xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision f35e839a)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38 
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53 
54 #include "cpumap.h"
55 
56 int sparc64_multi_core __read_mostly;
57 
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61 
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64 
65 static cpumask_t smp_commenced_mask;
66 
67 void smp_info(struct seq_file *m)
68 {
69 	int i;
70 
71 	seq_printf(m, "State:\n");
72 	for_each_online_cpu(i)
73 		seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75 
76 void smp_bogo(struct seq_file *m)
77 {
78 	int i;
79 
80 	for_each_online_cpu(i)
81 		seq_printf(m,
82 			   "Cpu%dClkTck\t: %016lx\n",
83 			   i, cpu_data(i).clock_tick);
84 }
85 
86 extern void setup_sparc64_timer(void);
87 
88 static volatile unsigned long callin_flag = 0;
89 
90 void __cpuinit smp_callin(void)
91 {
92 	int cpuid = hard_smp_processor_id();
93 
94 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
95 
96 	if (tlb_type == hypervisor)
97 		sun4v_ktsb_register();
98 
99 	__flush_tlb_all();
100 
101 	setup_sparc64_timer();
102 
103 	if (cheetah_pcache_forced_on)
104 		cheetah_enable_pcache();
105 
106 	callin_flag = 1;
107 	__asm__ __volatile__("membar #Sync\n\t"
108 			     "flush  %%g6" : : : "memory");
109 
110 	/* Clear this or we will die instantly when we
111 	 * schedule back to this idler...
112 	 */
113 	current_thread_info()->new_child = 0;
114 
115 	/* Attach to the address space of init_task. */
116 	atomic_inc(&init_mm.mm_count);
117 	current->active_mm = &init_mm;
118 
119 	/* inform the notifiers about the new cpu */
120 	notify_cpu_starting(cpuid);
121 
122 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123 		rmb();
124 
125 	set_cpu_online(cpuid, true);
126 	local_irq_enable();
127 
128 	/* idle thread is expected to have preempt disabled */
129 	preempt_disable();
130 
131 	cpu_startup_entry(CPUHP_ONLINE);
132 }
133 
134 void cpu_panic(void)
135 {
136 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
137 	panic("SMP bolixed\n");
138 }
139 
140 /* This tick register synchronization scheme is taken entirely from
141  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
142  *
143  * The only change I've made is to rework it so that the master
144  * initiates the synchonization instead of the slave. -DaveM
145  */
146 
147 #define MASTER	0
148 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
149 
150 #define NUM_ROUNDS	64	/* magic value */
151 #define NUM_ITERS	5	/* likewise */
152 
153 static DEFINE_SPINLOCK(itc_sync_lock);
154 static unsigned long go[SLAVE + 1];
155 
156 #define DEBUG_TICK_SYNC	0
157 
158 static inline long get_delta (long *rt, long *master)
159 {
160 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
161 	unsigned long tcenter, t0, t1, tm;
162 	unsigned long i;
163 
164 	for (i = 0; i < NUM_ITERS; i++) {
165 		t0 = tick_ops->get_tick();
166 		go[MASTER] = 1;
167 		membar_safe("#StoreLoad");
168 		while (!(tm = go[SLAVE]))
169 			rmb();
170 		go[SLAVE] = 0;
171 		wmb();
172 		t1 = tick_ops->get_tick();
173 
174 		if (t1 - t0 < best_t1 - best_t0)
175 			best_t0 = t0, best_t1 = t1, best_tm = tm;
176 	}
177 
178 	*rt = best_t1 - best_t0;
179 	*master = best_tm - best_t0;
180 
181 	/* average best_t0 and best_t1 without overflow: */
182 	tcenter = (best_t0/2 + best_t1/2);
183 	if (best_t0 % 2 + best_t1 % 2 == 2)
184 		tcenter++;
185 	return tcenter - best_tm;
186 }
187 
188 void smp_synchronize_tick_client(void)
189 {
190 	long i, delta, adj, adjust_latency = 0, done = 0;
191 	unsigned long flags, rt, master_time_stamp;
192 #if DEBUG_TICK_SYNC
193 	struct {
194 		long rt;	/* roundtrip time */
195 		long master;	/* master's timestamp */
196 		long diff;	/* difference between midpoint and master's timestamp */
197 		long lat;	/* estimate of itc adjustment latency */
198 	} t[NUM_ROUNDS];
199 #endif
200 
201 	go[MASTER] = 1;
202 
203 	while (go[MASTER])
204 		rmb();
205 
206 	local_irq_save(flags);
207 	{
208 		for (i = 0; i < NUM_ROUNDS; i++) {
209 			delta = get_delta(&rt, &master_time_stamp);
210 			if (delta == 0)
211 				done = 1;	/* let's lock on to this... */
212 
213 			if (!done) {
214 				if (i > 0) {
215 					adjust_latency += -delta;
216 					adj = -delta + adjust_latency/4;
217 				} else
218 					adj = -delta;
219 
220 				tick_ops->add_tick(adj);
221 			}
222 #if DEBUG_TICK_SYNC
223 			t[i].rt = rt;
224 			t[i].master = master_time_stamp;
225 			t[i].diff = delta;
226 			t[i].lat = adjust_latency/4;
227 #endif
228 		}
229 	}
230 	local_irq_restore(flags);
231 
232 #if DEBUG_TICK_SYNC
233 	for (i = 0; i < NUM_ROUNDS; i++)
234 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
