1 // SPDX-License-Identifier: GPL-2.0 2 /* linux/arch/sparc/kernel/time.c 3 * 4 * Copyright (C) 1995 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) 6 * 7 * Chris Davis (cdavis@cois.on.ca) 03/27/1998 8 * Added support for the intersil on the sun4/4200 9 * 10 * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998 11 * Support for MicroSPARC-IIep, PCI CPU. 12 * 13 * This file handles the Sparc specific time handling details. 14 * 15 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 16 * "A Kernel Model for Precision Timekeeping" by Dave Mills 17 */ 18 #include <linux/errno.h> 19 #include <linux/module.h> 20 #include <linux/sched.h> 21 #include <linux/kernel.h> 22 #include <linux/param.h> 23 #include <linux/string.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/time.h> 27 #include <linux/rtc/m48t59.h> 28 #include <linux/timex.h> 29 #include <linux/clocksource.h> 30 #include <linux/clockchips.h> 31 #include <linux/init.h> 32 #include <linux/pci.h> 33 #include <linux/ioport.h> 34 #include <linux/profile.h> 35 #include <linux/of.h> 36 #include <linux/of_device.h> 37 #include <linux/platform_device.h> 38 39 #include <asm/mc146818rtc.h> 40 #include <asm/oplib.h> 41 #include <asm/timex.h> 42 #include <asm/timer.h> 43 #include <asm/irq.h> 44 #include <asm/io.h> 45 #include <asm/idprom.h> 46 #include <asm/page.h> 47 #include <asm/pcic.h> 48 #include <asm/irq_regs.h> 49 #include <asm/setup.h> 50 51 #include "kernel.h" 52 #include "irq.h" 53 54 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock); 55 static __volatile__ u64 timer_cs_internal_counter = 0; 56 static char timer_cs_enabled = 0; 57 58 static struct clock_event_device timer_ce; 59 static char timer_ce_enabled = 0; 60 61 #ifdef CONFIG_SMP 62 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent); 63 #endif 64 65 DEFINE_SPINLOCK(rtc_lock); 66 EXPORT_SYMBOL(rtc_lock); 67 68 unsigned long profile_pc(struct pt_regs *regs) 69 { 70 extern char __copy_user_begin[], __copy_user_end[]; 71 extern char __bzero_begin[], __bzero_end[]; 72 73 unsigned long pc = regs->pc; 74 75 if (in_lock_functions(pc) || 76 (pc >= (unsigned long) __copy_user_begin && 77 pc < (unsigned long) __copy_user_end) || 78 (pc >= (unsigned long) __bzero_begin && 79 pc < (unsigned long) __bzero_end)) 80 pc = regs->u_regs[UREG_RETPC]; 81 return pc; 82 } 83 84 EXPORT_SYMBOL(profile_pc); 85 86 volatile u32 __iomem *master_l10_counter; 87 88 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id) 89 { 90 if (timer_cs_enabled) { 91 write_seqlock(&timer_cs_lock); 92 timer_cs_internal_counter++; 93 sparc_config.clear_clock_irq(); 94 write_sequnlock(&timer_cs_lock); 95 } else { 96 sparc_config.clear_clock_irq(); 97 } 98 99 if (timer_ce_enabled) 100 timer_ce.event_handler(&timer_ce); 101 102 return IRQ_HANDLED; 103 } 104 105 static int timer_ce_shutdown(struct clock_event_device *evt) 106 { 107 timer_ce_enabled = 0; 108 smp_mb(); 109 return 0; 110 } 111 112 static int timer_ce_set_periodic(struct clock_event_device *evt) 113 { 114 timer_ce_enabled = 1; 115 smp_mb(); 116 return 0; 117 } 118 119 static __init void setup_timer_ce(void) 120 { 121 struct clock_event_device *ce = &timer_ce; 122 123 BUG_ON(smp_processor_id() != boot_cpu_id); 124 125 ce->name = "timer_ce"; 126 ce->rating = 100; 127 ce->features = CLOCK_EVT_FEAT_PERIODIC; 128 ce->set_state_shutdown = timer_ce_shutdown; 129 ce->set_state_periodic = timer_ce_set_periodic; 130 ce->tick_resume = timer_ce_set_periodic; 131 ce->cpumask = cpu_possible_mask; 132 ce->shift = 32; 133 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, 134 ce->shift); 135 clockevents_register_device(ce); 136 } 137 138 static unsigned int sbus_cycles_offset(void) 139 { 140 u32 val, offset; 141 142 val = sbus_readl(master_l10_counter); 143 offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK; 144 145 /* Limit hit? */ 146 if (val & TIMER_LIMIT_BIT) 147 offset += sparc_config.cs_period; 148 149 return offset; 150 } 151 152 static u64 timer_cs_read(struct clocksource *cs) 153 { 154 unsigned int seq, offset; 155 u64 cycles; 156 157 do { 158 seq = read_seqbegin(&timer_cs_lock); 159 160 cycles = timer_cs_internal_counter; 161 offset = sparc_config.get_cycles_offset(); 162 } while (read_seqretry(&timer_cs_lock, seq)); 163 164 /* Count absolute cycles */ 165 cycles *= sparc_config.cs_period; 166 cycles += offset; 167 168 return cycles; 169 } 170 171 static struct clocksource timer_cs = { 172 .name = "timer_cs", 173 .rating = 100, 174 .read = timer_cs_read, 175 .mask = CLOCKSOURCE_MASK(64), 176 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 177 }; 178 179 static __init int setup_timer_cs(void) 180 { 181 timer_cs_enabled = 1; 182 return clocksource_register_hz(&timer_cs, sparc_config.clock_rate); 