1 /* smp.c: Sparc64 SMP support. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 */ 5 6 #include <linux/export.h> 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/pagemap.h> 11 #include <linux/threads.h> 12 #include <linux/smp.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/delay.h> 16 #include <linux/init.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/cache.h> 21 #include <linux/jiffies.h> 22 #include <linux/profile.h> 23 #include <linux/bootmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ftrace.h> 26 #include <linux/cpu.h> 27 #include <linux/slab.h> 28 29 #include <asm/head.h> 30 #include <asm/ptrace.h> 31 #include <linux/atomic.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mmu_context.h> 34 #include <asm/cpudata.h> 35 #include <asm/hvtramp.h> 36 #include <asm/io.h> 37 #include <asm/timer.h> 38 39 #include <asm/irq.h> 40 #include <asm/irq_regs.h> 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/oplib.h> 44 #include <asm/uaccess.h> 45 #include <asm/starfire.h> 46 #include <asm/tlb.h> 47 #include <asm/sections.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/ldc.h> 51 #include <asm/hypervisor.h> 52 #include <asm/pcr.h> 53 54 #include "cpumap.h" 55 56 int sparc64_multi_core __read_mostly; 57 58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; 59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly = 60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; 61 62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 63 EXPORT_SYMBOL(cpu_core_map); 64 65 static cpumask_t smp_commenced_mask; 66 67 void smp_info(struct seq_file *m) 68 { 69 int i; 70 71 seq_printf(m, "State:\n"); 72 for_each_online_cpu(i) 73 seq_printf(m, "CPU%d:\t\tonline\n", i); 74 } 75 76 void smp_bogo(struct seq_file *m) 77 { 78 int i; 79 80 for_each_online_cpu(i) 81 seq_printf(m, 82 "Cpu%dClkTck\t: %016lx\n", 83 i, cpu_data(i).clock_tick); 84 } 85 86 extern void setup_sparc64_timer(void); 87 88 static volatile unsigned long callin_flag = 0; 89 90 void __cpuinit smp_callin(void) 91 { 92 int cpuid = hard_smp_processor_id(); 93 94 __local_per_cpu_offset = __per_cpu_offset(cpuid); 95 96 if (tlb_type == hypervisor) 97 sun4v_ktsb_register(); 98 99 __flush_tlb_all(); 100 101 setup_sparc64_timer(); 102 103 if (cheetah_pcache_forced_on) 104 cheetah_enable_pcache(); 105 106 callin_flag = 1; 107 __asm__ __volatile__("membar #Sync\n\t" 108 "flush %%g6" : : : "memory"); 109 110 /* Clear this or we will die instantly when we 111 * schedule back to this idler... 112 */ 113 current_thread_info()->new_child = 0; 114 115 /* Attach to the address space of init_task. */ 116 atomic_inc(&init_mm.mm_count); 117 current->active_mm = &init_mm; 118 119 /* inform the notifiers about the new cpu */ 120 notify_cpu_starting(cpuid); 121 122 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) 123 rmb(); 124 125 set_cpu_online(cpuid, true); 126 local_irq_enable(); 127 128 /* idle thread is expected to have preempt disabled */ 129 preempt_disable(); 130 131 cpu_startup_entry(CPUHP_ONLINE); 132 } 133 134 void cpu_panic(void) 135 { 136 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); 137 panic("SMP bolixed\n"); 138 } 139 140 /* This tick register synchronization scheme is taken entirely from 141 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. 142 * 143 * The only change I've made is to rework it so that the master 144 * initiates the synchonization instead of the slave. -DaveM 145 */ 146 147 #define MASTER 0 148 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) 149 150 #define NUM_ROUNDS 64 /* magic value */ 151 #define NUM_ITERS 5 /* likewise */ 152 153 static DEFINE_SPINLOCK(itc_sync_lock); 154 static unsigned long go[SLAVE + 1]; 155 156 #define DEBUG_TICK_SYNC 0 157 158 static inline long get_delta (long *rt, long *master) 159 { 160 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 161 unsigned long tcenter, t0, t1, tm; 162 unsigned long i; 163 164 for (i = 0; i < NUM_ITERS; i++) { 165 t0 = tick_ops->get_tick(); 166 go[MASTER] = 1; 167 membar_safe("#StoreLoad"); 168 while (!(tm = go[SLAVE])) 169 rmb(); 170 go[SLAVE] = 0; 171 wmb(); 172 t1 = tick_ops->get_tick(); 173 174 if (t1 - t0 < best_t1 - best_t0) 175 best_t0 = t0, best_t1 = t1, best_tm = tm; 176 } 177 178 *rt = best_t1 - best_t0; 179 *master = best_tm - best_t0; 180 181 /* average best_t0 and best_t1 without overflow: */ 182 tcenter = (best_t0/2 + best_t1/2); 183 if (best_t0 % 2 + best_t1 % 2 == 2) 184 tcenter++; 185 return tcenter - best_tm; 186 } 187 188 void smp_synchronize_tick_client(void) 189 { 190 long i, delta, adj, adjust_latency = 0, done = 0; 191 unsigned long flags, rt, master_time_stamp; 192 #if DEBUG_TICK_SYNC 193 struct { 194 long rt; /* roundtrip time */ 195 long master; /* master's timestamp */ 196 long diff; /* difference between midpoint and master's timestamp */ 197 long lat; /* estimate of itc adjustment latency */ 198 } t[NUM_ROUNDS]; 199 #endif 200 201 go[MASTER] = 1; 202 203 while (go[MASTER]) 204 rmb(); 205 