235 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
236 #endif
237 
238 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
239 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
240 	       smp_processor_id(), delta, rt);
241 }
242 
243 static void smp_start_sync_tick_client(int cpu);
244 
245 static void smp_synchronize_one_tick(int cpu)
246 {
247 	unsigned long flags, i;
248 
249 	go[MASTER] = 0;
250 
251 	smp_start_sync_tick_client(cpu);
252 
253 	/* wait for client to be ready */
254 	while (!go[MASTER])
255 		rmb();
256 
257 	/* now let the client proceed into his loop */
258 	go[MASTER] = 0;
259 	membar_safe("#StoreLoad");
260 
261 	spin_lock_irqsave(&itc_sync_lock, flags);
262 	{
263 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
264 			while (!go[MASTER])
265 				rmb();
266 			go[MASTER] = 0;
267 			wmb();
268 			go[SLAVE] = tick_ops->get_tick();
269 			membar_safe("#StoreLoad");
270 		}
271 	}
272 	spin_unlock_irqrestore(&itc_sync_lock, flags);
273 }
274 
275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
276 /* XXX Put this in some common place. XXX */
277 static unsigned long kimage_addr_to_ra(void *p)
278 {
279 	unsigned long val = (unsigned long) p;
280 
281 	return kern_base + (val - KERNBASE);
282 }
283 
284 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
285 {
286 	extern unsigned long sparc64_ttable_tl0;
287 	extern unsigned long kern_locked_tte_data;
288 	struct hvtramp_descr *hdesc;
289 	unsigned long trampoline_ra;
290 	struct trap_per_cpu *tb;
291 	u64 tte_vaddr, tte_data;
292 	unsigned long hv_err;
293 	int i;
294 
295 	hdesc = kzalloc(sizeof(*hdesc) +
296 			(sizeof(struct hvtramp_mapping) *
297 			 num_kernel_image_mappings - 1),
298 			GFP_KERNEL);
299 	if (!hdesc) {
300 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
301 		       "hvtramp_descr.\n");
302 		return;
303 	}
304 	*descrp = hdesc;
305 
306 	hdesc->cpu = cpu;
307 	hdesc->num_mappings = num_kernel_image_mappings;
308 
309 	tb = &trap_block[cpu];
310 
311 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
312 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
313 
314 	hdesc->thread_reg = thread_reg;
315 
316 	tte_vaddr = (unsigned long) KERNBASE;
317 	tte_data = kern_locked_tte_data;
318 
319 	for (i = 0; i < hdesc->num_mappings; i++) {
320 		hdesc->maps[i].vaddr = tte_vaddr;
321 		hdesc->maps[i].tte   = tte_data;
322 		tte_vaddr += 0x400000;
323 		tte_data  += 0x400000;
324 	}
325 
326 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327 
328 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
329 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
330 				 __pa(hdesc));
331 	if (hv_err)
332 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
333 		       "gives error %lu\n", hv_err);
334 }
335 #endif
336 
337 extern unsigned long sparc64_cpu_startup;
338 
339 /* The OBP cpu startup callback truncates the 3rd arg cookie to
340  * 32-bits (I think) so to be safe we have it read the pointer
341  * contained here so we work on >4GB machines. -DaveM
342  */
343 static struct thread_info *cpu_new_thread = NULL;
344 
345 static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
346 {
347 	unsigned long entry =
348 		(unsigned long)(&sparc64_cpu_startup);
349 	unsigned long cookie =
350 		(unsigned long)(&cpu_new_thread);
351 	void *descr = NULL;
352 	int timeout, ret;
353 
354 	callin_flag = 0;
355 	cpu_new_thread = task_thread_info(idle);
356 
357 	if (tlb_type == hypervisor) {
358 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
359 		if (ldom_domaining_enabled)
360 			ldom_startcpu_cpuid(cpu,
361 					    (unsigned long) cpu_new_thread,
362 					    &descr);
363 		else
364 #endif
365 			prom_startcpu_cpuid(cpu, entry, cookie);
366 	} else {
367 		struct device_node *dp = of_find_node_by_cpuid(cpu);
368 
369 		prom_startcpu(dp->phandle, entry, cookie);
370 	}
371 
372 	for (timeout = 0; timeout < 50000; timeout++) {
373 		if (callin_flag)
374 			break;
375 		udelay(100);
376 	}
377 
378 	if (callin_flag) {
379 		ret = 0;
380 	} else {
381 		printk("Processor %d is stuck.\n", cpu);
382 		ret = -ENODEV;
383 	}
384 	cpu_new_thread = NULL;
385 
386 	kfree(descr);
387 
388 	return ret;
389 }
390 
391 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
392 {
393 	u64 result, target;
394 	int stuck, tmp;
395 
396 	if (this_is_starfire) {
397 		/* map to real upaid */
398 		cpu = (((cpu & 0x3c) << 1) |
399 			((cpu & 0x40) >> 4) |
400 			(cpu & 0x3));
401 	}
402 
403 	target = (cpu << 14) | 0x70;
404 again:
405 	/* Ok, this is the real Spitfire Errata #54.
406 	 * One must read back from a UDB internal register
407 	 * after writes to the UDB interrupt dispatch, but
408 	 * before the membar Sync for that write.
