xref: /openbmc/linux/arch/sparc/kernel/sun4m_smp.c (revision ff4aea45)
1 /*
2  *  sun4m SMP support.
3  *
4  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
5  */
6 
7 #include <linux/clockchips.h>
8 #include <linux/interrupt.h>
9 #include <linux/profile.h>
10 #include <linux/delay.h>
11 #include <linux/sched.h>
12 #include <linux/cpu.h>
13 
14 #include <asm/cacheflush.h>
15 #include <asm/switch_to.h>
16 #include <asm/tlbflush.h>
17 #include <asm/timer.h>
18 #include <asm/oplib.h>
19 
20 #include "irq.h"
21 #include "kernel.h"
22 
23 #define IRQ_IPI_SINGLE		12
24 #define IRQ_IPI_MASK		13
25 #define IRQ_IPI_RESCHED		14
26 #define IRQ_CROSS_CALL		15
27 
28 static inline unsigned long
29 swap_ulong(volatile unsigned long *ptr, unsigned long val)
30 {
31 	__asm__ __volatile__("swap [%1], %0\n\t" :
32 			     "=&r" (val), "=&r" (ptr) :
33 			     "0" (val), "1" (ptr));
34 	return val;
35 }
36 
37 void sun4m_cpu_pre_starting(void *arg)
38 {
39 }
40 
41 void sun4m_cpu_pre_online(void *arg)
42 {
43 	int cpuid = hard_smp_processor_id();
44 
45 	/* Allow master to continue. The master will then give us the
46 	 * go-ahead by setting the smp_commenced_mask and will wait without
47 	 * timeouts until our setup is completed fully (signified by
48 	 * our bit being set in the cpu_online_mask).
49 	 */
50 	swap_ulong(&cpu_callin_map[cpuid], 1);
51 
52 	/* XXX: What's up with all the flushes? */
53 	local_ops->cache_all();
54 	local_ops->tlb_all();
55 
56 	/* Fix idle thread fields. */
57 	__asm__ __volatile__("ld [%0], %%g6\n\t"
58 			     : : "r" (&current_set[cpuid])
59 			     : "memory" /* paranoid */);
60 
61 	/* Attach to the address space of init_task. */
62 	atomic_inc(&init_mm.mm_count);
63 	current->active_mm = &init_mm;
64 
65 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
66 		mb();
67 }
68 
69 /*
70  *	Cycle through the processors asking the PROM to start each one.
71  */
72 void __init smp4m_boot_cpus(void)
73 {
74 	sun4m_unmask_profile_irq();
75 	local_ops->cache_all();
76 }
77 
78 int smp4m_boot_one_cpu(int i, struct task_struct *idle)
79 {
80 	unsigned long *entry = &sun4m_cpu_startup;
81 	int timeout;
82 	int cpu_node;
83 
84 	cpu_find_by_mid(i, &cpu_node);
85 	current_set[i] = task_thread_info(idle);
86 
87 	/* See trampoline.S for details... */
88 	entry += ((i - 1) * 3);
89 
90 	/*
91 	 * Initialize the contexts table
92 	 * Since the call to prom_startcpu() trashes the structure,
93 	 * we need to re-initialize it for each cpu
94 	 */
95 	smp_penguin_ctable.which_io = 0;
96 	smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
97 	smp_penguin_ctable.reg_size = 0;
98 
99 	/* whirrr, whirrr, whirrrrrrrrr... */
100 	printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
101 	local_ops->cache_all();
102 	prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
103 
104 	/* wheee... it's going... */
105 	for (timeout = 0; timeout < 10000; timeout++) {
106 		if (cpu_callin_map[i])
107 			break;
108 		udelay(200);
109 	}
110 
111 	if (!(cpu_callin_map[i])) {
112 		printk(KERN_ERR "Processor %d is stuck.\n", i);
113 		return -ENODEV;
114 	}
115 
116 	local_ops->cache_all();
117 	return 0;
118 }
119 
120 void __init smp4m_smp_done(void)
121 {
122 	int i, first;
123 	int *prev;
124 
125 	/* setup cpu list for irq rotation */
126 	first = 0;
127 	prev = &first;
128 	for_each_online_cpu(i) {
129 		*prev = i;
130 		prev = &cpu_data(i).next;
131 	}
132 	*prev = first;
133 	local_ops->cache_all();
134 
135 	/* Ok, they are spinning and ready to go. */
136 }
137 