206 local_irq_save(flags); 207 { 208 for (i = 0; i < NUM_ROUNDS; i++) { 209 delta = get_delta(&rt, &master_time_stamp); 210 if (delta == 0) 211 done = 1; /* let's lock on to this... */ 212 213 if (!done) { 214 if (i > 0) { 215 adjust_latency += -delta; 216 adj = -delta + adjust_latency/4; 217 } else 218 adj = -delta; 219 220 tick_ops->add_tick(adj); 221 } 222 #if DEBUG_TICK_SYNC 223 t[i].rt = rt; 224 t[i].master = master_time_stamp; 225 t[i].diff = delta; 226 t[i].lat = adjust_latency/4; 227 #endif 228 } 229 } 230 local_irq_restore(flags); 231 232 #if DEBUG_TICK_SYNC 233 for (i = 0; i < NUM_ROUNDS; i++) 234 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 235 t[i].rt, t[i].master, t[i].diff, t[i].lat); 236 #endif 237 238 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " 239 "(last diff %ld cycles, maxerr %lu cycles)\n", 240 smp_processor_id(), delta, rt); 241 } 242 243 static void smp_start_sync_tick_client(int cpu); 244 245 static void smp_synchronize_one_tick(int cpu) 246 { 247 unsigned long flags, i; 248 249 go[MASTER] = 0; 250 251 smp_start_sync_tick_client(cpu); 252 253 /* wait for client to be ready */ 254 while (!go[MASTER]) 255 rmb(); 256 257 /* now let the client proceed into his loop */ 258 go[MASTER] = 0; 259 membar_safe("#StoreLoad"); 260 261 spin_lock_irqsave(&itc_sync_lock, flags); 262 { 263 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { 264 while (!go[MASTER]) 265 rmb(); 266 go[MASTER] = 0; 267 wmb(); 268 go[SLAVE] = tick_ops->get_tick(); 269 membar_safe("#StoreLoad"); 270 } 271 } 272 spin_unlock_irqrestore(&itc_sync_lock, flags); 273 } 274 275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 276 /* XXX Put this in some common place. XXX */ 277 static unsigned long kimage_addr_to_ra(void *p) 278 { 279 unsigned long val = (unsigned long) p; 280 281 return kern_base + (val - KERNBASE); 282 } 283 284 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp) 285 { 286 extern unsigned long sparc64_ttable_tl0; 287 extern unsigned long kern_locked_tte_data; 288 struct hvtramp_descr *hdesc; 289 unsigned long trampoline_ra; 290 struct trap_per_cpu *tb; 291 u64 tte_vaddr, tte_data; 292 unsigned long hv_err; 293 int i; 294 295 hdesc = kzalloc(sizeof(*hdesc) + 296 (sizeof(struct hvtramp_mapping) * 297 num_kernel_image_mappings - 1), 298 GFP_KERNEL); 299 if (!hdesc) { 300 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " 301 "hvtramp_descr.\n"); 302 return; 303 } 304 *descrp = hdesc; 305 306 hdesc->cpu = cpu; 307 hdesc->num_mappings = num_kernel_image_mappings; 308 309 tb = &trap_block[cpu]; 310 311 hdesc->fault_info_va = (unsigned long) &tb->fault_info; 312 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); 313 314 hdesc->thread_reg = thread_reg; 315 316 tte_vaddr = (unsigned long) KERNBASE; 317 tte_data = kern_locked_tte_data; 318 319 for (i = 0; i < hdesc->num_mappings; i++) { 320 hdesc->maps[i].vaddr = tte_vaddr; 321 hdesc->maps[i].tte = tte_data; 322 tte_vaddr += 0x400000; 323 tte_data += 0x400000; 324 } 325 326 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); 327 328 hv_err = sun4v_cpu_start(cpu, trampoline_ra, 329 kimage_addr_to_ra(&sparc64_ttable_tl0), 330 __pa(hdesc)); 331 if (hv_err) 332 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " 333 "gives error %lu\n", hv_err); 334 } 335 #endif 336 337 extern unsigned long sparc64_cpu_startup; 338 339 /* The OBP cpu startup callback truncates the 3rd arg cookie to 340 * 32-bits (I think) so to be safe we have it read the pointer 341 * contained here so we work on >4GB machines. -DaveM 342 */ 343 static struct thread_info *cpu_new_thread = NULL; 344 345 static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle) 346 { 347 unsigned long entry = 348 (unsigned long)(&sparc64_cpu_startup); 349 unsigned long cookie = 350 (unsigned long)(&cpu_new_thread); 351 void *descr = NULL; 352 int timeout, ret; 353 354 callin_flag = 0; 355 cpu_new_thread = task_thread_info(idle); 356 357 if (tlb_type == hypervisor) { 358 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 359 if (ldom_domaining_enabled) 360 ldom_startcpu_cpuid(cpu, 361 (unsigned long) cpu_new_thread, 362 &descr); 363 else 364 #endif 365 prom_startcpu_cpuid(cpu, entry, cookie); 366 } else { 367 struct device_node *dp = of_find_node_by_cpuid(cpu); 368 369 prom_startcpu(dp->phandle, entry, cookie); 370 } 371 372 for (timeout = 0; timeout < 50000; timeout++) { 373 if (callin_flag) 374 break; 375 udelay(100); 376 } 377 378 if (callin_flag) { 379 ret = 0; 380 } else { 381 printk("Processor %d is stuck.\n", cpu); 382 ret = -ENODEV; 383 } 384 cpu_new_thread = NULL; 385 386 kfree(descr); 387 388 return ret; 389 } 390 391 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) 392 { 393 u64 result, target; 394 int stuck, tmp; 395 396 if (this_is_starfire) { 397 /* map to real upaid */ 398 cpu = (((cpu & 0x3c) << 1) | 399 ((cpu & 0x40) >> 4) | 400 (cpu & 0x3)); 401 } 402 403 target = (cpu << 14) | 0x70; 404 again: 405 /* Ok, this is the real Spitfire Errata #54. 