409 	 * So we use the high UDB control register (ASI 0x7f,
410 	 * ADDR 0x20) for the dummy read. -DaveM
411 	 */
412 	tmp = 0x40;
413 	__asm__ __volatile__(
414 	"wrpr	%1, %2, %%pstate\n\t"
415 	"stxa	%4, [%0] %3\n\t"
416 	"stxa	%5, [%0+%8] %3\n\t"
417 	"add	%0, %8, %0\n\t"
418 	"stxa	%6, [%0+%8] %3\n\t"
419 	"membar	#Sync\n\t"
420 	"stxa	%%g0, [%7] %3\n\t"
421 	"membar	#Sync\n\t"
422 	"mov	0x20, %%g1\n\t"
423 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
424 	"membar	#Sync"
425 	: "=r" (tmp)
426 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
427 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
428 	  "r" (0x10), "0" (tmp)
429         : "g1");
430 
431 	/* NOTE: PSTATE_IE is still clear. */
432 	stuck = 100000;
433 	do {
434 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
435 			: "=r" (result)
436 			: "i" (ASI_INTR_DISPATCH_STAT));
437 		if (result == 0) {
438 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
439 					     : : "r" (pstate));
440 			return;
441 		}
442 		stuck -= 1;
443 		if (stuck == 0)
444 			break;
445 	} while (result & 0x1);
446 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
447 			     : : "r" (pstate));
448 	if (stuck == 0) {
449 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
450 		       smp_processor_id(), result);
451 	} else {
452 		udelay(2);
453 		goto again;
454 	}
455 }
456 
457 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
458 {
459 	u64 *mondo, data0, data1, data2;
460 	u16 *cpu_list;
461 	u64 pstate;
462 	int i;
463 
464 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
465 	cpu_list = __va(tb->cpu_list_pa);
466 	mondo = __va(tb->cpu_mondo_block_pa);
467 	data0 = mondo[0];
468 	data1 = mondo[1];
469 	data2 = mondo[2];
470 	for (i = 0; i < cnt; i++)
471 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
472 }
473 
474 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
475  * packet, but we have no use for that.  However we do take advantage of
476  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
477  */
478 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
479 {
480 	int nack_busy_id, is_jbus, need_more;
481 	u64 *mondo, pstate, ver, busy_mask;
482 	u16 *cpu_list;
483 
484 	cpu_list = __va(tb->cpu_list_pa);
485 	mondo = __va(tb->cpu_mondo_block_pa);
486 
487 	/* Unfortunately, someone at Sun had the brilliant idea to make the
488 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
489 	 * derivative processor.
490 	 */
491 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
492 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
493 		   (ver >> 32) == __SERRANO_ID);
494 
495 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
496 
497 retry:
498 	need_more = 0;
499 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
500 			     : : "r" (pstate), "i" (PSTATE_IE));
501 
502 	/* Setup the dispatch data registers. */
503 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
504 			     "stxa	%1, [%4] %6\n\t"
505 			     "stxa	%2, [%5] %6\n\t"
506 			     "membar	#Sync\n\t"
507 			     : /* no outputs */
508 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
509 			       "r" (0x40), "r" (0x50), "r" (0x60),
510 			       "i" (ASI_INTR_W));
511 
512 	nack_busy_id = 0;
513 	busy_mask = 0;
514 	{
515 		int i;
516 
517 		for (i = 0; i < cnt; i++) {
518 			u64 target, nr;
519 
520 			nr = cpu_list[i];
521 			if (nr == 0xffff)
522 				continue;
523 
524 			target = (nr << 14) | 0x70;
525 			if (is_jbus) {
526 				busy_mask |= (0x1UL << (nr * 2));
527 			} else {
528 				target |= (nack_busy_id << 24);
529 				busy_mask |= (0x1UL <<
530 					      (nack_busy_id * 2));
531 			}
532 			__asm__ __volatile__(
533 				"stxa	%%g0, [%0] %1\n\t"
534 				"membar	#Sync\n\t"
535 				: /* no outputs */
536 				: "r" (target), "i" (ASI_INTR_W));
537 			nack_busy_id++;
538 			if (nack_busy_id == 32) {
539 				need_more = 1;
540 				break;
541 			}
542 		}
543 	}
544 
545 	/* Now, poll for completion. */
546 	{
547 		u64 dispatch_stat, nack_mask;
548 		long stuck;
549 
550 		stuck = 100000 * nack_busy_id;
551 		nack_mask = busy_mask << 1;
552 		do {
553 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
554 					     : "=r" (dispatch_stat)
555 					     : "i" (ASI_INTR_DISPATCH_STAT));
556 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
557 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
558 						     : : "r" (pstate));
559 				if (unlikely(need_more)) {
560 					int i, this_cnt = 0;
561 					for (i = 0; i < cnt; i++) {
562 						if (cpu_list[i] == 0xffff)
563 							continue;
564 						cpu_list[i] = 0xffff;
565 						this_cnt++;
566 						if (this_cnt == 32)
567 							break;
568 					}
569 					goto retry;
570 				}
571 				return;
572 			}
573 			if (!--stuck)
574 				break;
575 		} while (dispatch_stat & busy_mask);
576 
577 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
578 				     : : "r" (pstate));
579 
580 		if (dispatch_stat & busy_mask) {
581 			/* Busy bits will not clear, continue instead
582 			 * of freezing up on this cpu.
583 			 */
584 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
585 			       smp_processor_id(), dispatch_stat);
586 		} else {
587 			int i, this_busy_nack = 0;
588 
589 			/* Delay some random time with interrupts enabled
590 			 * to prevent deadlock.
591 			 */
592 			udelay(2 * nack_busy_id);
593 
594 			/* Clear out the mask bits for cpus which did not
595 			 * NACK us.