183 } 184 185 #ifdef CONFIG_SMP 186 static int percpu_ce_shutdown(struct clock_event_device *evt) 187 { 188 int cpu = cpumask_first(evt->cpumask); 189 190 sparc_config.load_profile_irq(cpu, 0); 191 return 0; 192 } 193 194 static int percpu_ce_set_periodic(struct clock_event_device *evt) 195 { 196 int cpu = cpumask_first(evt->cpumask); 197 198 sparc_config.load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ); 199 return 0; 200 } 201 202 static int percpu_ce_set_next_event(unsigned long delta, 203 struct clock_event_device *evt) 204 { 205 int cpu = cpumask_first(evt->cpumask); 206 unsigned int next = (unsigned int)delta; 207 208 sparc_config.load_profile_irq(cpu, next); 209 return 0; 210 } 211 212 void register_percpu_ce(int cpu) 213 { 214 struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu); 215 unsigned int features = CLOCK_EVT_FEAT_PERIODIC; 216 217 if (sparc_config.features & FEAT_L14_ONESHOT) 218 features |= CLOCK_EVT_FEAT_ONESHOT; 219 220 ce->name = "percpu_ce"; 221 ce->rating = 200; 222 ce->features = features; 223 ce->set_state_shutdown = percpu_ce_shutdown; 224 ce->set_state_periodic = percpu_ce_set_periodic; 225 ce->set_state_oneshot = percpu_ce_shutdown; 226 ce->set_next_event = percpu_ce_set_next_event; 227 ce->cpumask = cpumask_of(cpu); 228 ce->shift = 32; 229 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, 230 ce->shift); 231 ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce); 232 ce->max_delta_ticks = (unsigned long)sparc_config.clock_rate; 233 ce->min_delta_ns = clockevent_delta2ns(100, ce); 234 ce->min_delta_ticks = 100; 235 236 clockevents_register_device(ce); 237 } 238 #endif 239 240 static unsigned char mostek_read_byte(struct device *dev, u32 ofs) 241 { 242 struct platform_device *pdev = to_platform_device(dev); 243 struct m48t59_plat_data *pdata = pdev->dev.platform_data; 244 245 return readb(pdata->ioaddr + ofs); 246 } 247 248 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val) 249 { 250 struct platform_device *pdev = to_platform_device(dev); 251 struct m48t59_plat_data *pdata = pdev->dev.platform_data; 252 253 writeb(val, pdata->ioaddr + ofs); 254 } 255 256 static struct m48t59_plat_data m48t59_data = { 257 .read_byte = mostek_read_byte, 258 .write_byte = mostek_write_byte, 259 }; 260 261 /* resource is set at runtime */ 262 static struct platform_device m48t59_rtc = { 263 .name = "rtc-m48t59", 264 .id = 0, 265 .num_resources = 1, 266 .dev = { 267 .platform_data = &m48t59_data, 268 }, 269 }; 270 271 static int clock_probe(struct platform_device *op) 272 { 273 struct device_node *dp = op->dev.of_node; 274 const char *model = of_get_property(dp, "model", NULL); 275 276 if (!model) 277 return -ENODEV; 278 279 /* Only the primary RTC has an address property */ 280 if (!of_find_property(dp, "address", NULL)) 281 return -ENODEV; 282 283 m48t59_rtc.resource = &op->resource[0]; 284 if (!strcmp(model, "mk48t02")) { 285 /* Map the clock register io area read-only */ 286 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, 287 2048, "rtc-m48t59"); 288 m48t59_data.type = M48T59RTC_TYPE_M48T02; 289 } else if (!strcmp(model, "mk48t08")) { 290 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, 291 8192, "rtc-m48t59"); 292 m48t59_data.type = M48T59RTC_TYPE_M48T08; 293 } else 294 return -ENODEV; 295 296 if (platform_device_register(&m48t59_rtc) < 0) 297 printk(KERN_ERR "Registering RTC device failed\n"); 298 299 return 0; 300 } 301 302 static const struct of_device_id clock_match[] = { 303 { 304 .name = "eeprom", 305 }, 306 {}, 307 }; 308 309 static struct platform_driver clock_driver = { 310 .probe = clock_probe, 311 .driver = { 312 .name = "rtc", 313 .of_match_table = clock_match, 314 }, 315 }; 316 317 318 /* Probe for the mostek real time clock chip. */ 319 static int __init clock_init(void) 320 { 321 return platform_driver_register(&clock_driver); 322 } 323 /* Must be after subsys_initcall() so that busses are probed. Must 324 * be before device_initcall() because things like the RTC driver 325 * need to see the clock registers. 326 */ 327 fs_initcall(clock_init); 328 329 static void __init sparc32_late_time_init(void) 330 { 331 if (sparc_config.features & FEAT_L10_CLOCKEVENT) 332 setup_timer_ce(); 333 if (sparc_config.features & FEAT_L10_CLOCKSOURCE) 334 setup_timer_cs(); 335 #ifdef CONFIG_SMP 336 register_percpu_ce(smp_processor_id()); 337 #endif 338 } 339 340 static void __init sbus_time_init(void) 341 { 342 sparc_config.get_cycles_offset = sbus_cycles_offset; 343 sparc_config.init_timers(); 344 } 345 346 void __init time_init(void) 347 { 348 sparc_config.features = 0; 349 late_time_init = sparc32_late_time_init; 350 351 if (pcic_present()) 352 pci_time_init(); 353 else 354 sbus_time_init(); 355 } 356 357