138 static void sun4m_send_ipi(int cpu, int level)
139 {
140 	sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
141 }
142 
143 static void sun4m_ipi_resched(int cpu)
144 {
145 	sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
146 }
147 
148 static void sun4m_ipi_single(int cpu)
149 {
150 	sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
151 }
152 
153 static void sun4m_ipi_mask_one(int cpu)
154 {
155 	sun4m_send_ipi(cpu, IRQ_IPI_MASK);
156 }
157 
158 static struct smp_funcall {
159 	smpfunc_t func;
160 	unsigned long arg1;
161 	unsigned long arg2;
162 	unsigned long arg3;
163 	unsigned long arg4;
164 	unsigned long arg5;
165 	unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */
166 	unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
167 } ccall_info;
168 
169 static DEFINE_SPINLOCK(cross_call_lock);
170 
171 /* Cross calls must be serialized, at least currently. */
172 static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
173 			     unsigned long arg2, unsigned long arg3,
174 			     unsigned long arg4)
175 {
176 		register int ncpus = SUN4M_NCPUS;
177 		unsigned long flags;
178 
179 		spin_lock_irqsave(&cross_call_lock, flags);
180 
181 		/* Init function glue. */
182 		ccall_info.func = func;
183 		ccall_info.arg1 = arg1;
184 		ccall_info.arg2 = arg2;
185 		ccall_info.arg3 = arg3;
186 		ccall_info.arg4 = arg4;
187 		ccall_info.arg5 = 0;
188 
189 		/* Init receive/complete mapping, plus fire the IPI's off. */
190 		{
191 			register int i;
192 
193 			cpumask_clear_cpu(smp_processor_id(), &mask);
194 			cpumask_and(&mask, cpu_online_mask, &mask);
195 			for (i = 0; i < ncpus; i++) {
196 				if (cpumask_test_cpu(i, &mask)) {
197 					ccall_info.processors_in[i] = 0;
198 					ccall_info.processors_out[i] = 0;
199 					sun4m_send_ipi(i, IRQ_CROSS_CALL);
200 				} else {
201 					ccall_info.processors_in[i] = 1;
202 					ccall_info.processors_out[i] = 1;
203 				}
204 			}
205 		}
206 
207 		{
208 			register int i;
209 
210 			i = 0;
211 			do {
212 				if (!cpumask_test_cpu(i, &mask))
213 					continue;
214 				while (!ccall_info.processors_in[i])
215 					barrier();
216 			} while (++i < ncpus);
217 
218 			i = 0;
219 			do {
220 				if (!cpumask_test_cpu(i, &mask))
221 					continue;
222 				while (!ccall_info.processors_out[i])
223 					barrier();
224 			} while (++i < ncpus);
225 		}
226 		spin_unlock_irqrestore(&cross_call_lock, flags);
227 }
228 
229 /* Running cross calls. */
230 void smp4m_cross_call_irq(void)
231 {
232 	int i = smp_processor_id();
233 
234 	ccall_info.processors_in[i] = 1;
235 	ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
236 			ccall_info.arg4, ccall_info.arg5);
237 	ccall_info.processors_out[i] = 1;
238 }
239 
240 void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
241 {
242 	struct pt_regs *old_regs;
243 	struct clock_event_device *ce;
244 	int cpu = smp_processor_id();
245 
246 	old_regs = set_irq_regs(regs);
247 
248 	ce = &per_cpu(sparc32_clockevent, cpu);
249 
250 	if (clockevent_state_periodic(ce))
251 		sun4m_clear_profile_irq(cpu);
252 	else
253 		sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
254 
255 	irq_enter();
256 	ce->event_handler(ce);
257 	irq_exit();
258 
259 	set_irq_regs(old_regs);
260 }
261 
262 static const struct sparc32_ipi_ops sun4m_ipi_ops = {
263 	.cross_call = sun4m_cross_call,
264 	.resched    = sun4m_ipi_resched,
265 	.single     = sun4m_ipi_single,
266 	.mask_one   = sun4m_ipi_mask_one,
267 };
268 
269 void __init sun4m_init_smp(void)
270 {
271 	sparc32_ipi_ops = &sun4m_ipi_ops;
272 }
273