1 /* 2 * SS1000/SC2000 interrupt handling. 3 * 4 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 5 * Heavily based on arch/sparc/kernel/irq.c. 6 */ 7 8 #include <linux/kernel_stat.h> 9 #include <linux/slab.h> 10 #include <linux/seq_file.h> 11 12 #include <asm/timer.h> 13 #include <asm/traps.h> 14 #include <asm/irq.h> 15 #include <asm/io.h> 16 #include <asm/sbi.h> 17 #include <asm/cacheflush.h> 18 #include <asm/setup.h> 19 #include <asm/oplib.h> 20 21 #include "kernel.h" 22 #include "irq.h" 23 24 /* Sun4d interrupts fall roughly into two categories. SBUS and 25 * cpu local. CPU local interrupts cover the timer interrupts 26 * and whatnot, and we encode those as normal PILs between 27 * 0 and 15. 28 * SBUS interrupts are encodes as a combination of board, level and slot. 29 */ 30 31 struct sun4d_handler_data { 32 unsigned int cpuid; /* target cpu */ 33 unsigned int real_irq; /* interrupt level */ 34 }; 35 36 37 static unsigned int sun4d_encode_irq(int board, int lvl, int slot) 38 { 39 return (board + 1) << 5 | (lvl << 2) | slot; 40 } 41 42 struct sun4d_timer_regs { 43 u32 l10_timer_limit; 44 u32 l10_cur_countx; 45 u32 l10_limit_noclear; 46 u32 ctrl; 47 u32 l10_cur_count; 48 }; 49 50 static struct sun4d_timer_regs __iomem *sun4d_timers; 51 52 #define SUN4D_TIMER_IRQ 10 53 54 /* Specify which cpu handle interrupts from which board. 55 * Index is board - value is cpu. 56 */ 57 static unsigned char board_to_cpu[32]; 58 59 static int pil_to_sbus[] = { 60 0, 61 0, 62 1, 63 2, 64 0, 65 3, 66 0, 67 4, 68 0, 69 5, 70 0, 71 6, 72 0, 73 7, 74 0, 75 0, 76 }; 77 78 /* Exported for sun4d_smp.c */ 79 DEFINE_SPINLOCK(sun4d_imsk_lock); 80 81 /* SBUS interrupts are encoded integers including the board number 82 * (plus one), the SBUS level, and the SBUS slot number. Sun4D 83 * IRQ dispatch is done by: 84 * 85 * 1) Reading the BW local interrupt table in order to get the bus 86 * interrupt mask. 87 * 88 * This table is indexed by SBUS interrupt level which can be 89 * derived from the PIL we got interrupted on. 90 * 91 * 2) For each bus showing interrupt pending from #1, read the 92 * SBI interrupt state register. This will indicate which slots 93 * have interrupts pending for that SBUS interrupt level. 94 * 95 * 3) Call the genreric IRQ support. 96 */ 97 static void sun4d_sbus_handler_irq(int sbusl) 98 { 99 unsigned int bus_mask; 100 unsigned int sbino, slot; 101 unsigned int sbil; 102 103 bus_mask = bw_get_intr_mask(sbusl) & 0x3ffff; 104 bw_clear_intr_mask(sbusl, bus_mask); 105 106 sbil = (sbusl << 2); 107 /* Loop for each pending SBI */ 108 for (sbino = 0; bus_mask; sbino++, bus_mask >>= 1) { 109 unsigned int idx, mask; 110 111 if (!(bus_mask & 1)) 112 continue; 113 /* XXX This seems to ACK the irq twice. acquire_sbi() 114 * XXX uses swap, therefore this writes 0xf << sbil, 115 * XXX then later release_sbi() will write the individual 116 * XXX bits which were set again. 117 */ 118 mask = acquire_sbi(SBI2DEVID(sbino), 0xf << sbil); 119 mask &= (0xf << sbil); 120 121 /* Loop for each pending SBI slot */ 122 slot = (1 << sbil); 123 for (idx = 0; mask != 0; idx++, slot <<= 1) { 124 unsigned int pil; 125 struct irq_bucket *p; 126 127 if (!