596 			 */
597 			for (i = 0; i < cnt; i++) {
598 				u64 check_mask, nr;
599 
600 				nr = cpu_list[i];
601 				if (nr == 0xffff)
602 					continue;
603 
604 				if (is_jbus)
605 					check_mask = (0x2UL << (2*nr));
606 				else
607 					check_mask = (0x2UL <<
608 						      this_busy_nack);
609 				if ((dispatch_stat & check_mask) == 0)
610 					cpu_list[i] = 0xffff;
611 				this_busy_nack += 2;
612 				if (this_busy_nack == 64)
613 					break;
614 			}
615 
616 			goto retry;
617 		}
618 	}
619 }
620 
621 /* Multi-cpu list version.  */
622 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
623 {
624 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
625 	unsigned long status;
626 	u16 *cpu_list;
627 
628 	this_cpu = smp_processor_id();
629 
630 	cpu_list = __va(tb->cpu_list_pa);
631 
632 	saw_cpu_error = 0;
633 	retries = 0;
634 	prev_sent = 0;
635 	do {
636 		int forward_progress, n_sent;
637 
638 		status = sun4v_cpu_mondo_send(cnt,
639 					      tb->cpu_list_pa,
640 					      tb->cpu_mondo_block_pa);
641 
642 		/* HV_EOK means all cpus received the xcall, we're done.  */
643 		if (likely(status == HV_EOK))
644 			break;
645 
646 		/* First, see if we made any forward progress.
647 		 *
648 		 * The hypervisor indicates successful sends by setting
649 		 * cpu list entries to the value 0xffff.
650 		 */
651 		n_sent = 0;
652 		for (i = 0; i < cnt; i++) {
653 			if (likely(cpu_list[i] == 0xffff))
654 				n_sent++;
655 		}
656 
657 		forward_progress = 0;
658 		if (n_sent > prev_sent)
659 			forward_progress = 1;
660 
661 		prev_sent = n_sent;
662 
663 		/* If we get a HV_ECPUERROR, then one or more of the cpus
664 		 * in the list are in error state.  Use the cpu_state()
665 		 * hypervisor call to find out which cpus are in error state.
666 		 */
667 		if (unlikely(status == HV_ECPUERROR)) {
668 			for (i = 0; i < cnt; i++) {
669 				long err;
670 				u16 cpu;
671 
672 				cpu = cpu_list[i];
673 				if (cpu == 0xffff)
674 					continue;
675 
676 				err = sun4v_cpu_state(cpu);
677 				if (err == HV_CPU_STATE_ERROR) {
678 					saw_cpu_error = (cpu + 1);
679 					cpu_list[i] = 0xffff;
680 				}
681 			}
682 		} else if (unlikely(status != HV_EWOULDBLOCK))
683 			goto fatal_mondo_error;
684 
685 		/* Don't bother rewriting the CPU list, just leave the
686 		 * 0xffff and non-0xffff entries in there and the
687 		 * hypervisor will do the right thing.
688 		 *
689 		 * Only advance timeout state if we didn't make any
690 		 * forward progress.
691 		 */
692 		if (unlikely(!forward_progress)) {
693 			if (unlikely(++retries > 10000))
694 				goto fatal_mondo_timeout;
695 
696 			/* Delay a little bit to let other cpus catch up
697 			 * on their cpu mondo queue work.
698 			 */
699 			udelay(2 * cnt);
700 		}
701 	} while (1);
702 
703 	if (unlikely(saw_cpu_error))
704 		goto fatal_mondo_cpu_error;
705 
706 	return;
707 
708 fatal_mondo_cpu_error:
709 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
710 	       "(including %d) were in error state\n",
711 	       this_cpu, saw_cpu_error - 1);
712 	return;
713 
714 fatal_mondo_timeout:
715 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
716 	       " progress after %d retries.\n",
717 	       this_cpu, retries);
718 	goto dump_cpu_list_and_out;
719 
720 fatal_mondo_error:
721 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
722 	       this_cpu, status);
723 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
724 	       "mondo_block_pa(%lx)\n",
725 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
726 
727 dump_cpu_list_and_out:
728 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
729 	for (i = 0; i < cnt; i++)
730 		printk("%u ", cpu_list[i]);
731 	printk("]\n");
732 }
733 
734 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
735 
736 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
737 {
738 	struct trap_per_cpu *tb;
739 	int this_cpu, i, cnt;
740 	unsigned long flags;
741 	u16 *cpu_list;
742 	u64 *mondo;
743 
744 	/* We have to do this whole thing with interrupts fully disabled.
745 	 * Otherwise if we send an xcall from interrupt context it will
746 	 * corrupt both our mondo block and cpu list state.
747 	 *
748 	 * One consequence of this is that we cannot use timeout mechanisms
749 	 * that depend upon interrupts being delivered locally.  So, for
750 	 * example, we cannot sample jiffies and expect it to advance.
751 	 *
752 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
753 	 */
754 	local_irq_save(flags);
755 
756 	this_cpu = smp_processor_id();
757 	tb = &trap_block[this_cpu];
758 
759 	mondo = __va(tb->cpu_mondo_block_pa);
760 	mondo[0] = data0;
761 	mondo[1] = data1;
762 	mondo[2] = data2;
763 	wmb();
764 
765 	cpu_list = __va(tb->cpu_list_pa);
766 
767 	/* Setup the initial cpu list.  */
768 	cnt = 0;
769 	for_each_cpu(i, mask) {
770 		if (i == this_cpu || !cpu_online(i))
771 			continue;
772 		cpu_list[cnt++] = i;
773 	}
774 
775 	if (cnt)
776 		xcall_deliver_impl(tb, cnt);
777 
778 	local_irq_restore(flags);
779 }
780 
781 /* Send cross call to all processors mentioned in MASK_P
782  * except self.  Really, there are only two cases currently,
783  * "cpu_online_mask" and "mm_cpumask(mm)".
