1 // SPDX-License-Identifier: GPL-2.0 2 /* smp.c: Sparc64 SMP support. 3 * 4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 5 */ 6 7 #include <linux/export.h> 8 #include <linux/kernel.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/hotplug.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/threads.h> 14 #include <linux/smp.h> 15 #include <linux/interrupt.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/spinlock.h> 20 #include <linux/fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/cache.h> 23 #include <linux/jiffies.h> 24 #include <linux/profile.h> 25 #include <linux/memblock.h> 26 #include <linux/vmalloc.h> 27 #include <linux/ftrace.h> 28 #include <linux/cpu.h> 29 #include <linux/slab.h> 30 #include <linux/kgdb.h> 31 32 #include <asm/head.h> 33 #include <asm/ptrace.h> 34 #include <linux/atomic.h> 35 #include <asm/tlbflush.h> 36 #include <asm/mmu_context.h> 37 #include <asm/cpudata.h> 38 #include <asm/hvtramp.h> 39 #include <asm/io.h> 40 #include <asm/timer.h> 41 #include <asm/setup.h> 42 43 #include <asm/irq.h> 44 #include <asm/irq_regs.h> 45 #include <asm/page.h> 46 #include <asm/oplib.h> 47 #include <linux/uaccess.h> 48 #include <asm/starfire.h> 49 #include <asm/tlb.h> 50 #include <asm/pgalloc.h> 51 #include <asm/sections.h> 52 #include <asm/prom.h> 53 #include <asm/mdesc.h> 54 #include <asm/ldc.h> 55 #include <asm/hypervisor.h> 56 #include <asm/pcr.h> 57 58 #include "cpumap.h" 59 #include "kernel.h" 60 61 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; 62 cpumask_t cpu_core_map[NR_CPUS] __read_mostly = 63 { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; 64 65 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = { 66 [0 ... NR_CPUS-1] = CPU_MASK_NONE }; 67 68 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = { 69 [0 ... NR_CPUS - 1] = CPU_MASK_NONE }; 70 71 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 72 EXPORT_SYMBOL(cpu_core_map); 73 EXPORT_SYMBOL(cpu_core_sib_map); 74 EXPORT_SYMBOL(cpu_core_sib_cache_map); 75 76 static cpumask_t smp_commenced_mask; 77 78 static DEFINE_PER_CPU(bool, poke); 79 static bool cpu_poke; 80 81 void smp_info(struct seq_file *m) 82 { 83 int i; 84 85 seq_printf(m, "State:\n"); 86 for_each_online_cpu(i) 87 seq_printf(m, "CPU%d:\t\tonline\n", i); 88 } 89 90 void smp_bogo(struct seq_file *m) 91 { 92 int i; 93 94 for_each_online_cpu(i) 95 seq_printf(m, 96 "Cpu%dClkTck\t: %016lx\n", 97 i, cpu_data(i).clock_tick); 98 } 99 100 extern void setup_sparc64_timer(void); 101 102 static volatile unsigned long callin_flag = 0; 103 104 void smp_callin(void) 105 { 106 int cpuid = hard_smp_processor_id(); 107 108 __local_per_cpu_offset = __per_cpu_offset(cpuid); 109 110 if (tlb_type == hypervisor) 111 sun4v_ktsb_register(); 112 113 __flush_tlb_all(); 114 115 setup_sparc64_timer(); 116 117 if (cheetah_pcache_forced_on) 118 cheetah_enable_pcache(); 119 120 callin_flag = 1; 121 __asm__ __volatile__("membar #Sync\n\t" 122 "flush %%g6" : : : "memory"); 123 124 /* Clear this or we will die instantly when we 125 * schedule back to this idler... 126 */ 127 current_thread_info()->new_child = 0; 128 129 /* Attach to the address space of init_task. */ 130 mmgrab(&init_mm); 131 current->active_mm = &init_mm; 132 133 /* inform the notifiers about the new cpu */ 134 notify_cpu_starting(cpuid); 135 136 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) 137 rmb(); 138 139 set_cpu_online(cpuid, true); 140 141 local_irq_enable(); 142 143 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 144 } 145 146 void cpu_panic(void) 147 { 148 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); 149 panic("SMP bolixed\n"); 150 } 151 152 /* This tick register synchronization scheme is taken entirely from 153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. 