406 * One must read back from a UDB internal register 407 * after writes to the UDB interrupt dispatch, but 408 * before the membar Sync for that write. 409 * So we use the high UDB control register (ASI 0x7f, 410 * ADDR 0x20) for the dummy read. -DaveM 411 */ 412 tmp = 0x40; 413 __asm__ __volatile__( 414 "wrpr %1, %2, %%pstate\n\t" 415 "stxa %4, [%0] %3\n\t" 416 "stxa %5, [%0+%8] %3\n\t" 417 "add %0, %8, %0\n\t" 418 "stxa %6, [%0+%8] %3\n\t" 419 "membar #Sync\n\t" 420 "stxa %%g0, [%7] %3\n\t" 421 "membar #Sync\n\t" 422 "mov 0x20, %%g1\n\t" 423 "ldxa [%%g1] 0x7f, %%g0\n\t" 424 "membar #Sync" 425 : "=r" (tmp) 426 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), 427 "r" (data0), "r" (data1), "r" (data2), "r" (target), 428 "r" (0x10), "0" (tmp) 429 : "g1"); 430 431 /* NOTE: PSTATE_IE is still clear. */ 432 stuck = 100000; 433 do { 434 __asm__ __volatile__("ldxa [%%g0] %1, %0" 435 : "=r" (result) 436 : "i" (ASI_INTR_DISPATCH_STAT)); 437 if (result == 0) { 438 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 439 : : "r" (pstate)); 440 return; 441 } 442 stuck -= 1; 443 if (stuck == 0) 444 break; 445 } while (result & 0x1); 446 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 447 : : "r" (pstate)); 448 if (stuck == 0) { 449 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 450 smp_processor_id(), result); 451 } else { 452 udelay(2); 453 goto again; 454 } 455 } 456 457 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) 458 { 459 u64 *mondo, data0, data1, data2; 460 u16 *cpu_list; 461 u64 pstate; 462 int i; 463 464 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 465 cpu_list = __va(tb->cpu_list_pa); 466 mondo = __va(tb->cpu_mondo_block_pa); 467 data0 = mondo[0]; 468 data1 = mondo[1]; 469 data2 = mondo[2]; 470 for (i = 0; i < cnt; i++) 471 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); 472 } 473 474 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt 475 * packet, but we have no use for that. However we do take advantage of 476 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). 477 */ 478 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) 479 { 480 int nack_busy_id, is_jbus, need_more; 481 u64 *mondo, pstate, ver, busy_mask; 482 u16 *cpu_list; 483 484 cpu_list = __va(tb->cpu_list_pa); 485 mondo = __va(tb->cpu_mondo_block_pa); 486 487 /* Unfortunately, someone at Sun had the brilliant idea to make the 488 * busy/nack fields hard-coded by ITID number for this Ultra-III 489 * derivative processor. 490 */ 491 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 492 is_jbus = ((ver >> 32) == __JALAPENO_ID || 493 (ver >> 32) == __SERRANO_ID); 494 495 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 496 497 retry: 498 need_more = 0; 499 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" 500 : : "r" (pstate), "i" (PSTATE_IE)); 501 502 /* Setup the dispatch data registers. */ 503 __asm__ __volatile__("stxa %0, [%3] %6\n\t" 504 "stxa %1, [%4] %6\n\t" 505 "stxa %2, [%5] %6\n\t" 506 "membar #Sync\n\t" 507 : /* no outputs */ 508 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), 509 "r" (0x40), "r" (0x50), "r" (0x60), 510 "i" (ASI_INTR_W)); 511 512 nack_busy_id = 0; 513 busy_mask = 0; 514 { 515 int i; 516 517 for (i = 0; i < cnt; i++) { 518 u64 target, nr; 519 520 nr = cpu_list[i]; 521 if (nr == 0xffff) 522 continue; 523 524 target = (nr << 14) | 0x70; 525 if (is_jbus) { 526 busy_mask |= (0x1UL << (nr * 2)); 527 } else { 528 target |= (nack_busy_id << 24); 529 busy_mask |= (0x1UL << 530 (nack_busy_id * 2)); 531 } 532 __asm__ __volatile__( 533 "stxa %%g0, [%0] %1\n\t" 534 "membar #Sync\n\t" 535 : /* no outputs */ 536 : "r" (target), "i" (ASI_INTR_W)); 537 nack_busy_id++; 538 if (nack_busy_id == 32) { 539 need_more = 1; 540 break; 541 } 542 } 543 } 544 545 /* Now, poll for completion. */ 546 { 547 u64 dispatch_stat, nack_mask; 548 long stuck; 549 550 stuck = 100000 * nack_busy_id; 551 nack_mask = busy_mask << 1; 552 do { 553 __asm__ __volatile__("ldxa [%%g0] %1, %0" 554 : "=r" (dispatch_stat) 555 : "i" (ASI_INTR_DISPATCH_STAT)); 556 if (!(dispatch_stat & (busy_mask | nack_mask))) { 557 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 558 : : "r" (pstate)); 559 if (unlikely(need_more)) { 560 int i, this_cnt = 0; 561 for (i = 0; i < cnt; i++) { 562 if (cpu_list[i] == 0xffff) 563 continue; 564 cpu_list[i] = 0xffff; 565 this_cnt++; 566 if (this_cnt == 32) 567 break; 568 } 569 goto retry; 570 } 571 return; 572 } 573 if (!--stuck) 574 break; 575 } while (dispatch_stat & busy_mask); 576 577 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 578 : : "r" (pstate)); 579 580 if (dispatch_stat & busy_mask) { 581 /* Busy bits will not clear, continue instead 582 * of freezing up on this cpu. 583 */ 584 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 585 smp_processor_id(), dispatch_stat); 586 } else { 587 int i, this_busy_nack = 0; 588 589 /* Delay some random time with interrupts enabled 590 * to prevent deadlock. 