1 /* linux/arch/sparc/kernel/time.c 2 * 3 * Copyright (C) 1995 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) 5 * 6 * Chris Davis (cdavis@cois.on.ca) 03/27/1998 7 * Added support for the intersil on the sun4/4200 8 * 9 * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998 10 * Support for MicroSPARC-IIep, PCI CPU. 11 * 12 * This file handles the Sparc specific time handling details. 13 * 14 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 15 * "A Kernel Model for Precision Timekeeping" by Dave Mills 16 */ 17 #include <linux/errno.h> 18 #include <linux/module.h> 19 #include <linux/sched.h> 20 #include <linux/kernel.h> 21 #include <linux/param.h> 22 #include <linux/string.h> 23 #include <linux/mm.h> 24 #include <linux/interrupt.h> 25 #include <linux/time.h> 26 #include <linux/rtc.h> 27 #include <linux/rtc/m48t59.h> 28 #include <linux/timex.h> 29 #include <linux/clocksource.h> 30 #include <linux/clockchips.h> 31 #include <linux/init.h> 32 #include <linux/pci.h> 33 #include <linux/ioport.h> 34 #include <linux/profile.h> 35 #include <linux/of.h> 36 #include <linux/of_device.h> 37 #include <linux/platform_device.h> 38 39 #include <asm/mc146818rtc.h> 40 #include <asm/oplib.h> 41 #include <asm/timex.h> 42 #include <asm/timer.h> 43 #include <asm/irq.h> 44 #include <asm/io.h> 45 #include <asm/idprom.h> 46 #include <asm/page.h> 47 #include <asm/pcic.h> 48 #include <asm/irq_regs.h> 49 #include <asm/setup.h> 50 51 #include "kernel.h" 52 #include "irq.h" 53 54 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock); 55 static __volatile__ u64 timer_cs_internal_counter = 0; 56 static char timer_cs_enabled = 0; 57 58 static struct clock_event_device timer_ce; 59 static char timer_ce_enabled = 0; 60 61 #ifdef CONFIG_SMP 62 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent); 63 #endif 64 65 DEFINE_SPINLOCK(rtc_lock); 66 EXPORT_SYMBOL(rtc_lock); 67 68 static int set_rtc_mmss(unsigned long); 69 70 unsigned long profile_pc(struct pt_regs *regs) 71 { 72 extern char __copy_user_begin[], __copy_user_end[]; 73 extern char __bzero_begin[], __bzero_end[]; 74 75 unsigned long pc = regs->pc; 76 77 if (in_lock_functions(pc) || 78 (pc >= (unsigned long) __copy_user_begin && 79 pc < (unsigned long) __copy_user_end) || 80 (pc >= (unsigned long) __bzero_begin && 81 pc < (unsigned long) __bzero_end)) 82 pc = regs->u_regs[UREG_RETPC]; 83 return pc; 84 } 85 86 EXPORT_SYMBOL(profile_pc); 87 88 volatile u32 __iomem *master_l10_counter; 89 90 int update_persistent_clock(struct timespec now) 91 { 92 return set_rtc_mmss(now.tv_sec); 93 } 94 95 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id) 96 { 97 if (timer_cs_enabled) { 98 write_seqlock(&timer_cs_lock); 99 timer_cs_internal_counter++; 100 sparc_config.clear_clock_irq(); 101 write_sequnlock(&timer_cs_lock); 102 } else { 103 sparc_config.clear_clock_irq(); 104 } 105 106 if (timer_ce_enabled) 107 timer_ce.event_handler(&timer_ce); 108 109 return IRQ_HANDLED; 110 } 111 112 static void timer_ce_set_mode(enum clock_event_mode mode, 113 struct clock_event_device *evt) 114 { 115 switch (mode) { 116 case CLOCK_EVT_MODE_PERIODIC: 117 case CLOCK_EVT_MODE_RESUME: 118 timer_ce_enabled = 1; 119 break; 120 case CLOCK_EVT_MODE_SHUTDOWN: 121 timer_ce_enabled = 0; 122 break; 123 default: 124 break; 125 } 126 smp_mb(); 127 } 128 129 static __init void setup_timer_ce(void) 130 { 131 struct clock_event_device *ce = &timer_ce; 132 133 BUG_ON(smp_processor_id() != boot_cpu_id); 134 135 ce->name = "timer_ce"; 136 ce->rating = 100; 137 ce->features = CLOCK_EVT_FEAT_PERIODIC; 138 ce->set_mode = timer_ce_set_mode; 139 ce->cpumask = cpu_possible_mask; 140 ce->shift = 32; 141 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, 142 ce->shift); 143 clockevents_register_device(ce); 144 } 145 146 static unsigned int sbus_cycles_offset(void) 147 { 148 u32 val, offset; 149 150 val = sbus_readl(master_l10_counter); 151 offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK; 152 153 /* Limit hit? */ 154 if (val & TIMER_LIMIT_BIT) 155 offset += sparc_config.cs_period; 156 157 return offset; 158 } 159 160 static cycle_t timer_cs_read(struct clocksource *cs) 161 { 162 unsigned int seq, offset; 163 u64 cycles; 164 165 do { 166 seq = read_seqbegin(&timer_cs_lock); 167 168 cycles = timer_cs_internal_counter; 169 offset = sparc_config.get_cycles_offset(); 170 } while (read_seqretry(&timer_cs_lock, seq)); 171 172 /* Count absolute cycles */ 173 cycles *= sparc_config.cs_period; 174 cycles += offset; 175 176 return cycles; 177 } 178 179 static struct clocksource timer_cs = { 180 .name = "timer_cs", 181 .rating = 100, 182 .read = timer_cs_read, 183 .mask = CLOCKSOURCE_MASK(64), 184 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 185 }; 186 187 static __init int setup_timer_cs(void) 188 { 189 timer_cs_enabled = 1; 190 return clocksource_register_hz(&timer_cs, sparc_config.clock_rate); 191 } 192 193 #ifdef CONFIG_SMP 194 static void percpu_ce_setup(enum clock_event_mode mode, 195 struct clock_event_device *evt) 196 { 197 int cpu = cpumask_first(evt->cpumask); 198 199 switch (mode) { 200 case CLOCK_EVT_MODE_PERIODIC: 201 sparc_config.load_profile_irq(cpu, 202 SBUS_CLOCK_RATE / HZ); 203 break; 204 case CLOCK_EVT_MODE_ONESHOT: 205 case CLOCK_EVT_MODE_SHUTDOWN: 206 case CLOCK_EVT_MODE_UNUSED: 207 sparc_config.load_profile_irq(cpu, 0); 208 break; 209 default: 210 break; 211 } 212 } 213 214 static int percpu_ce_set_next_event(unsigned long delta, 215 struct clock_event_device *evt) 216 { 217 int cpu = cpumask_first(evt->cpumask); 218 unsigned int next = (unsigned int)delta; 219 220 sparc_config.load_profile_irq(cpu, next); 221 return 0; 222 } 223 224 void register_percpu_ce(int cpu) 225 { 226 struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu); 227 unsigned int features = CLOCK_EVT_FEAT_PERIODIC; 228 229 if (sparc_config.features & FEAT_L14_ONESHOT) 230 features |= CLOCK_EVT_FEAT_ONESHOT; 231 232 ce->name = "percpu_ce"; 233 ce->rating = 200; 234 ce->features = features; 235 ce->set_mode = percpu_ce_setup; 236 ce->set_next_event = percpu_ce_set_next_event; 237 ce->cpumask = cpumask_of(cpu); 238 ce->shift = 32; 239 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, 240 ce->shift); 241 ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce); 242 ce->min_delta_ns = clockevent_delta2ns(100, ce); 243 244 clockevents_register_device(ce); 245 } 246 #endif 247 248 static unsigned char mostek_read_byte(struct device *dev, u32 ofs) 249 { 250 struct