784  */
785 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
786 {
787 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
788 
789 	xcall_deliver(data0, data1, data2, mask);
790 }
791 
792 /* Send cross call to all processors except self. */
793 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
794 {
795 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
796 }
797 
798 extern unsigned long xcall_sync_tick;
799 
800 static void smp_start_sync_tick_client(int cpu)
801 {
802 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
803 		      cpumask_of(cpu));
804 }
805 
806 extern unsigned long xcall_call_function;
807 
808 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
809 {
810 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
811 }
812 
813 extern unsigned long xcall_call_function_single;
814 
815 void arch_send_call_function_single_ipi(int cpu)
816 {
817 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
818 		      cpumask_of(cpu));
819 }
820 
821 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
822 {
823 	clear_softint(1 << irq);
824 	generic_smp_call_function_interrupt();
825 }
826 
827 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
828 {
829 	clear_softint(1 << irq);
830 	generic_smp_call_function_single_interrupt();
831 }
832 
833 static void tsb_sync(void *info)
834 {
835 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
836 	struct mm_struct *mm = info;
837 
838 	/* It is not valid to test "current->active_mm == mm" here.
839 	 *
840 	 * The value of "current" is not changed atomically with
841 	 * switch_mm().  But that's OK, we just need to check the
842 	 * current cpu's trap block PGD physical address.
843 	 */
844 	if (tp->pgd_paddr == __pa(mm->pgd))
845 		tsb_context_switch(mm);
846 }
847 
848 void smp_tsb_sync(struct mm_struct *mm)
849 {
850 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
851 }
852 
853 extern unsigned long xcall_flush_tlb_mm;
854 extern unsigned long xcall_flush_tlb_page;
855 extern unsigned long xcall_flush_tlb_kernel_range;
856 extern unsigned long xcall_fetch_glob_regs;
857 extern unsigned long xcall_fetch_glob_pmu;
858 extern unsigned long xcall_fetch_glob_pmu_n4;
859 extern unsigned long xcall_receive_signal;
860 extern unsigned long xcall_new_mmu_context_version;
861 #ifdef CONFIG_KGDB
862 extern unsigned long xcall_kgdb_capture;
863 #endif
864 
865 #ifdef DCACHE_ALIASING_POSSIBLE
866 extern unsigned long xcall_flush_dcache_page_cheetah;
867 #endif
868 extern unsigned long xcall_flush_dcache_page_spitfire;
869 
870 #ifdef CONFIG_DEBUG_DCFLUSH
871 extern atomic_t dcpage_flushes;
872 extern atomic_t dcpage_flushes_xcall;
873 #endif
874 
875 static inline void __local_flush_dcache_page(struct page *page)
876 {
877 #ifdef DCACHE_ALIASING_POSSIBLE
878 	__flush_dcache_page(page_address(page),
879 			    ((tlb_type == spitfire) &&
880 			     page_mapping(page) != NULL));
881 #else
882 	if (page_mapping(page) != NULL &&
883 	    tlb_type == spitfire)
884 		__flush_icache_page(__pa(page_address(page)));
885 #endif
886 }
887 
888 void smp_flush_dcache_page_impl(struct page *page, int cpu)
889 {
890 	int this_cpu;
891 
892 	if (tlb_type == hypervisor)
893 		return;
894 
895 #ifdef CONFIG_DEBUG_DCFLUSH
896 	atomic_inc(&dcpage_flushes);
897 #endif
898 
899 	this_cpu = get_cpu();
900 
901 	if (cpu == this_cpu) {
902 		__local_flush_dcache_page(page);
903 	} else if (cpu_online(cpu)) {
904 		void *pg_addr = page_address(page);
905 		u64 data0 = 0;
906 
907 		if (tlb_type == spitfire) {
908 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
909 			if (page_mapping(page) != NULL)
910 				data0 |= ((u64)1 << 32);
911 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
912 #ifdef DCACHE_ALIASING_POSSIBLE
913 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
914 #endif
915 		}
916 		if (data0) {
917 			xcall_deliver(data0, __pa(pg_addr),
918 				      (u64) pg_addr, cpumask_of(cpu));
919 #ifdef CONFIG_DEBUG_DCFLUSH
920 			atomic_inc(&dcpage_flushes_xcall);
921 #endif
922 		}
923 	}
924 
925 	put_cpu();
926 }
927 
928 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
929 {
930 	void *pg_addr;
931 	u64 data0;
932 
933 	if (tlb_type == hypervisor)
934 		return;
935 
936 	preempt_disable();
937 
938 #ifdef CONFIG_DEBUG_DCFLUSH
939 	atomic_inc(&dcpage_flushes);
940 #endif
941 	data0 = 0;
942 	pg_addr = page_address(page);
943 	if (tlb_type == spitfire) {
944 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
945 		if (page_mapping(page) != NULL)
946 			data0 |= ((u64)1 << 32);
947 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
948 #ifdef DCACHE_ALIASING_POSSIBLE
949 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
950 #endif
951 	}
952 	if (data0) {
953 		xcall_deliver(data0, __pa(pg_addr),
954 			      (u64) pg_addr, cpu_online_mask);
955 #ifdef CONFIG_DEBUG_DCFLUSH
956 		atomic_inc(&dcpage_flushes_xcall);
957 #endif
958 	}
959 	__local_flush_dcache_page(page);
960 
961 	preempt_enable();
962 }
963 
964 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
965 {
966 	struct mm_struct *mm;
967 	unsigned long flags;
968 
969 	clear_softint(1 << irq);
970 
971 	/* See if we need to allocate a new TLB context because
972 	 * the version of the one we are using is now out of date.