591 */ 592 udelay(2 * nack_busy_id); 593 594 /* Clear out the mask bits for cpus which did not 595 * NACK us. 596 */ 597 for (i = 0; i < cnt; i++) { 598 u64 check_mask, nr; 599 600 nr = cpu_list[i]; 601 if (nr == 0xffff) 602 continue; 603 604 if (is_jbus) 605 check_mask = (0x2UL << (2*nr)); 606 else 607 check_mask = (0x2UL << 608 this_busy_nack); 609 if ((dispatch_stat & check_mask) == 0) 610 cpu_list[i] = 0xffff; 611 this_busy_nack += 2; 612 if (this_busy_nack == 64) 613 break; 614 } 615 616 goto retry; 617 } 618 } 619 } 620 621 /* Multi-cpu list version. */ 622 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) 623 { 624 int retries, this_cpu, prev_sent, i, saw_cpu_error; 625 unsigned long status; 626 u16 *cpu_list; 627 628 this_cpu = smp_processor_id(); 629 630 cpu_list = __va(tb->cpu_list_pa); 631 632 saw_cpu_error = 0; 633 retries = 0; 634 prev_sent = 0; 635 do { 636 int forward_progress, n_sent; 637 638 status = sun4v_cpu_mondo_send(cnt, 639 tb->cpu_list_pa, 640 tb->cpu_mondo_block_pa); 641 642 /* HV_EOK means all cpus received the xcall, we're done. */ 643 if (likely(status == HV_EOK)) 644 break; 645 646 /* First, see if we made any forward progress. 647 * 648 * The hypervisor indicates successful sends by setting 649 * cpu list entries to the value 0xffff. 650 */ 651 n_sent = 0; 652 for (i = 0; i < cnt; i++) { 653 if (likely(cpu_list[i] == 0xffff)) 654 n_sent++; 655 } 656 657 forward_progress = 0; 658 if (n_sent > prev_sent) 659 forward_progress = 1; 660 661 prev_sent = n_sent; 662 663 /* If we get a HV_ECPUERROR, then one or more of the cpus 664 * in the list are in error state. Use the cpu_state() 665 * hypervisor call to find out which cpus are in error state. 666 */ 667 if (unlikely(status == HV_ECPUERROR)) { 668 for (i = 0; i < cnt; i++) { 669 long err; 670 u16 cpu; 671 672 cpu = cpu_list[i]; 673 if (cpu == 0xffff) 674 continue; 675 676 err = sun4v_cpu_state(cpu); 677 if (err == HV_CPU_STATE_ERROR) { 678 saw_cpu_error = (cpu + 1); 679 cpu_list[i] = 0xffff; 680 } 681 } 682 } else if (unlikely(status != HV_EWOULDBLOCK)) 683 goto fatal_mondo_error; 684 685 /* Don't bother rewriting the CPU list, just leave the 686 * 0xffff and non-0xffff entries in there and the 687 * hypervisor will do the right thing. 688 * 689 * Only advance timeout state if we didn't make any 690 * forward progress. 691 */ 692 if (unlikely(!forward_progress)) { 693 if (unlikely(++retries > 10000)) 694 goto fatal_mondo_timeout; 695 696 /* Delay a little bit to let other cpus catch up 697 * on their cpu mondo queue work. 698 */ 699 udelay(2 * cnt); 700 } 701 } while (1); 702 703 if (unlikely(saw_cpu_error)) 704 goto fatal_mondo_cpu_error; 705 706 return; 707 708 fatal_mondo_cpu_error: 709 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " 710 "(including %d) were in error state\n", 711 this_cpu, saw_cpu_error - 1); 712 return; 713 714 fatal_mondo_timeout: 715 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " 716 " progress after %d retries.\n", 717 this_cpu, retries); 718 goto dump_cpu_list_and_out; 719 720 fatal_mondo_error: 721 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", 722 this_cpu, status); 723 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " 724 "mondo_block_pa(%lx)\n", 725 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); 726 727 dump_cpu_list_and_out: 728 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); 729 for (i = 0; i < cnt; i++) 730 printk("%u ", cpu_list[i]); 731 printk("]\n"); 732 } 733 734 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); 735 736 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) 737 { 738 struct trap_per_cpu *tb; 739 int this_cpu, i, cnt; 740 unsigned long flags; 741 u16 *cpu_list; 742 u64 *mondo; 743 744 /* We have to do this whole thing with interrupts fully disabled. 745 * Otherwise if we send an xcall from interrupt context it will 746 * corrupt both our mondo block and cpu list state. 747 * 748 * One consequence of this is that we cannot use timeout mechanisms 749 * that depend upon interrupts being delivered locally. So, for 750 * example, we cannot sample jiffies and expect it to advance. 751 * 752 * Fortunately, udelay() uses %stick/%tick so we can use that. 753 */ 754 local_irq_save(flags); 755 756 this_cpu = smp_processor_id(); 757 tb = &trap_block[this_cpu]; 758 759 mondo = __va(tb->cpu_mondo_block_pa); 760 mondo[0] = data0; 761 mondo[1] = data1; 762 mondo[2] = data2; 763 wmb(); 764 765 cpu_list = __va(tb->cpu_list_pa); 766 767 /* Setup the initial cpu list. */ 768 cnt = 0; 769 for_each_cpu(i, mask) { 770 if (i == this_cpu || !cpu_online(i)) 771 continue; 772 cpu_list[cnt++] = i; 773 } 774 775 if (cnt) 776 xcall_deliver_impl(tb, cnt); 777 778 local_irq_restore(flags); 779 } 780 781 /* Send cross call to all processors mentioned in MASK_P 782 * except self. Really, there are only two cases currently, 783 * "cpu_online_mask" and "mm_cpumask(mm)". 