(mask & slot)) 128 continue; 129 130 mask &= ~slot; 131 pil = sun4d_encode_irq(sbino, sbusl, idx); 132 133 p = irq_map[pil]; 134 while (p) { 135 struct irq_bucket *next; 136 137 next = p->next; 138 generic_handle_irq(p->irq); 139 p = next; 140 } 141 release_sbi(SBI2DEVID(sbino), slot); 142 } 143 } 144 } 145 146 void sun4d_handler_irq(int pil, struct pt_regs *regs) 147 { 148 struct pt_regs *old_regs; 149 /* SBUS IRQ level (1 - 7) */ 150 int sbusl = pil_to_sbus[pil]; 151 152 /* FIXME: Is this necessary?? */ 153 cc_get_ipen(); 154 155 cc_set_iclr(1 << pil); 156 157 #ifdef CONFIG_SMP 158 /* 159 * Check IPI data structures after IRQ has been cleared. Hard and Soft 160 * IRQ can happen at the same time, so both cases are always handled. 161 */ 162 if (pil == SUN4D_IPI_IRQ) 163 sun4d_ipi_interrupt(); 164 #endif 165 166 old_regs = set_irq_regs(regs); 167 irq_enter(); 168 if (sbusl == 0) { 169 /* cpu interrupt */ 170 struct irq_bucket *p; 171 172 p = irq_map[pil]; 173 while (p) { 174 struct irq_bucket *next; 175 176 next = p->next; 177 generic_handle_irq(p->irq); 178 p = next; 179 } 180 } else { 181 /* SBUS interrupt */ 182 sun4d_sbus_handler_irq(sbusl); 183 } 184 irq_exit(); 185 set_irq_regs(old_regs); 186 } 187 188 189 static void sun4d_mask_irq(struct irq_data *data) 190 { 191 struct sun4d_handler_data *handler_data = data->handler_data; 192 unsigned int real_irq; 193 #ifdef CONFIG_SMP 194 int cpuid = handler_data->cpuid; 195 unsigned long flags; 196 #endif 197 real_irq = handler_data->real_irq; 198 #ifdef CONFIG_SMP 199 spin_lock_irqsave(&sun4d_imsk_lock, flags); 200 cc_set_imsk_other(cpuid, cc_get_imsk_other(cpuid) | (1 << real_irq)); 201 spin_unlock_irqrestore(&sun4d_imsk_lock, flags); 202 #else 203 cc_set_imsk(cc_get_imsk() | (1 << real_irq)); 204 #endif 205 } 206 207 static void sun4d_unmask_irq(struct irq_data *data) 208 { 209 struct sun4d_handler_data *handler_data = data->handler_data; 210 unsigned int real_irq; 211 #ifdef CONFIG_SMP 212 int cpuid = handler_data->cpuid; 213 unsigned long flags; 214 #endif 215 real_irq = handler_data->real_irq; 216 217 #ifdef CONFIG_SMP 218 spin_lock_irqsave(&sun4d_imsk_lock, flags); 219 cc_set_imsk_other(cpuid, cc_get_imsk_other(cpuid) & ~(1 << real_irq)); 220 spin_unlock_irqrestore(&sun4d_imsk_lock, flags); 221 #else 222 cc_set_imsk(cc_get_imsk() & ~(1 << real_irq)); 223 #endif 224 } 225 226 static unsigned int sun4d_startup_irq(struct irq_data *data) 227 { 228 irq_link(data->irq); 229 sun4d_unmask_irq(data); 230 return 0; 231 } 232 233 static void sun4d_shutdown_irq(struct irq_data *data) 234 { 235 sun4d_mask_irq(data); 236 irq_unlink(data->irq); 237 } 238 239 struct irq_chip sun4d_irq = { 240 .name = "sun4d", 241 .irq_startup = sun4d_startup_irq, 242 .irq_shutdown = sun4d_shutdown_irq, 243 .irq_unmask = sun4d_unmask_irq, 244 .irq_mask = sun4d_mask_irq, 245 }; 246 247 #ifdef CONFIG_SMP 248 /* Setup IRQ distribution scheme. */ 249 void __init sun4d_distribute_irqs(void) 250 { 251 struct device_node *dp; 252 253 int cpuid = cpu_logical_map(1); 254 255 if (cpuid == -1) 256 cpuid = cpu_logical_map(0); 257 for_each_node_by_name(dp, "sbi") { 258 int devid = of_getintprop_default(dp, "device-id", 0); 259 int board = of_getintprop_default(dp, "board#", 0); 260 board_to_cpu[board] = cpuid; 261 set_sbi_tid(devid, cpuid << 3); 262 } 263 printk(KERN_ERR "All sbus IRQs directed to CPU%d\n", cpuid); 264 } 265 #endif 266 267 static void sun4d_clear_clock_irq(void) 268 { 269 sbus_readl(&sun4d_timers->l10_timer_limit); 270 } 271 272 static void sun4d_load_profile_irq(int cpu, unsigned