973 	 */
974 	mm = current->active_mm;
975 	if (unlikely(!mm || (mm == &init_mm)))
976 		return;
977 
978 	spin_lock_irqsave(&mm->context.lock, flags);
979 
980 	if (unlikely(!CTX_VALID(mm->context)))
981 		get_new_mmu_context(mm);
982 
983 	spin_unlock_irqrestore(&mm->context.lock, flags);
984 
985 	load_secondary_context(mm);
986 	__flush_tlb_mm(CTX_HWBITS(mm->context),
987 		       SECONDARY_CONTEXT);
988 }
989 
990 void smp_new_mmu_context_version(void)
991 {
992 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
993 }
994 
995 #ifdef CONFIG_KGDB
996 void kgdb_roundup_cpus(unsigned long flags)
997 {
998 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
999 }
1000 #endif
1001 
1002 void smp_fetch_global_regs(void)
1003 {
1004 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1005 }
1006 
1007 void smp_fetch_global_pmu(void)
1008 {
1009 	if (tlb_type == hypervisor &&
1010 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1011 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1012 	else
1013 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1014 }
1015 
1016 /* We know that the window frames of the user have been flushed
1017  * to the stack before we get here because all callers of us
1018  * are flush_tlb_*() routines, and these run after flush_cache_*()
1019  * which performs the flushw.
1020  *
1021  * The SMP TLB coherency scheme we use works as follows:
1022  *
1023  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1024  *    space has (potentially) executed on, this is the heuristic
1025  *    we use to avoid doing cross calls.
1026  *
1027  *    Also, for flushing from kswapd and also for clones, we
1028  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1029  *
1030  * 2) TLB context numbers are shared globally across all processors
1031  *    in the system, this allows us to play several games to avoid
1032  *    cross calls.
1033  *
1034  *    One invariant is that when a cpu switches to a process, and
1035  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1036  *    current cpu's bit set, that tlb context is flushed locally.
1037  *
1038  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1039  *    cross calls when we want to flush the currently running process's
1040  *    tlb state.  This is done by clearing all cpu bits except the current
1041  *    processor's in current->mm->cpu_vm_mask and performing the
1042  *    flush locally only.  This will force any subsequent cpus which run
1043  *    this task to flush the context from the local tlb if the process
1044  *    migrates to another cpu (again).
1045  *
1046  * 3) For shared address spaces (threads) and swapping we bite the
1047  *    bullet for most cases and perform the cross call (but only to
1048  *    the cpus listed in cpu_vm_mask).
1049  *
1050  *    The performance gain from "optimizing" away the cross call for threads is
1051  *    questionable (in theory the big win for threads is the massive sharing of
1052  *    address space state across processors).
1053  */
1054 
1055 /* This currently is only used by the hugetlb arch pre-fault
1056  * hook on UltraSPARC-III+ and later when changing the pagesize
1057  * bits of the context register for an address space.
1058  */
1059 void smp_flush_tlb_mm(struct mm_struct *mm)
1060 {
1061 	u32 ctx = CTX_HWBITS(mm->context);
1062 	int cpu = get_cpu();
1063 
1064 	if (atomic_read(&mm->mm_users) == 1) {
1065 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1066 		goto local_flush_and_out;
1067 	}
1068 
1069 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1070 			      ctx, 0, 0,
1071 			      mm_cpumask(mm));
1072 
1073 local_flush_and_out:
1074 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1075 
1076 	put_cpu();
1077 }
1078 
1079 struct tlb_pending_info {
1080 	unsigned long ctx;
1081 	unsigned long nr;
1082 	unsigned long *vaddrs;
1083 };
1084 
1085 static void tlb_pending_func(void *info)
1086 {
1087 	struct tlb_pending_info *t = info;
1088 
1089 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1090 }
1091 
1092 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1093 {
1094 	u32 ctx = CTX_HWBITS(mm->context);
1095 	struct tlb_pending_info info;
1096 	int cpu = get_cpu();
1097 
1098 	info.ctx = ctx;
1099 	info.nr = nr;
1100 	info.vaddrs = vaddrs;
1101 
1102 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1103 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1104 	else
1105 		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1106 				       &info, 1);
1107 
1108 	__flush_tlb_pending(ctx, nr, vaddrs);
1109 
1110 	put_cpu();
1111 }
1112 
1113 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1114 {
1115 	unsigned long context = CTX_HWBITS(mm->context);
1116 	int cpu = get_cpu();
1117 
1118 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1119 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1120 	else
1121 		smp_cross_call_masked(&xcall_flush_tlb_page,
1122 				      context, vaddr, 0,
1123 				      mm_cpumask(mm));
1124 	__flush_tlb_page(context, vaddr);
1125 
1126 	put_cpu();
1127 }
1128 
1129 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1130 {
1131 	start &= PAGE_MASK;
1132 	end    = PAGE_ALIGN(end);
1133 	if (start != end) {
1134 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1135 			       0, start, end);
1136 
1137 		__flush_tlb_kernel_range(start, end);
1138 	}
1139 }
1140 
1141 /* CPU capture. */
1142 /* #define CAPTURE_DEBUG */
1143 extern unsigned long xcall_capture;
1144 
1145 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1146 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1147 static unsigned long penguins_are_doing_time;
1148 
1149 void smp_capture(void)
1150 {
1151 	int result = atomic_add_ret(1, &smp_capture_depth);
1152 
1153 	if (result == 1) {
1154 		int ncpus = num_online_cpus();
1155 
1156 #ifdef CAPTURE_DEBUG
1157 		printk("CPU[%d]: Sending penguins to jail...",
1158 		       smp_processor_id());
1159 #endif
1160 		penguins_are_doing_time = 1;
1161 		atomic_inc(&smp_capture_registry);
1162 		smp_cross_call(&xcall_capture, 0, 0, 0);
1163 		while (atomic_read(&smp_capture_registry) != ncpus)
1164 			rmb();
1165 #ifdef CAPTURE_DEBUG
1166 		printk("done\n");
1167 #endif
1168 	}
1169 }
1170 
1171 void smp_release(void)
1172 {
1173 	if (atomic_dec_and_test(&smp_capture_depth)) {
1174 #ifdef CAPTURE_DEBUG
1175 		printk("CPU[%d]: Giving pardon to "
1176 		       "imprisoned penguins\n",
1177 		       smp_processor_id());
1178 #endif
1179 		penguins_are_doing_time = 0;
1180 		membar_safe("#StoreLoad");
1181 		atomic_dec(&smp_capture_registry);
1182 	}
1183 }
1184 
1185 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1186  * set, so they can service tlb flush xcalls...