784 */ 785 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) 786 { 787 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); 788 789 xcall_deliver(data0, data1, data2, mask); 790 } 791 792 /* Send cross call to all processors except self. */ 793 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) 794 { 795 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask); 796 } 797 798 extern unsigned long xcall_sync_tick; 799 800 static void smp_start_sync_tick_client(int cpu) 801 { 802 xcall_deliver((u64) &xcall_sync_tick, 0, 0, 803 cpumask_of(cpu)); 804 } 805 806 extern unsigned long xcall_call_function; 807 808 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 809 { 810 xcall_deliver((u64) &xcall_call_function, 0, 0, mask); 811 } 812 813 extern unsigned long xcall_call_function_single; 814 815 void arch_send_call_function_single_ipi(int cpu) 816 { 817 xcall_deliver((u64) &xcall_call_function_single, 0, 0, 818 cpumask_of(cpu)); 819 } 820 821 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs) 822 { 823 clear_softint(1 << irq); 824 generic_smp_call_function_interrupt(); 825 } 826 827 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs) 828 { 829 clear_softint(1 << irq); 830 generic_smp_call_function_single_interrupt(); 831 } 832 833 static void tsb_sync(void *info) 834 { 835 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; 836 struct mm_struct *mm = info; 837 838 /* It is not valid to test "current->active_mm == mm" here. 839 * 840 * The value of "current" is not changed atomically with 841 * switch_mm(). But that's OK, we just need to check the 842 * current cpu's trap block PGD physical address. 843 */ 844 if (tp->pgd_paddr == __pa(mm->pgd)) 845 tsb_context_switch(mm); 846 } 847 848 void smp_tsb_sync(struct mm_struct *mm) 849 { 850 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1); 851 } 852 853 extern unsigned long xcall_flush_tlb_mm; 854 extern unsigned long xcall_flush_tlb_page; 855 extern unsigned long xcall_flush_tlb_kernel_range; 856 extern unsigned long xcall_fetch_glob_regs; 857 extern unsigned long xcall_fetch_glob_pmu; 858 extern unsigned long xcall_fetch_glob_pmu_n4; 859 extern unsigned long xcall_receive_signal; 860 extern unsigned long xcall_new_mmu_context_version; 861 #ifdef CONFIG_KGDB 862 extern unsigned long xcall_kgdb_capture; 863 #endif 864 865 #ifdef DCACHE_ALIASING_POSSIBLE 866 extern unsigned long xcall_flush_dcache_page_cheetah; 867 #endif 868 extern unsigned long xcall_flush_dcache_page_spitfire; 869 870 #ifdef CONFIG_DEBUG_DCFLUSH 871 extern atomic_t dcpage_flushes; 872 extern atomic_t dcpage_flushes_xcall; 873 #endif 874 875 static inline void __local_flush_dcache_page(struct page *page) 876 { 877 #ifdef DCACHE_ALIASING_POSSIBLE 878 __flush_dcache_page(page_address(page), 879 ((tlb_type == spitfire) && 880 page_mapping(page) != NULL)); 881 #else 882 if (page_mapping(page) != NULL && 883 tlb_type == spitfire) 884 __flush_icache_page(__pa(page_address(page))); 885 #endif 886 } 887 888 void smp_flush_dcache_page_impl(struct page *page, int cpu) 889 { 890 int this_cpu; 891 892 if (tlb_type == hypervisor) 893 return; 894 895 #ifdef CONFIG_DEBUG_DCFLUSH 896 atomic_inc(&dcpage_flushes); 897 #endif 898 899 this_cpu = get_cpu(); 900 901 if (cpu == this_cpu) { 902 __local_flush_dcache_page(page); 903 } else if (cpu_online(cpu)) { 904 void *pg_addr = page_address(page); 905 u64 data0 = 0; 906 907 if (tlb_type == spitfire) { 908 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 909 if (page_mapping(page) != NULL) 910 data0 |= ((u64)1 << 32); 911 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 912 #ifdef DCACHE_ALIASING_POSSIBLE 913 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 914 #endif 915 } 916 if (data0) { 917 xcall_deliver(data0, __pa(pg_addr), 918 (u64) pg_addr, cpumask_of(cpu)); 919 #ifdef CONFIG_DEBUG_DCFLUSH 920 atomic_inc(&dcpage_flushes_xcall); 921 #endif 922 } 923 } 924 925 put_cpu(); 926 } 927 928 void flush_dcache_page_all(struct mm_struct *mm, struct page *page) 929 { 930 void *pg_addr; 931 u64 data0; 932 933 if (tlb_type == hypervisor) 934 return; 935 936 preempt_disable(); 937 938 #ifdef CONFIG_DEBUG_DCFLUSH 939 atomic_inc(&dcpage_flushes); 940 #endif 941 data0 = 0; 942 pg_addr = page_address(page); 943 if (tlb_type == spitfire) { 944 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 945 if (page_mapping(page) != NULL) 946 data0 |= ((u64)1 << 32); 947 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 948 #ifdef DCACHE_ALIASING_POSSIBLE 949 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 950 #endif 951 } 952 if (data0) { 953 xcall_deliver(data0, __pa(pg_addr), 954 (u64) pg_addr, cpu_online_mask); 955 #ifdef CONFIG_DEBUG_DCFLUSH 956 atomic_inc(&dcpage_flushes_xcall); 957 #endif 958 } 959 __local_flush_dcache_page(page); 960 961 preempt_enable(); 962 } 963 964 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) 965 { 966 struct mm_struct *mm; 967 unsigned long flags; 968 969 clear_softint(1 << irq); 970 971 /* See if we need to allocate a new TLB context because 972 * the version of the one we are using is now out of