154 * 155 * The only change I've made is to rework it so that the master 156 * initiates the synchonization instead of the slave. -DaveM 157 */ 158 159 #define MASTER 0 160 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) 161 162 #define NUM_ROUNDS 64 /* magic value */ 163 #define NUM_ITERS 5 /* likewise */ 164 165 static DEFINE_RAW_SPINLOCK(itc_sync_lock); 166 static unsigned long go[SLAVE + 1]; 167 168 #define DEBUG_TICK_SYNC 0 169 170 static inline long get_delta (long *rt, long *master) 171 { 172 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 173 unsigned long tcenter, t0, t1, tm; 174 unsigned long i; 175 176 for (i = 0; i < NUM_ITERS; i++) { 177 t0 = tick_ops->get_tick(); 178 go[MASTER] = 1; 179 membar_safe("#StoreLoad"); 180 while (!(tm = go[SLAVE])) 181 rmb(); 182 go[SLAVE] = 0; 183 wmb(); 184 t1 = tick_ops->get_tick(); 185 186 if (t1 - t0 < best_t1 - best_t0) 187 best_t0 = t0, best_t1 = t1, best_tm = tm; 188 } 189 190 *rt = best_t1 - best_t0; 191 *master = best_tm - best_t0; 192 193 /* average best_t0 and best_t1 without overflow: */ 194 tcenter = (best_t0/2 + best_t1/2); 195 if (best_t0 % 2 + best_t1 % 2 == 2) 196 tcenter++; 197 return tcenter - best_tm; 198 } 199 200 void smp_synchronize_tick_client(void) 201 { 202 long i, delta, adj, adjust_latency = 0, done = 0; 203 unsigned long flags, rt, master_time_stamp; 204 #if DEBUG_TICK_SYNC 205 struct { 206 long rt; /* roundtrip time */ 207 long master; /* master's timestamp */ 208 long diff; /* difference between midpoint and master's timestamp */ 209 long lat; /* estimate of itc adjustment latency */ 210 } t[NUM_ROUNDS]; 211 #endif 212 213 go[MASTER] = 1; 214 215 while (go[MASTER]) 216 rmb(); 217 218 local_irq_save(flags); 219 { 220 for (i = 0; i < NUM_ROUNDS; i++) { 221 delta = get_delta(&rt, &master_time_stamp); 222 if (delta == 0) 223 done = 1; /* let's lock on to this... */ 224 225 if (!done) { 226 if (i > 0) { 227 adjust_latency += -delta; 228 adj = -delta + adjust_latency/4; 229 } else 230 adj = -delta; 231 232 tick_ops->add_tick(adj); 233 } 234 #if DEBUG_TICK_SYNC 235 t[i].rt = rt; 236 t[i].master = master_time_stamp; 237 t[i].diff = delta; 238 t[i].lat = adjust_latency/4; 239 #endif 240 } 241 } 242 local_irq_restore(flags); 243 244 #if DEBUG_TICK_SYNC 245 for (i = 0; i < NUM_ROUNDS; i++) 246 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 247 t[i].rt, t[i].master, t[i].diff, t[i].lat); 248 #endif 249 250 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " 251 "(last diff %ld cycles, maxerr %lu cycles)\n", 252 smp_processor_id(), delta, rt); 253 } 254 255 static void smp_start_sync_tick_client(int cpu); 256 257 static void smp_synchronize_one_tick(int cpu) 258 { 259 unsigned long flags, i; 260 261 go[MASTER] = 0; 262 263 smp_start_sync_tick_client(cpu); 264 265 /* wait for client to be ready */ 266 while (!go[MASTER]) 267 rmb(); 268 269 /* now let the client proceed into his loop */ 270 go[MASTER] = 0; 271 membar_safe("#StoreLoad"); 272 273 raw_spin_lock_irqsave(&itc_sync_lock, flags); 274 { 275 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { 276 while (!go[MASTER]) 277 rmb(); 278 go[MASTER] = 0; 279 wmb(); 280 go[SLAVE] = tick_ops->get_tick(); 281 membar_safe("#StoreLoad"); 282 } 283 } 284 raw_spin_unlock_irqrestore(&itc_sync_lock, flags); 285 } 286 287 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 288 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, 289 void **descrp) 290 { 291 extern unsigned long sparc64_ttable_tl0; 292 extern unsigned long kern_locked_tte_data; 293 struct hvtramp_descr *hdesc; 294 unsigned long trampoline_ra; 295 struct trap_per_cpu *tb; 296 u64 tte_vaddr, tte_data; 297 unsigned long hv_err; 298 int i; 299 300 hdesc = kzalloc(sizeof(*hdesc) + 301 (sizeof(struct hvtramp_mapping) * 302 num_kernel_image_mappings - 1), 303 GFP_KERNEL); 304 if (!hdesc) { 305 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " 306 "hvtramp_descr.