int limit) 273 { 274 unsigned int value = limit ? timer_value(limit) : 0; 275 bw_set_prof_limit(cpu, value); 276 } 277 278 static void __init sun4d_load_profile_irqs(void) 279 { 280 int cpu = 0, mid; 281 282 while (!cpu_find_by_instance(cpu, NULL, &mid)) { 283 sun4d_load_profile_irq(mid >> 3, 0); 284 cpu++; 285 } 286 } 287 288 unsigned int _sun4d_build_device_irq(unsigned int real_irq, 289 unsigned int pil, 290 unsigned int board) 291 { 292 struct sun4d_handler_data *handler_data; 293 unsigned int irq; 294 295 irq = irq_alloc(real_irq, pil); 296 if (irq == 0) { 297 prom_printf("IRQ: allocate for %d %d %d failed\n", 298 real_irq, pil, board); 299 goto err_out; 300 } 301 302 handler_data = irq_get_handler_data(irq); 303 if (unlikely(handler_data)) 304 goto err_out; 305 306 handler_data = kzalloc(sizeof(struct sun4d_handler_data), GFP_ATOMIC); 307 if (unlikely(!handler_data)) { 308 prom_printf("IRQ: kzalloc(sun4d_handler_data) failed.\n"); 309 prom_halt(); 310 } 311 handler_data->cpuid = board_to_cpu[board]; 312 handler_data->real_irq = real_irq; 313 irq_set_chip_and_handler_name(irq, &sun4d_irq, 314 handle_level_irq, "level"); 315 irq_set_handler_data(irq, handler_data); 316 317 err_out: 318 return irq; 319 } 320 321 322 323 unsigned int sun4d_build_device_irq(struct platform_device *op, 324 unsigned int real_irq) 325 { 326 struct device_node *dp = op->dev.of_node; 327 struct device_node *board_parent, *bus = dp->parent; 328 char *bus_connection; 329 const struct linux_prom_registers *regs; 330 unsigned int pil; 331 unsigned int irq; 332 int board, slot; 333 int sbusl; 334 335 irq = real_irq; 336 while (bus) { 337 if (!strcmp(bus->name, "sbi")) { 338 bus_connection = "io-unit"; 339 break; 340 } 341 342 if (!strcmp(bus->name, "bootbus")) { 343 bus_connection = "cpu-unit"; 344 break; 345 } 346 347 bus = bus->parent; 348 } 349 if (!bus) 350 goto err_out; 351 352 regs = of_get_property(dp, "reg", NULL); 353 if (!regs) 354 goto err_out; 355 356 slot = regs->which_io; 357 358 /* 359 * If Bus nodes parent is not io-unit/cpu-unit or the io-unit/cpu-unit 360 * lacks a "board#" property, something is very wrong. 361 */ 362 if (!bus->parent || strcmp(bus->parent->name, bus_connection)) { 363 printk(KERN_ERR "%s: Error, parent is not %s.\n", 364 bus->full_name, bus_connection); 365 goto err_out; 366 } 367 board_parent = bus->parent; 368 board = of_getintprop_default(board_parent, "board#", -1); 369 if (board == -1) { 370 printk(KERN_ERR "%s: Error, lacks board# property.\n", 371 board_parent->full_name); 372 goto err_out; 373 } 374 375 sbusl = pil_to_sbus[real_irq]; 376 if (sbusl) 377 pil = sun4d_encode_irq(board, sbusl, slot); 378 else 379 pil = real_irq; 380 381 irq = _sun4d_build_device_irq(real_irq, pil, board); 382 err_out: 383 return irq; 384 } 385 386 unsigned int sun4d_build_timer_irq(unsigned int board, unsigned int real_irq) 387 { 388 return _sun4d_build_device_irq(real_irq, real_irq, board); 389 } 390 391 392 static void __init sun4d_fixup_trap_table(void) 393 { 394 #ifdef CONFIG_SMP 395 unsigned long flags; 396 struct tt_entry *trap_table = &sparc_ttable[SP_TRAP_IRQ1 + (14 - 1)]; 397 398 /* Adjust so that we jump directly to smp4d_ticker */ 399 lvl14_save[2] += smp4d_ticker - real_irq_entry; 400 401 /* For SMP we use the level 14 ticker, however the bootup code 402 * has copied the firmware's level 14 vector into the boot cpu's 403 * trap table, we must fix this now or we get squashed. 