date. 973 */ 974 mm = current->active_mm; 975 if (unlikely(!mm || (mm == &init_mm))) 976 return; 977 978 spin_lock_irqsave(&mm->context.lock, flags); 979 980 if (unlikely(!CTX_VALID(mm->context))) 981 get_new_mmu_context(mm); 982 983 spin_unlock_irqrestore(&mm->context.lock, flags); 984 985 load_secondary_context(mm); 986 __flush_tlb_mm(CTX_HWBITS(mm->context), 987 SECONDARY_CONTEXT); 988 } 989 990 void smp_new_mmu_context_version(void) 991 { 992 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); 993 } 994 995 #ifdef CONFIG_KGDB 996 void kgdb_roundup_cpus(unsigned long flags) 997 { 998 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); 999 } 1000 #endif 1001 1002 void smp_fetch_global_regs(void) 1003 { 1004 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); 1005 } 1006 1007 void smp_fetch_global_pmu(void) 1008 { 1009 if (tlb_type == hypervisor && 1010 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 1011 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0); 1012 else 1013 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0); 1014 } 1015 1016 /* We know that the window frames of the user have been flushed 1017 * to the stack before we get here because all callers of us 1018 * are flush_tlb_*() routines, and these run after flush_cache_*() 1019 * which performs the flushw. 1020 * 1021 * The SMP TLB coherency scheme we use works as follows: 1022 * 1023 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address 1024 * space has (potentially) executed on, this is the heuristic 1025 * we use to avoid doing cross calls. 1026 * 1027 * Also, for flushing from kswapd and also for clones, we 1028 * use cpu_vm_mask as the list of cpus to make run the TLB. 1029 * 1030 * 2) TLB context numbers are shared globally across all processors 1031 * in the system, this allows us to play several games to avoid 1032 * cross calls. 1033 * 1034 * One invariant is that when a cpu switches to a process, and 1035 * that processes tsk->active_mm->cpu_vm_mask does not have the 1036 * current cpu's bit set, that tlb context is flushed locally. 1037 * 1038 * If the address space is non-shared (ie. mm->count == 1) we avoid 1039 * cross calls when we want to flush the currently running process's 1040 * tlb state. This is done by clearing all cpu bits except the current 1041 * processor's in current->mm->cpu_vm_mask and performing the 1042 * flush locally only. This will force any subsequent cpus which run 1043 * this task to flush the context from the local tlb if the process 1044 * migrates to another cpu (again). 1045 * 1046 * 3) For shared address spaces (threads) and swapping we bite the 1047 * bullet for most cases and perform the cross call (but only to 1048 * the cpus listed in cpu_vm_mask). 1049 * 1050 * The performance gain from "optimizing" away the cross call for threads is 1051 * questionable (in theory the big win for threads is the massive sharing of 1052 * address space state across processors). 1053 */ 1054 1055 /* This currently is only used by the hugetlb arch pre-fault 1056 * hook on UltraSPARC-III+ and later when changing the pagesize 1057 * bits of the context register for an address space. 1058 */ 1059 void smp_flush_tlb_mm(struct mm_struct *mm) 1060 { 1061 u32 ctx = CTX_HWBITS(mm->context); 1062 int cpu = get_cpu(); 1063 1064 if (atomic_read(&mm->mm_users) == 1) { 1065 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1066 goto local_flush_and_out; 1067 } 1068 1069 smp_cross_call_masked(&xcall_flush_tlb_mm, 1070 ctx, 0, 0, 1071 mm_cpumask(mm)); 1072 1073 local_flush_and_out: 1074 __flush_tlb_mm(ctx, SECONDARY_CONTEXT); 1075 1076 put_cpu(); 1077 } 1078 1079 struct tlb_pending_info { 1080 unsigned long ctx; 1081 unsigned long nr; 1082 unsigned long *vaddrs; 1083 }; 1084 1085 static void tlb_pending_func(void *info) 1086 { 1087 struct tlb_pending_info *t = info; 1088 1089 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs); 1090 } 1091 1092 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) 1093 { 1094 u32 ctx = CTX_HWBITS(mm->context); 1095 struct tlb_pending_info info; 1096 int cpu = get_cpu(); 1097 1098 info.ctx = ctx; 1099 info.nr = nr; 1100 info.vaddrs = vaddrs; 1101 1102 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1103 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1104 else 1105 smp_call_function_many(mm_cpumask(mm), tlb_pending_func, 1106 &info, 1); 1107 1108 __flush_tlb_pending(ctx, nr, vaddrs); 1109 1110 put_cpu(); 1111 } 1112 1113 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr) 1114 { 1115 unsigned long context = CTX_HWBITS(mm->context); 1116 int cpu = get_cpu(); 1117 1118 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1119 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1120 else 1121 smp_cross_call_masked(&xcall_flush_tlb_page, 1122 context, vaddr, 0, 1123 mm_cpumask(mm)); 1124 __flush_tlb_page(context, vaddr); 1125 1126 put_cpu(); 1127 } 1128 1129 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) 1130 { 1131 start &= PAGE_MASK; 