\n"); 307 return; 308 } 309 *descrp = hdesc; 310 311 hdesc->cpu = cpu; 312 hdesc->num_mappings = num_kernel_image_mappings; 313 314 tb = &trap_block[cpu]; 315 316 hdesc->fault_info_va = (unsigned long) &tb->fault_info; 317 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); 318 319 hdesc->thread_reg = thread_reg; 320 321 tte_vaddr = (unsigned long) KERNBASE; 322 tte_data = kern_locked_tte_data; 323 324 for (i = 0; i < hdesc->num_mappings; i++) { 325 hdesc->maps[i].vaddr = tte_vaddr; 326 hdesc->maps[i].tte = tte_data; 327 tte_vaddr += 0x400000; 328 tte_data += 0x400000; 329 } 330 331 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); 332 333 hv_err = sun4v_cpu_start(cpu, trampoline_ra, 334 kimage_addr_to_ra(&sparc64_ttable_tl0), 335 __pa(hdesc)); 336 if (hv_err) 337 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " 338 "gives error %lu\n", hv_err); 339 } 340 #endif 341 342 extern unsigned long sparc64_cpu_startup; 343 344 /* The OBP cpu startup callback truncates the 3rd arg cookie to 345 * 32-bits (I think) so to be safe we have it read the pointer 346 * contained here so we work on >4GB machines. -DaveM 347 */ 348 static struct thread_info *cpu_new_thread = NULL; 349 350 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle) 351 { 352 unsigned long entry = 353 (unsigned long)(&sparc64_cpu_startup); 354 unsigned long cookie = 355 (unsigned long)(&cpu_new_thread); 356 void *descr = NULL; 357 int timeout, ret; 358 359 callin_flag = 0; 360 cpu_new_thread = task_thread_info(idle); 361 362 if (tlb_type == hypervisor) { 363 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 364 if (ldom_domaining_enabled) 365 ldom_startcpu_cpuid(cpu, 366 (unsigned long) cpu_new_thread, 367 &descr); 368 else 369 #endif 370 prom_startcpu_cpuid(cpu, entry, cookie); 371 } else { 372 struct device_node *dp = of_find_node_by_cpuid(cpu); 373 374 prom_startcpu(dp->phandle, entry, cookie); 375 } 376 377 for (timeout = 0; timeout < 50000; timeout++) { 378 if (callin_flag) 379 break; 380 udelay(100); 381 } 382 383 if (callin_flag) { 384 ret = 0; 385 } else { 386 printk("Processor %d is stuck.\n", cpu); 387 ret = -ENODEV; 388 } 389 cpu_new_thread = NULL; 390 391 kfree(descr); 392 393 return ret; 394 } 395 396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) 397 { 398 u64 result, target; 399 int stuck, tmp; 400 401 if (this_is_starfire) { 402 /* map to real upaid */ 403 cpu = (((cpu & 0x3c) << 1) | 404 ((cpu & 0x40) >> 4) | 405 (cpu & 0x3)); 406 } 407 408 target = (cpu << 14) | 0x70; 409 again: 410 /* Ok, this is the real Spitfire Errata #54. 411 * One must read back from a UDB internal register 412 * after writes to the UDB interrupt dispatch, but 413 * before the membar Sync for that write. 414 * So we use the high UDB control register (ASI 0x7f, 415 * ADDR 0x20) for the dummy read. -DaveM 416 */ 417 tmp = 0x40; 418 __asm__ __volatile__( 419 "wrpr %1, %2, %%pstate\n\t" 420 "stxa %4, [%0] %3\n\t" 421 "stxa %5, [%0+%8] %3\n\t" 422 "add %0, %8, %0\n\t" 423 "stxa %6, [%0+%8] %3\n\t" 424 "membar #Sync\n\t" 425 "stxa %%g0, [%7] %3\n\t" 426 "membar #Sync\n\t" 427 "mov 0x20, %%g1\n\t" 428 "ldxa [%%g1] 0x7f, %%g0\n\t" 429 "membar #Sync" 430 : "=r" (tmp) 431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), 432 "r" (data0), "r" (data1), "r" (data2), "r" (target), 