1187  */
1188 extern void prom_world(int);
1189 
1190 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1191 {
1192 	clear_softint(1 << irq);
1193 
1194 	preempt_disable();
1195 
1196 	__asm__ __volatile__("flushw");
1197 	prom_world(1);
1198 	atomic_inc(&smp_capture_registry);
1199 	membar_safe("#StoreLoad");
1200 	while (penguins_are_doing_time)
1201 		rmb();
1202 	atomic_dec(&smp_capture_registry);
1203 	prom_world(0);
1204 
1205 	preempt_enable();
1206 }
1207 
1208 /* /proc/profile writes can call this, don't __init it please. */
1209 int setup_profiling_timer(unsigned int multiplier)
1210 {
1211 	return -EINVAL;
1212 }
1213 
1214 void __init smp_prepare_cpus(unsigned int max_cpus)
1215 {
1216 }
1217 
1218 void smp_prepare_boot_cpu(void)
1219 {
1220 }
1221 
1222 void __init smp_setup_processor_id(void)
1223 {
1224 	if (tlb_type == spitfire)
1225 		xcall_deliver_impl = spitfire_xcall_deliver;
1226 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1227 		xcall_deliver_impl = cheetah_xcall_deliver;
1228 	else
1229 		xcall_deliver_impl = hypervisor_xcall_deliver;
1230 }
1231 
1232 void smp_fill_in_sib_core_maps(void)
1233 {
1234 	unsigned int i;
1235 
1236 	for_each_present_cpu(i) {
1237 		unsigned int j;
1238 
1239 		cpumask_clear(&cpu_core_map[i]);
1240 		if (cpu_data(i).core_id == 0) {
1241 			cpumask_set_cpu(i, &cpu_core_map[i]);
1242 			continue;
1243 		}
1244 
1245 		for_each_present_cpu(j) {
1246 			if (cpu_data(i).core_id ==
1247 			    cpu_data(j).core_id)
1248 				cpumask_set_cpu(j, &cpu_core_map[i]);
1249 		}
1250 	}
1251 
1252 	for_each_present_cpu(i) {
1253 		unsigned int j;
1254 
1255 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1256 		if (cpu_data(i).proc_id == -1) {
1257 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1258 			continue;
1259 		}
1260 
1261 		for_each_present_cpu(j) {
1262 			if (cpu_data(i).proc_id ==
1263 			    cpu_data(j).proc_id)
1264 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1265 		}
1266 	}
1267 }
1268 
1269 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1270 {
1271 	int ret = smp_boot_one_cpu(cpu, tidle);
1272 
1273 	if (!ret) {
1274 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1275 		while (!cpu_online(cpu))
1276 			mb();
1277 		if (!cpu_online(cpu)) {
1278 			ret = -ENODEV;
1279 		} else {
1280 			/* On SUN4V, writes to %tick and %stick are
1281 			 * not allowed.
