rtc_sun4v_device); 588 589 (void) platform_driver_register(&rtc_driver); 590 (void) platform_driver_register(&mostek_driver); 591 (void) platform_driver_register(&bq4802_driver); 592 593 return 0; 594 } 595 596 /* Must be after subsys_initcall() so that busses are probed. Must 597 * be before device_initcall() because things like the RTC driver 598 * need to see the clock registers. 599 */ 600 fs_initcall(clock_init); 601 602 /* This is gets the master TICK_INT timer going. */ 603 static unsigned long sparc64_init_timers(void) 604 { 605 struct device_node *dp; 606 unsigned long freq; 607 608 dp = of_find_node_by_path("/"); 609 if (tlb_type == spitfire) { 610 unsigned long ver, manuf, impl; 611 612 __asm__ __volatile__ ("rdpr %%ver, %0" 613 : "=&r" (ver)); 614 manuf = ((ver >> 48) & 0xffff); 615 impl = ((ver >> 32) & 0xffff); 616 if (manuf == 0x17 && impl == 0x13) { 617 /* Hummingbird, aka Ultra-IIe */ 618 tick_ops = &hbtick_operations; 619 freq = of_getintprop_default(dp, "stick-frequency", 0); 620 } else { 621 tick_ops = &tick_operations; 622 freq = local_cpu_data().clock_tick; 623 } 624 } else { 625 tick_ops = &stick_operations; 626 freq = of_getintprop_default(dp, "stick-frequency", 0); 627 } 628 629 return freq; 630 } 631 632 struct freq_table { 633 unsigned long clock_tick_ref; 634 unsigned int ref_freq; 635 }; 636 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 }; 637 638 unsigned long sparc64_get_clock_tick(unsigned int cpu) 639 { 640 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); 641 642 if (ft->clock_tick_ref) 643 return ft->clock_tick_ref; 644 return cpu_data(cpu).clock_tick; 645 } 646 EXPORT_SYMBOL(sparc64_get_clock_tick); 647 648 #ifdef CONFIG_CPU_FREQ 649 650 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 651 void *data) 652 { 653 struct cpufreq_freqs *freq = data; 654 unsigned int cpu = freq->cpu; 655 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); 656 657 if (!ft->ref_freq) { 658 ft->ref_freq = freq->old; 659 ft->clock_tick_ref = cpu_data(cpu).clock_tick; 660 } 661 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 662 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 663 cpu_data(cpu).clock_tick = 664 cpufreq_scale(ft->clock_tick_ref, 665 ft->ref_freq, 666 freq->new); 667 } 668 669 return 0; 670 } 671 672 static struct notifier_block sparc64_cpufreq_notifier_block = { 673 .notifier_call = sparc64_cpufreq_notifier 674 }; 675 676 static int __init register_sparc64_cpufreq_notifier(void) 677 { 678 679 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block, 680 CPUFREQ_TRANSITION_NOTIFIER); 681 return 0; 682 } 683 684 core_initcall(register_sparc64_cpufreq_notifier); 685 686 #endif /* CONFIG_CPU_FREQ */ 687 688 static int sparc64_next_event(unsigned long delta, 689 struct clock_event_device *evt) 690 { 691 return tick_ops->add_compare(delta) ? -ETIME : 0; 692 } 693 694 static void sparc64_timer_setup(enum clock_event_mode mode, 695 struct clock_event_device *evt) 696 { 697 switch (mode) { 698 case CLOCK_EVT_MODE_ONESHOT: 699 case CLOCK_EVT_MODE_RESUME: 700 break; 701 702 case CLOCK_EVT_MODE_SHUTDOWN: 703 tick_ops->disable_irq(); 704 break; 705 706 case CLOCK_EVT_MODE_PERIODIC: 707 case CLOCK_EVT_MODE_UNUSED: 708 WARN_ON(1); 709 break; 710 } 711 } 712 713 static struct clock_event_device sparc64_clockevent = { 714 .features = CLOCK_EVT_FEAT_ONESHOT, 715 .set_mode = sparc64_timer_setup, 716 .set_next_event = sparc64_next_event, 717 .rating = 100, 