433 "r" (0x10), "0" (tmp) 434 : "g1"); 435 436 /* NOTE: PSTATE_IE is still clear. */ 437 stuck = 100000; 438 do { 439 __asm__ __volatile__("ldxa [%%g0] %1, %0" 440 : "=r" (result) 441 : "i" (ASI_INTR_DISPATCH_STAT)); 442 if (result == 0) { 443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 444 : : "r" (pstate)); 445 return; 446 } 447 stuck -= 1; 448 if (stuck == 0) 449 break; 450 } while (result & 0x1); 451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 452 : : "r" (pstate)); 453 if (stuck == 0) { 454 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 455 smp_processor_id(), result); 456 } else { 457 udelay(2); 458 goto again; 459 } 460 } 461 462 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) 463 { 464 u64 *mondo, data0, data1, data2; 465 u16 *cpu_list; 466 u64 pstate; 467 int i; 468 469 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 470 cpu_list = __va(tb->cpu_list_pa); 471 mondo = __va(tb->cpu_mondo_block_pa); 472 data0 = mondo[0]; 473 data1 = mondo[1]; 474 data2 = mondo[2]; 475 for (i = 0; i < cnt; i++) 476 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); 477 } 478 479 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt 480 * packet, but we have no use for that. However we do take advantage of 481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). 482 */ 483 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) 484 { 485 int nack_busy_id, is_jbus, need_more; 486 u64 *mondo, pstate, ver, busy_mask; 487 u16 *cpu_list; 488 489 cpu_list = __va(tb->cpu_list_pa); 490 mondo = __va(tb->cpu_mondo_block_pa); 491 492 /* Unfortunately, someone at Sun had the brilliant idea to make the 493 * busy/nack fields hard-coded by ITID number for this Ultra-III 494 * derivative processor. 495 */ 496 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 497 is_jbus = ((ver >> 32) == __JALAPENO_ID || 498 (ver >> 32) == __SERRANO_ID); 499 500 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 501 502 retry: 503 need_more = 0; 504 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" 505 : : "r" (pstate), "i" (PSTATE_IE)); 506 507 /* Setup the dispatch data registers. */ 508 __asm__ __volatile__("stxa %0, [%3] %6\n\t" 509 "stxa %1, [%4] %6\n\t" 510 "stxa %2, [%5] %6\n\t" 511 "membar #Sync\n\t" 512 : /* no outputs */ 513 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), 514 "r" (0x40), "r" (0x50), "r" (0x60), 515 "i" (ASI_INTR_W)); 516 517 nack_busy_id = 0; 518 busy_mask = 0; 519 { 520 int i; 521 522 for (i = 0; i < cnt; i++) { 523 u64 target, nr; 524 525 nr = cpu_list[i]; 526 if (nr == 0xffff) 527 continue; 528 529 target = (nr << 14) | 0x70; 530 if (is_jbus) { 531 busy_mask |= (0x1UL << (nr * 2)); 532 } else { 533 target |= (nack_busy_id << 24); 534 busy_mask |= (0x1UL << 535 (nack_busy_id * 2)); 536 } 537 __asm__ __volatile__( 538 "stxa %%g0, [%0] %1\n\t" 539 "membar #Sync\n\t" 540 : /* no outputs */ 541 : "r" (target), "i" (ASI_INTR_W)); 542 nack_busy_id++; 543 if (nack_busy_id == 32) { 544 need_more = 1; 545 break; 546 } 547 } 548 } 549 550 /* Now, poll for completion. */ 551 { 552 u64 dispatch_stat, nack_mask; 553 long stuck; 554 555 stuck = 100000 * nack_busy_id; 556 nack_mask = busy_mask << 1; 557 do { 558 __asm__ __volatile__("ldxa [%%g0] %1, %0" 559 : "=r" (dispatch_stat) 560 : "i" (ASI_INTR_DISPATCH_STAT)); 561 if (!(dispatch_stat & (busy_mask | nack_mask))) { 562 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 563 : : "r" (pstate)); 564 if (unlikely(need_more)) { 565 int i, this_cnt = 0; 566 for (i = 0; i < cnt; i++) { 567 if (cpu_list[i] == 0xffff) 568 continue; 569 cpu_list[i] = 0xffff; 570 this_cnt++; 571 if (this_cnt == 32) 572 break; 573 } 574 goto retry; 575 } 576 return; 577 } 578 if (!