1132 end = PAGE_ALIGN(end); 1133 if (start != end) { 1134 smp_cross_call(&xcall_flush_tlb_kernel_range, 1135 0, start, end); 1136 1137 __flush_tlb_kernel_range(start, end); 1138 } 1139 } 1140 1141 /* CPU capture. */ 1142 /* #define CAPTURE_DEBUG */ 1143 extern unsigned long xcall_capture; 1144 1145 static atomic_t smp_capture_depth = ATOMIC_INIT(0); 1146 static atomic_t smp_capture_registry = ATOMIC_INIT(0); 1147 static unsigned long penguins_are_doing_time; 1148 1149 void smp_capture(void) 1150 { 1151 int result = atomic_add_ret(1, &smp_capture_depth); 1152 1153 if (result == 1) { 1154 int ncpus = num_online_cpus(); 1155 1156 #ifdef CAPTURE_DEBUG 1157 printk("CPU[%d]: Sending penguins to jail...", 1158 smp_processor_id()); 1159 #endif 1160 penguins_are_doing_time = 1; 1161 atomic_inc(&smp_capture_registry); 1162 smp_cross_call(&xcall_capture, 0, 0, 0); 1163 while (atomic_read(&smp_capture_registry) != ncpus) 1164 rmb(); 1165 #ifdef CAPTURE_DEBUG 1166 printk("done\n"); 1167 #endif 1168 } 1169 } 1170 1171 void smp_release(void) 1172 { 1173 if (atomic_dec_and_test(&smp_capture_depth)) { 1174 #ifdef CAPTURE_DEBUG 1175 printk("CPU[%d]: Giving pardon to " 1176 "imprisoned penguins\n", 1177 smp_processor_id()); 1178 #endif 1179 penguins_are_doing_time = 0; 1180 membar_safe("#StoreLoad"); 1181 atomic_dec(&smp_capture_registry); 1182 } 1183 } 1184 1185 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE 1186 * set, so they can service tlb flush xcalls... 1187 */ 1188 extern void prom_world(int); 1189 1190 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs) 1191 { 1192 clear_softint(1 << irq); 1193 1194 preempt_disable(); 1195 1196 __asm__ __volatile__("flushw"); 1197 prom_world(1); 1198 atomic_inc(&smp_capture_registry); 1199 membar_safe("#StoreLoad"); 1200 while (penguins_are_doing_time) 1201 rmb(); 1202 atomic_dec(&smp_capture_registry); 1203 prom_world(0); 1204 1205 preempt_enable(); 1206 } 1207 1208 /* /proc/profile writes can call this, don't __init it please. */ 1209 int setup_profiling_timer(unsigned int multiplier) 1210 { 1211 return -EINVAL; 1212 } 1213 1214 void __init smp_prepare_cpus(unsigned int max_cpus) 1215 { 1216 } 1217 1218 void smp_prepare_boot_cpu(void) 1219 { 1220 } 1221 1222 void __init smp_setup_processor_id(void) 1223 { 1224 if (tlb_type == spitfire) 1225 xcall_deliver_impl = spitfire_xcall_deliver; 1226 else if (tlb_type == cheetah || tlb_type == cheetah_plus) 1227 xcall_deliver_impl = cheetah_xcall_deliver; 1228 else 1229 xcall_deliver_impl = hypervisor_xcall_deliver; 1230 } 1231 1232 void smp_fill_in_sib_core_maps(void) 1233 { 1234 unsigned int i; 1235 1236 for_each_present_cpu(i) { 1237 unsigned int j; 1238 1239 cpumask_clear(&cpu_core_map[i]); 1240 if (cpu_data(i).core_id == 0) { 1241 cpumask_set_cpu(i, &cpu_core_map[i]); 1242 continue; 1243 } 1244 1245 for_each_present_cpu(j) { 1246 if (cpu_data(i).core_id == 1247 cpu_data(j).core_id) 1248 cpumask_set_cpu(j, &cpu_core_map[i]); 1249 } 1250 } 1251 1252 for_each_present_cpu(i) { 1253 unsigned int j; 1254 1255 cpumask_clear(&per_cpu(cpu_sibling_map, i)); 1256 if (cpu_data(i).proc_id == -1) { 1257 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i)); 1258 continue; 1259 } 1260 1261 for_each_present_cpu(j) { 1262 if (cpu_data(i).proc_id == 1263 cpu_data(j).proc_id) 1264 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i)); 1265 } 1266 } 1267 } 1268 1269 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle) 1270 { 1271 int ret = smp_boot_one_cpu(cpu, tidle); 1272 1273 if (!ret) { 1274 cpumask_set_cpu(cpu, &smp_commenced_mask); 1275 while (!cpu_online(cpu)) 1276 mb(); 1277 if (!cpu_online(cpu)) { 1278 ret = -ENODEV; 1279 } else { 1280 /* On SUN4V, writes to %tick and %stick are 1281 * not allowed. 1282 */ 1283 if (tlb_type != hypervisor) 1284 smp_synchronize_one_tick(cpu); 1285 } 1286 } 1287 return ret; 1288 } 1289 1290 #ifdef CONFIG_HOTPLUG_CPU 1291 void cpu_play_dead(void) 1292 { 1293 int cpu = smp_processor_id(); 1294 unsigned long pstate; 1295 1296 idle_task_exit(); 1297 1298 if (tlb_type == hypervisor) { 1299 struct trap_per_cpu *tb = &trap_block[cpu]; 1300 1301 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, 1302 tb->cpu_mondo_pa, 0); 1303 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, 1304 tb->dev_mondo_pa, 0); 1305 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, 1306 tb->resum_mondo_pa, 0); 1307 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, 1308 tb->nonresum_mondo_pa, 0); 1309 } 1310 1311 cpumask_clear_cpu(cpu, &smp_commenced_mask); 1312 membar_safe("#Sync"); 1313 1314 local_irq_disable(); 1315 1316 __asm__ __volatile__( 1317 "rdpr %%pstate, %0\n\t" 1318 "wrpr %0, %1, %%pstate" 1319 : "=r" (pstate) 1320 : "i" (PSTATE_IE)); 1321 1322 while (1) 1323 barrier(); 1324 } 1325 1326 int __cpu_disable(void) 1327 { 1328 int cpu = smp_processor_id(); 1329 cpuinfo_sparc *c; 1330 int i; 1331 1332 for_each_cpu(i, &cpu_core_map[cpu]) 1333 cpumask_clear_cpu(cpu, &cpu_core_map[i]); 1334 