platform_device *pdev = to_platform_device(dev); 251 struct m48t59_plat_data *pdata = pdev->dev.platform_data; 252 253 return readb(pdata->ioaddr + ofs); 254 } 255 256 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val) 257 { 258 struct platform_device *pdev = to_platform_device(dev); 259 struct m48t59_plat_data *pdata = pdev->dev.platform_data; 260 261 writeb(val, pdata->ioaddr + ofs); 262 } 263 264 static struct m48t59_plat_data m48t59_data = { 265 .read_byte = mostek_read_byte, 266 .write_byte = mostek_write_byte, 267 }; 268 269 /* resource is set at runtime */ 270 static struct platform_device m48t59_rtc = { 271 .name = "rtc-m48t59", 272 .id = 0, 273 .num_resources = 1, 274 .dev = { 275 .platform_data = &m48t59_data, 276 }, 277 }; 278 279 static int clock_probe(struct platform_device *op) 280 { 281 struct device_node *dp = op->dev.of_node; 282 const char *model = of_get_property(dp, "model", NULL); 283 284 if (!model) 285 return -ENODEV; 286 287 /* Only the primary RTC has an address property */ 288 if (!of_find_property(dp, "address", NULL)) 289 return -ENODEV; 290 291 m48t59_rtc.resource = &op->resource[0]; 292 if (!strcmp(model, "mk48t02")) { 293 /* Map the clock register io area read-only */ 294 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, 295 2048, "rtc-m48t59"); 296 m48t59_data.type = M48T59RTC_TYPE_M48T02; 297 } else if (!strcmp(model, "mk48t08")) { 298 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, 299 8192, "rtc-m48t59"); 300 m48t59_data.type = M48T59RTC_TYPE_M48T08; 301 } else 302 return -ENODEV; 303 304 if (platform_device_register(&m48t59_rtc) < 0) 305 printk(KERN_ERR "Registering RTC device failed\n"); 306 307 return 0; 308 } 309 310 static struct of_device_id clock_match[] = { 311 { 312 .name = "eeprom", 313 }, 314 {}, 315 }; 316 317 static struct platform_driver clock_driver = { 318 .probe = clock_probe, 319 .driver = { 320 .name = "rtc", 321 .of_match_table = clock_match, 322 }, 323 }; 324 325 326 /* Probe for the mostek real time clock chip. */ 327 static int __init clock_init(void) 328 { 329 return platform_driver_register(&clock_driver); 330 } 331 /* Must be after subsys_initcall() so that busses are probed. Must 332 * be before device_initcall() because things like the RTC driver 333 * need to see the clock registers. 334 */ 335 fs_initcall(clock_init); 336 337 static void __init sparc32_late_time_init(void) 338 { 339 if (sparc_config.features & FEAT_L10_CLOCKEVENT) 340 setup_timer_ce(); 341 if (sparc_config.features & FEAT_L10_CLOCKSOURCE) 342 setup_timer_cs(); 343 #ifdef CONFIG_SMP 344 register_percpu_ce(smp_processor_id()); 345 #endif 346 } 347 348 static void __init sbus_time_init(void) 349 { 350 sparc_config.get_cycles_offset = sbus_cycles_offset; 351 sparc_config.init_timers(); 352 } 353 354 void __init time_init(void) 355 { 356 sparc_config.features = 0; 357 late_time_init = sparc32_late_time_init; 358 359 if (pcic_present()) 360 pci_time_init(); 361 else 362 sbus_time_init(); 363 } 364 365 366 static int set_rtc_mmss(unsigned long secs) 367 { 368 struct rtc_device *rtc = rtc_class_open("rtc0"); 369 int err = -1; 370 371 if (rtc) { 372 err = rtc_set_mmss(rtc, secs); 373 rtc_class_close(rtc); 374 } 375 376 return err; 377 } 378