--stuck) 579 break; 580 } while (dispatch_stat & busy_mask); 581 582 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 583 : : "r" (pstate)); 584 585 if (dispatch_stat & busy_mask) { 586 /* Busy bits will not clear, continue instead 587 * of freezing up on this cpu. 588 */ 589 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 590 smp_processor_id(), dispatch_stat); 591 } else { 592 int i, this_busy_nack = 0; 593 594 /* Delay some random time with interrupts enabled 595 * to prevent deadlock. 596 */ 597 udelay(2 * nack_busy_id); 598 599 /* Clear out the mask bits for cpus which did not 600 * NACK us. 601 */ 602 for (i = 0; i < cnt; i++) { 603 u64 check_mask, nr; 604 605 nr = cpu_list[i]; 606 if (nr == 0xffff) 607 continue; 608 609 if (is_jbus) 610 check_mask = (0x2UL << (2*nr)); 611 else 612 check_mask = (0x2UL << 613 this_busy_nack); 614 if ((dispatch_stat & check_mask) == 0) 615 cpu_list[i] = 0xffff; 616 this_busy_nack += 2; 617 if (this_busy_nack == 64) 618 break; 619 } 620 621 goto retry; 622 } 623 } 624 } 625 626 #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid]) 627 #define MONDO_USEC_WAIT_MIN 2 628 #define MONDO_USEC_WAIT_MAX 100 629 #define MONDO_RETRY_LIMIT 500000 630 631 /* Multi-cpu list version. 632 * 633 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'. 634 * Sometimes not all cpus receive the mondo, requiring us to re-send 635 * the mondo until all cpus have received, or cpus are truly stuck 636 * unable to receive mondo, and we timeout. 637 * Occasionally a target cpu strand is borrowed briefly by hypervisor to 638 * perform guest service, such as PCIe error handling. Consider the 639 * service time, 1 second overall wait is reasonable for 1 cpu. 640 * Here two in-between mondo check wait time are defined: 2 usec for 641 * single cpu quick turn around and up to 100usec for large cpu count. 642 * Deliver mondo to large number of cpus could take longer, we adjusts 643 * the retry count as long as target cpus are making forward progress. 644 */ 645 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) 646 { 647 int this_cpu, tot_cpus, prev_sent, i, rem; 648 int usec_wait, retries, tot_retries; 649 u16 first_cpu = 0xffff; 650 unsigned long xc_rcvd = 0; 651 unsigned long status; 652 int ecpuerror_id = 0; 653 int enocpu_id = 0; 654 u16 *cpu_list; 655 u16 cpu; 656 657 this_cpu = smp_processor_id(); 658 cpu_list = __va(tb->cpu_list_pa); 659 usec_wait = cnt * MONDO_USEC_WAIT_MIN; 660 if (usec_wait > MONDO_USEC_WAIT_MAX) 661 usec_wait = MONDO_USEC_WAIT_MAX; 662 retries = tot_retries = 0; 663 tot_cpus = cnt; 664 prev_sent = 0; 665 666 do { 667 int n_sent, mondo_delivered, target_cpu_busy; 668 669 status = sun4v_cpu_mondo_send(cnt, 670 tb->cpu_list_pa, 671 tb->cpu_mondo_block_pa); 672 673 /* HV_EOK means all cpus received the xcall, we're done. */ 674 if (likely(status == HV_EOK)) 675 goto xcall_done; 676 677 /* If not these non-fatal errors, panic */ 678 if (unlikely((status != HV_EWOULDBLOCK) && 679 (status != HV_ECPUERROR) && 680 (status != HV_ENOCPU))) 681 goto fatal_errors; 682 683 /* First, see if we made any forward progress. 684 * 685 * Go through the cpu_list, count the target cpus that have 686 * received our mondo (n_sent), and those that did not (rem). 687 * Re-pack cpu_list with the cpus remain to be retried in the 688 * front - this simplifies tracking the truly stalled cpus. 689 * 690 * The hypervisor indicates successful sends by setting 691 * cpu list entries to the value 0xffff. 692 * 693 * EWOULDBLOCK means some target cpus did not receive the 694 * mondo and retry usually helps. 