cpumask_clear(&cpu_core_map[cpu]); 1335 1336 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) 1337 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); 1338 cpumask_clear(&per_cpu(cpu_sibling_map, cpu)); 1339 1340 c = &cpu_data(cpu); 1341 1342 c->core_id = 0; 1343 c->proc_id = -1; 1344 1345 smp_wmb(); 1346 1347 /* Make sure no interrupts point to this cpu. */ 1348 fixup_irqs(); 1349 1350 local_irq_enable(); 1351 mdelay(1); 1352 local_irq_disable(); 1353 1354 set_cpu_online(cpu, false); 1355 1356 cpu_map_rebuild(); 1357 1358 return 0; 1359 } 1360 1361 void __cpu_die(unsigned int cpu) 1362 { 1363 int i; 1364 1365 for (i = 0; i < 100; i++) { 1366 smp_rmb(); 1367 if (!cpumask_test_cpu(cpu, &smp_commenced_mask)) 1368 break; 1369 msleep(100); 1370 } 1371 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) { 1372 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 1373 } else { 1374 #if defined(CONFIG_SUN_LDOMS) 1375 unsigned long hv_err; 1376 int limit = 100; 1377 1378 do { 1379 hv_err = sun4v_cpu_stop(cpu); 1380 if (hv_err == HV_EOK) { 1381 set_cpu_present(cpu, false); 1382 break; 1383 } 1384 } while (--limit > 0); 1385 if (limit <= 0) { 1386 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", 1387 hv_err); 1388 } 1389 #endif 1390 } 1391 } 1392 #endif 1393 1394 void __init smp_cpus_done(unsigned int max_cpus) 1395 { 1396 pcr_arch_init(); 1397 } 1398 1399 void smp_send_reschedule(int cpu) 1400 { 1401 xcall_deliver((u64) &xcall_receive_signal, 0, 0, 1402 cpumask_of(cpu)); 1403 } 1404 1405 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs) 1406 { 1407 clear_softint(1 << irq); 1408 scheduler_ipi(); 1409 } 1410 1411 /* This is a nop because we capture all other cpus 1412 * anyways when making the PROM active. 1413 */ 1414 void smp_send_stop(void) 1415 { 1416 } 1417 1418 /** 1419 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu 1420 * @cpu: cpu to allocate for 1421 * @size: size allocation in bytes 1422 * @align: alignment 1423 * 1424 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper 1425 * does the right thing for NUMA regardless of the current 1426 * configuration. 1427 * 1428 * RETURNS: 1429 * Pointer to the allocated area on success, NULL on failure. 1430 */ 1431 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, 1432 size_t align) 1433 { 1434 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 1435 #ifdef CONFIG_NEED_MULTIPLE_NODES 1436 int node = cpu_to_node(cpu); 1437 void *ptr; 1438 1439 if (!node_online(node) || !NODE_DATA(node)) { 1440 ptr = __alloc_bootmem(size, align, goal); 1441 pr_info("cpu %d has no node %d or node-local memory\n", 1442 cpu, node); 1443 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", 1444 cpu, size, __pa(ptr)); 1445 } else { 1446 ptr = __alloc_bootmem_node(NODE_DATA(node), 1447 size, align, goal); 1448 pr_debug("per cpu data for cpu%d %lu bytes on node%d at " 1449 "%016lx\n", cpu, size, node, __pa(ptr)); 1450 } 1451 return ptr; 1452 #else 1453 return __alloc_bootmem(size, align, goal); 1454 #endif 1455 } 1456 1457 static void __init pcpu_free_bootmem(void *ptr, size_t size) 1458 { 1459 free_bootmem(__pa(ptr), size); 1460 } 1461 1462 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 1463 { 1464 if (cpu_to_node(from) == cpu_to_node(to)) 1465 return LOCAL_DISTANCE; 1466 else 1467 return REMOTE_DISTANCE; 1468 } 1469 1470 static void __init pcpu_populate_pte(unsigned long addr) 1471 { 1472 pgd_t *pgd = pgd_offset_k(addr); 1473 pud_t *pud; 1474 pmd_t *pmd; 1475 1476 pud = pud_offset(pgd, addr); 1477 if (pud_none(*pud)) { 1478 pmd_t *new; 1479 1480 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1481 pud_populate(&init_mm, pud, new); 1482 } 1483 1484 pmd = pmd_offset(pud, addr); 1485 if (!pmd_present(*pmd)) { 1486 pte_t *new; 1487 1488 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1489 pmd_populate_kernel(&init_mm, pmd, new); 1490 } 1491 } 1492 1493 void __init setup_per_cpu_areas(void) 1494 { 1495 unsigned long delta; 1496 unsigned int cpu; 1497 int rc = -EINVAL; 1498 1499 if (pcpu_chosen_fc != PCPU_FC_PAGE) { 1500 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1501 PERCPU_DYNAMIC_RESERVE, 4 << 20, 1502 pcpu_cpu_distance, 1503 pcpu_alloc_bootmem, 1504 pcpu_free_bootmem); 1505 if (rc) 1506 pr_warning("PERCPU: %s allocator failed (%d), " 1507 "falling back to page size\n", 1508 pcpu_fc_names[pcpu_chosen_fc], rc); 1509 } 1510 if (rc < 0) 1511 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, 1512 pcpu_alloc_bootmem, 1513 pcpu_free_bootmem, 1514 pcpu_populate_pte); 1515 if (rc < 0) 1516 panic("cannot initialize percpu area (err=%d)", rc); 1517 1518 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1519 for_each_possible_cpu(cpu) 1520 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; 1521 1522 /* Setup %g5 for the boot cpu. */ 1523 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); 1524 1525 of_fill_in_cpu_data(); 1526 if (tlb_type == hypervisor) 1527 mdesc_fill_in_cpu_data(cpu_all_mask); 1528 } 1529