1282 			 */
1283 			if (tlb_type != hypervisor)
1284 				smp_synchronize_one_tick(cpu);
1285 		}
1286 	}
1287 	return ret;
1288 }
1289 
1290 #ifdef CONFIG_HOTPLUG_CPU
1291 void cpu_play_dead(void)
1292 {
1293 	int cpu = smp_processor_id();
1294 	unsigned long pstate;
1295 
1296 	idle_task_exit();
1297 
1298 	if (tlb_type == hypervisor) {
1299 		struct trap_per_cpu *tb = &trap_block[cpu];
1300 
1301 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1302 				tb->cpu_mondo_pa, 0);
1303 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1304 				tb->dev_mondo_pa, 0);
1305 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1306 				tb->resum_mondo_pa, 0);
1307 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1308 				tb->nonresum_mondo_pa, 0);
1309 	}
1310 
1311 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1312 	membar_safe("#Sync");
1313 
1314 	local_irq_disable();
1315 
1316 	__asm__ __volatile__(
1317 		"rdpr	%%pstate, %0\n\t"
1318 		"wrpr	%0, %1, %%pstate"
1319 		: "=r" (pstate)
1320 		: "i" (PSTATE_IE));
1321 
1322 	while (1)
1323 		barrier();
1324 }
1325 
1326 int __cpu_disable(void)
1327 {
1328 	int cpu = smp_processor_id();
1329 	cpuinfo_sparc *c;
1330 	int i;
1331 
1332 	for_each_cpu(i, &cpu_core_map[cpu])
1333 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1334 	cpumask_clear(&cpu_core_map[cpu]);
1335 
1336 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1337 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1338 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1339 
1340 	c = &cpu_data(cpu);
1341 
1342 	c->core_id = 0;
1343 	c->proc_id = -1;
1344 
1345 	smp_wmb();
1346 
1347 	/* Make sure no interrupts point to this cpu.  */
1348 	fixup_irqs();
1349 
1350 	local_irq_enable();
1351 	mdelay(1);
1352 	local_irq_disable();
1353 
1354 	set_cpu_online(cpu, false);
1355 
1356 	cpu_map_rebuild();
1357 
1358 	return 0;
1359 }
1360 
1361 void __cpu_die(unsigned int cpu)
1362 {
1363 	int i;
1364 
1365 	for (i = 0; i < 100; i++) {
1366 		smp_rmb();
1367 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1368 			break;
1369 		msleep(100);
1370 	}
1371 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1372 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1373 	} else {
1374 #if defined(CONFIG_SUN_LDOMS)
1375 		unsigned long hv_err;
1376 		int limit = 100;
1377 
1378 		do {
1379 			hv_err = sun4v_cpu_stop(cpu);
1380 			if (hv_err == HV_EOK) {
1381 				set_cpu_present(cpu, false);
1382 				break;
1383 			}
1384 		} while (--limit > 0);
1385 		if (limit <= 0) {
1386 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1387 			       hv_err);
1388 		}
1389 #endif
1390 	}
1391 }
1392 #endif
1393 
1394 void __init smp_cpus_done(unsigned int max_cpus)
1395 {
1396 	pcr_arch_init();
1397 }
1398 
1399 void smp_send_reschedule(int cpu)
1400 {
1401 	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1402 		      cpumask_of(cpu));
1403 }
1404 
1405 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1406 {
1407 	clear_softint(1 << irq);
1408 	scheduler_ipi();
1409 }
1410 
1411 /* This is a nop because we capture all other cpus
1412  * anyways when making the PROM active.
1413  */
1414 void smp_send_stop(void)
1415 {
1416 }
1417 
1418 /**
1419  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1420  * @cpu: cpu to allocate for
1421  * @size: size allocation in bytes
1422  * @align: alignment
1423  *
1424  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1425  * does the right thing for NUMA regardless of the current
1426  * configuration.
1427  *
1428  * RETURNS:
1429  * Pointer to the allocated area on success, NULL on failure.
1430  */
1431 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1432 					size_t align)
1433 {
1434 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1435 #ifdef CONFIG_NEED_MULTIPLE_NODES
1436 	int node = cpu_to_node(cpu);
1437 	void *ptr;
1438 
1439 	if (!node_online(node) || !NODE_DATA(node)) {
1440 		ptr = __alloc_bootmem(size, align, goal);
1441 		pr_info("cpu %d has no node %d or node-local memory\n",
1442 			cpu, node);
1443 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1444 			 cpu, size, __pa(ptr));
1445 	} else {
1446 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1447 					   size, align, goal);
1448 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1449 			 "%016lx\n", cpu, size, node, __pa(ptr));
1450 	}
1451 	return ptr;
1452 #else
1453 	return __alloc_bootmem(size, align, goal);
1454 #endif
1455 }
1456 
1457 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1458 {
1459 	free_bootmem(__pa(ptr), size);
1460 }
1461 
1462 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1463 {
1464 	if (cpu_to_node(from) == cpu_to_node(to))
1465 		return LOCAL_DISTANCE;
1466 	else
1467 		return REMOTE_DISTANCE;
1468 }
1469 
1470 static void __init pcpu_populate_pte(unsigned long addr)
1471 {
1472 	pgd_t *pgd = pgd_offset_k(addr);
1473 	pud_t *pud;
1474 	pmd_t *pmd;
1475 
1476 	pud = pud_offset(pgd, addr);
1477 	if (pud_none(*pud)) {
1478 		pmd_t *new;
1479 
1480 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1481 		pud_populate(&init_mm, pud, new);
1482 	}
1483 
1484 	pmd = pmd_offset(pud, addr);
1485 	if (!pmd_present(*pmd)) {
1486 		pte_t *new;
1487 
1488 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1489 		pmd_populate_kernel(&init_mm, pmd, new);
1490 	}
1491 }
1492 
1493 void __init setup_per_cpu_areas(void)
1494 {
1495 	unsigned long delta;
1496 	unsigned int cpu;
1497 	int rc = -EINVAL;
1498 
1499 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1500 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1501 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1502 					    pcpu_cpu_distance,
1503 					    pcpu_alloc_bootmem,
1504 					    pcpu_free_bootmem);
1505 		if (rc)
1506 			pr_warning("PERCPU: %s allocator failed (%d), "
1507 				   "falling back to page size\n",
1508 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1509 	}
1510 	if (rc < 0)
1511 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1512 					   pcpu_alloc_bootmem,
1513 					   pcpu_free_bootmem,
1514 					   pcpu_populate_pte);
1515 	if (rc < 0)
1516 		panic("cannot initialize percpu area (err=%d)", rc);
1517 
1518 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1519 	for_each_possible_cpu(cpu)
1520 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1521 
1522 	/* Setup %g5 for the boot cpu.  */
1523 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1524 
1525 	of_fill_in_cpu_data();
1526 	if (tlb_type == hypervisor)
1527 		mdesc_fill_in_cpu_data(cpu_all_mask);
1528 }
1529