695 * 696 * ECPUERROR means at least one target cpu is in error state, 697 * it's usually safe to skip the faulty cpu and retry. 698 * 699 * ENOCPU means one of the target cpu doesn't belong to the 700 * domain, perhaps offlined which is unexpected, but not 701 * fatal and it's okay to skip the offlined cpu. 702 */ 703 rem = 0; 704 n_sent = 0; 705 for (i = 0; i < cnt; i++) { 706 cpu = cpu_list[i]; 707 if (likely(cpu == 0xffff)) { 708 n_sent++; 709 } else if ((status == HV_ECPUERROR) && 710 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) { 711 ecpuerror_id = cpu + 1; 712 } else if (status == HV_ENOCPU && !cpu_online(cpu)) { 713 enocpu_id = cpu + 1; 714 } else { 715 cpu_list[rem++] = cpu; 716 } 717 } 718 719 /* No cpu remained, we're done. */ 720 if (rem == 0) 721 break; 722 723 /* Otherwise, update the cpu count for retry. */ 724 cnt = rem; 725 726 /* Record the overall number of mondos received by the 727 * first of the remaining cpus. 728 */ 729 if (first_cpu != cpu_list[0]) { 730 first_cpu = cpu_list[0]; 731 xc_rcvd = CPU_MONDO_COUNTER(first_cpu); 732 } 733 734 /* Was any mondo delivered successfully? */ 735 mondo_delivered = (n_sent > prev_sent); 736 prev_sent = n_sent; 737 738 /* or, was any target cpu busy processing other mondos? */ 739 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu)); 740 xc_rcvd = CPU_MONDO_COUNTER(first_cpu); 741 742 /* Retry count is for no progress. If we're making progress, 743 * reset the retry count. 744 */ 745 if (likely(mondo_delivered || target_cpu_busy)) { 746 tot_retries += retries; 747 retries = 0; 748 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) { 749 goto fatal_mondo_timeout; 750 } 751 752 /* Delay a little bit to let other cpus catch up on 753 * their cpu mondo queue work. 754 */ 755 if (!mondo_delivered) 756 udelay(usec_wait); 757 758 retries++; 759 } while (1); 760 761 xcall_done: 762 if (unlikely(ecpuerror_id > 0)) { 763 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n", 764 this_cpu, ecpuerror_id - 1); 765 } else if (unlikely(enocpu_id > 0)) { 766 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n", 767 this_cpu, enocpu_id - 1); 768 } 769 return; 770 771 fatal_errors: 772 /* fatal errors include bad alignment, etc */ 773 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n", 774 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa); 775 panic("Unexpected SUN4V mondo error %lu\n", status); 776 777 fatal_mondo_timeout: 778 /* some cpus being non-responsive to the cpu mondo */ 779 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n", 780 this_cpu, first_cpu, (tot_retries + retries), tot_cpus); 781 panic("SUN4V mondo timeout panic\n"); 782 } 783 784 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); 785 786 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) 787 { 788 struct trap_per_cpu *tb; 789 int this_cpu, i, cnt; 790 unsigned long flags; 791 u16 *cpu_list; 792 u64 *mondo; 793 794 /* We have to do this whole thing with interrupts fully disabled. 795 * Otherwise if we send an xcall from interrupt context it will 796 * corrupt both our mondo block and cpu list state. 797 * 798 * One consequence of this is that we cannot use timeout mechanisms 799 * that depend upon interrupts being delivered locally. So, for 800 * example, we cannot sample jiffies and expect it to advance. 801 * 802 * Fortunately, udelay() uses %stick/%tick so we can use that. 803 */ 804 local_irq_save(flags); 805 806 this_cpu = smp_processor_id(); 807 tb = &trap_block[this_cpu]; 808 809 mondo = __va(tb->cpu_mondo_block_pa); 810 mondo[0] = data0; 811 mondo[1] = data1; 812 mondo[2] = data2; 813 wmb(); 814 815 cpu_list = __va(tb->cpu_list_pa); 816 817 /* Setup the initial cpu list. */ 818 cnt = 0; 819 for_each_cpu(i, mask) { 820 if (i == this_cpu || !cpu_online(i)) 821 continue; 822 cpu_list[cnt++] = i; 823 } 824 825 if (cnt) 826 xcall_deliver_impl(tb, cnt); 827 828 local_irq_restore(flags); 829 } 830 831 /* Send cross call to all processors mentioned in MASK_P 832 * except self. Really, there are only two cases currently, 833 * "cpu_online_mask" and "mm_cpumask(mm)". 