404 */ 405 local_irq_save(flags); 406 patchme_maybe_smp_msg[0] = 0x01000000; /* NOP out the branch */ 407 trap_table->inst_one = lvl14_save[0]; 408 trap_table->inst_two = lvl14_save[1]; 409 trap_table->inst_three = lvl14_save[2]; 410 trap_table->inst_four = lvl14_save[3]; 411 local_ops->cache_all(); 412 local_irq_restore(flags); 413 #endif 414 } 415 416 static void __init sun4d_init_timers(void) 417 { 418 struct device_node *dp; 419 struct resource res; 420 unsigned int irq; 421 const u32 *reg; 422 int err; 423 int board; 424 425 dp = of_find_node_by_name(NULL, "cpu-unit"); 426 if (!dp) { 427 prom_printf("sun4d_init_timers: Unable to find cpu-unit\n"); 428 prom_halt(); 429 } 430 431 /* Which cpu-unit we use is arbitrary, we can view the bootbus timer 432 * registers via any cpu's mapping. The first 'reg' property is the 433 * bootbus. 434 */ 435 reg = of_get_property(dp, "reg", NULL); 436 if (!reg) { 437 prom_printf("sun4d_init_timers: No reg property\n"); 438 prom_halt(); 439 } 440 441 board = of_getintprop_default(dp, "board#", -1); 442 if (board == -1) { 443 prom_printf("sun4d_init_timers: No board# property on cpu-unit\n"); 444 prom_halt(); 445 } 446 447 of_node_put(dp); 448 449 res.start = reg[1]; 450 res.end = reg[2] - 1; 451 res.flags = reg[0] & 0xff; 452 sun4d_timers = of_ioremap(&res, BW_TIMER_LIMIT, 453 sizeof(struct sun4d_timer_regs), "user timer"); 454 if (!sun4d_timers) { 455 prom_printf("sun4d_init_timers: Can't map timer regs\n"); 456 prom_halt(); 457 } 458 459 #ifdef CONFIG_SMP 460 sparc_config.cs_period = SBUS_CLOCK_RATE * 2; /* 2 seconds */ 461 #else 462 sparc_config.cs_period = SBUS_CLOCK_RATE / HZ; /* 1/HZ sec */ 463 sparc_config.features |= FEAT_L10_CLOCKEVENT; 464 #endif 465 sparc_config.features |= FEAT_L10_CLOCKSOURCE; 466 sbus_writel(timer_value(sparc_config.cs_period), 467 &sun4d_timers->l10_timer_limit); 468 469 master_l10_counter = &sun4d_timers->l10_cur_count; 470 471 irq = sun4d_build_timer_irq(board, SUN4D_TIMER_IRQ); 472 err = request_irq(irq, timer_interrupt, IRQF_TIMER, "timer", NULL); 473 if (err) { 474 prom_printf("sun4d_init_timers: request_irq() failed with %d\n", 475 err); 476 prom_halt(); 477 } 478 sun4d_load_profile_irqs(); 479 sun4d_fixup_trap_table(); 480 } 481 482 void __init sun4d_init_sbi_irq(void) 483 { 484 struct device_node *dp; 485 int target_cpu; 486 487 target_cpu = boot_cpu_id; 488 for_each_node_by_name(dp, "sbi") { 489 int devid = of_getintprop_default(dp, "device-id", 0); 490 int board = of_getintprop_default(dp, "board#", 0); 491 unsigned int mask; 492 493 set_sbi_tid(devid, target_cpu << 3); 494 board_to_cpu[board] = target_cpu; 495 496 /* Get rid of pending irqs from PROM */ 497 mask = acquire_sbi(devid, 0xffffffff); 498 if (mask) { 499 printk(KERN_ERR "Clearing pending IRQs %08x on SBI %d\n", 500 mask, board); 501 release_sbi(devid, mask); 502 } 503 } 504 } 505 506 void __init sun4d_init_IRQ(void) 507 { 508 local_irq_disable(); 509 510 sparc_config.init_timers = sun4d_init_timers; 511 sparc_config.build_device_irq = sun4d_build_device_irq; 512 sparc_config.clock_rate = SBUS_CLOCK_RATE; 513 sparc_config.clear_clock_irq = sun4d_clear_clock_irq; 514 sparc_config.load_profile_irq = sun4d_load_profile_irq; 515 516 /* Cannot enable interrupts until OBP ticker is disabled. */ 517 } 518