718 .shift = 30, 719 .irq = -1, 720 }; 721 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events); 722 723 void __irq_entry timer_interrupt(int irq, struct pt_regs *regs) 724 { 725 struct pt_regs *old_regs = set_irq_regs(regs); 726 unsigned long tick_mask = tick_ops->softint_mask; 727 int cpu = smp_processor_id(); 728 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu); 729 730 clear_softint(tick_mask); 731 732 irq_enter(); 733 734 local_cpu_data().irq0_irqs++; 735 kstat_incr_irq_this_cpu(0); 736 737 if (unlikely(!evt->event_handler)) { 738 printk(KERN_WARNING 739 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu); 740 } else 741 evt->event_handler(evt); 742 743 irq_exit(); 744 745 set_irq_regs(old_regs); 746 } 747 748 void setup_sparc64_timer(void) 749 { 750 struct clock_event_device *sevt; 751 unsigned long pstate; 752 753 /* Guarantee that the following sequences execute 754 * uninterrupted. 755 */ 756 __asm__ __volatile__("rdpr %%pstate, %0\n\t" 757 "wrpr %0, %1, %%pstate" 758 : "=r" (pstate) 759 : "i" (PSTATE_IE)); 760 761 tick_ops->init_tick(); 762 763 /* Restore PSTATE_IE. */ 764 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 765 : /* no outputs */ 766 : "r" (pstate)); 767 768 sevt = this_cpu_ptr(&sparc64_events); 769 770 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt)); 771 sevt->cpumask = cpumask_of(smp_processor_id()); 772 773 clockevents_register_device(sevt); 774 } 775 776 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL 777 778 static struct clocksource clocksource_tick = { 779 .rating = 100, 780 .mask = CLOCKSOURCE_MASK(64), 781 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 782 }; 783 784 static unsigned long tb_ticks_per_usec __read_mostly; 785 786 void __delay(unsigned long loops) 787 { 788 unsigned long bclock, now; 789 790 bclock = tick_ops->get_tick(); 791 do { 792 now = tick_ops->get_tick(); 793 } while ((now-bclock) < loops); 794 } 795 EXPORT_SYMBOL(__delay); 796 797 void udelay(unsigned long usecs) 798 { 799 __delay(tb_ticks_per_usec * usecs); 800 } 801 EXPORT_SYMBOL(udelay); 802 803 static cycle_t clocksource_tick_read(struct clocksource *cs) 804 { 805 return tick_ops->get_tick(); 806 } 807 808 void __init time_init(void) 809 { 810 unsigned long freq = sparc64_init_timers(); 811 812 tb_ticks_per_usec = freq / USEC_PER_SEC; 813 814 timer_ticks_per_nsec_quotient = 815 clocksource_hz2mult(freq, SPARC64_NSEC_PER_CYC_SHIFT); 816 817 clocksource_tick.name = tick_ops->name; 818 clocksource_tick.read = clocksource_tick_read; 819 820 clocksource_register_hz(&clocksource_tick, freq); 821 printk("clocksource: mult[%x] shift[%d]\n", 822 clocksource_tick.mult, clocksource_tick.shift); 823 824 sparc64_clockevent.name = tick_ops->name; 825 clockevents_calc_mult_shift(&sparc64_clockevent, freq, 4); 826 827 sparc64_clockevent.max_delta_ns = 828 clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent); 829 sparc64_clockevent.min_delta_ns = 830 clockevent_delta2ns(0xF, &sparc64_clockevent); 831 832 printk("clockevent: mult[%x] shift[%d]\n", 833 sparc64_clockevent.mult, sparc64_clockevent.shift); 834 835 setup_sparc64_timer(); 836 } 837 838 unsigned long long sched_clock(void) 839 { 840 unsigned long ticks = tick_ops->get_tick(); 841 842 return (ticks * timer_ticks_per_nsec_quotient) 843 >> SPARC64_NSEC_PER_CYC_SHIFT; 844 } 845 846 int read_current_timer(unsigned long *timer_val) 847 { 848 *timer_val = tick_ops->get_tick(); 849 return 0; 850 } 851