834 */ 835 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) 836 { 837 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); 838 839 xcall_deliver(data0, data1, data2, mask); 840 } 841 842 /* Send cross call to all processors except self. */ 843 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) 844 { 845 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask); 846 } 847 848 extern unsigned long xcall_sync_tick; 849 850 static void smp_start_sync_tick_client(int cpu) 851 { 852 xcall_deliver((u64) &xcall_sync_tick, 0, 0, 853 cpumask_of(cpu)); 854 } 855 856 extern unsigned long xcall_call_function; 857 858 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 859 { 860 xcall_deliver((u64) &xcall_call_function, 0, 0, mask); 861 } 862 863 extern unsigned long xcall_call_function_single; 864 865 void arch_send_call_function_single_ipi(int cpu) 866 { 867 xcall_deliver((u64) &xcall_call_function_single, 0, 0, 868 cpumask_of(cpu)); 869 } 870 871 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs) 872 { 873 clear_softint(1 << irq); 874 irq_enter(); 875 generic_smp_call_function_interrupt(); 876 irq_exit(); 877 } 878 879 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs) 880 { 881 clear_softint(1 << irq); 882 irq_enter(); 883 generic_smp_call_function_single_interrupt(); 884 irq_exit(); 885 } 886 887 static void tsb_sync(void *info) 888 { 889 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; 890 struct mm_struct *mm = info; 891 892 /* It is not valid to test "current->active_mm == mm" here. 893 * 894 * The value of "current" is not changed atomically with 895 * switch_mm(). But that's OK, we just need to check the 896 * current cpu's trap block PGD physical address. 897 */ 898 if (tp->pgd_paddr == __pa(mm->pgd)) 899 tsb_context_switch(mm); 900 } 901 902 void smp_tsb_sync(struct mm_struct *mm) 903 { 904 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1); 905 } 906 907 extern unsigned long xcall_flush_tlb_mm; 908 extern unsigned long xcall_flush_tlb_page; 909 extern unsigned long xcall_flush_tlb_kernel_range; 910 extern unsigned long xcall_fetch_glob_regs; 911 extern unsigned long xcall_fetch_glob_pmu; 912 extern unsigned long xcall_fetch_glob_pmu_n4; 913 extern unsigned long xcall_receive_signal; 914 extern unsigned long xcall_new_mmu_context_version; 915 #ifdef CONFIG_KGDB 916 extern unsigned long xcall_kgdb_capture; 917 #endif 918 919 #ifdef DCACHE_ALIASING_POSSIBLE 920 extern unsigned long xcall_flush_dcache_page_cheetah; 921 #endif 922 extern unsigned long xcall_flush_dcache_page_spitfire; 923 924 static inline void __local_flush_dcache_page(struct page *page) 925 { 926 #ifdef DCACHE_ALIASING_POSSIBLE 927 __flush_dcache_page(page_address(page), 928 ((tlb_type == spitfire) && 929 page_mapping_file(page) != NULL)); 930 #else 931 if (page_mapping_file(page) != NULL && 932 tlb_type == spitfire) 933 __flush_icache_page(__pa(page_address(page))); 934 #endif 935 } 936 937 void smp_flush_dcache_page_impl(struct page *page, int cpu) 938 { 939 int this_cpu; 940 941 if (tlb_type == hypervisor) 942 return; 943 944 #ifdef CONFIG_DEBUG_DCFLUSH 945 atomic_inc(&dcpage_flushes); 946 #endif 947 948 this_cpu = get_cpu(); 949 950 if (cpu == this_cpu) { 951 __local_flush_dcache_page(page); 952 } else if (cpu_online(cpu)) { 953 void *pg_addr = page_address(page); 954 u64 data0 = 0; 955 956 if (tlb_type == spitfire) { 957 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 958 if (page_mapping_file(page) != NULL) 959 data0 |= ((u64)1 << 32); 960 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 961 #ifdef DCACHE_ALIASING_POSSIBLE 962 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 963 #endif 964 } 965 if (data0) { 966 xcall_deliver(data0, __pa(pg_addr), 967 (u64) pg_addr, cpumask_of(cpu)); 968 #ifdef CONFIG_DEBUG_DCFLUSH 969 atomic_inc(&dcpage_flushes_xcall); 970 #endif 971 } 972 } 973 974 put_cpu(); 975 } 976 977 void flush_dcache_page_all(struct mm_struct *mm, struct page *page) 978 { 979 void *pg_addr; 980 u64 data0; 981 982 if (tlb_type == hypervisor) 983 return; 984 985 preempt_disable(); 986 987 #ifdef CONFIG_DEBUG_DCFLUSH 988 atomic_inc(&dcpage_flushes); 989 #endif 990 data0 = 0; 991 pg_addr = page_address(page); 992 if (tlb_type == spitfire) { 993 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 994 if (page_mapping_file(page) != NULL) 995 data0 |= ((u64)1 << 32); 996 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 997 #ifdef DCACHE_ALIASING_POSSIBLE 998 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 999 #endif 1000 } 1001 if (data0) { 1002 xcall_deliver(data0, __pa(pg_addr), 1003 (u64) pg_addr, cpu_online_mask); 1004 #ifdef CONFIG_DEBUG_DCFLUSH 1005 atomic_inc(&dcpage_flushes_xcall); 1006 #endif 1007 } 1008 __local_flush_dcache_page(page); 1009 1010 preempt_enable(); 1011 } 1012 1013 #ifdef CONFIG_KGDB 1014 void kgdb_roundup_cpus(void) 1015 { 1016 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); 1017 } 1018 #endif 1019 1020 void smp_fetch_global_regs(void) 1021 { 1022 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); 1023 } 1024 1025 void smp_fetch_global_pmu(void) 1026 { 1027 if (tlb_type == hypervisor && 1028 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 1029 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0); 1030 else 1031 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0); 1032 } 1033 1034 /* We know that the window frames of the user have been flushed 1035 * to the stack before we get here because all callers of us 1036 * are flush_tlb_*() routines, and these run after flush_cache_*() 1037 * which performs the flushw. 1038 * 1039 * mm->cpu_vm_mask is a bit mask of which cpus an address 1040 * space has (potentially) executed on, this is the heuristic 1041 * we use to limit cross calls. 1042 */ 1043 1044 /* This currently is only used by the hugetlb arch pre-fault 1045 * hook on UltraSPARC-III+ and later when changing the pagesize 1046 * bits of the context register for an address space. 1047 */ 1048 void smp_flush_tlb_mm(struct mm_struct *mm) 1049 { 1050 u32 ctx = CTX_HWBITS(mm->context); 1051 1052 get_cpu(); 1053 1054 smp_cross_call_masked(&xcall_flush_tlb_mm, 1055 ctx, 0, 0, 1056 mm_cpumask(mm)); 1057 1058 __flush_tlb_mm(ctx, SECONDARY_CONTEXT); 1059 1060 put_cpu(); 1061 } 1062 1063 struct tlb_pending_info { 1064 unsigned long ctx; 1065 unsigned long nr; 1066 unsigned long *vaddrs; 1067 }; 1068 1069 static void tlb_pending_func(void *info) 1070 { 1071 struct tlb_pending_info *t = info; 1072 1073 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs); 1074 } 1075 1076 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) 1077 { 1078 u32 ctx = CTX_HWBITS(mm->context); 1079 struct tlb_pending_info info; 1080 1081 get_cpu(); 1082 1083 info.ctx = ctx; 1084 info.nr = nr; 1085 info.vaddrs = vaddrs; 1086 1087 smp_call_function_many(mm_cpumask(mm), tlb_pending_func, 1088 &info, 1); 1089 1090 __flush_tlb_pending(ctx, nr, vaddrs); 1091 1092 put_cpu(); 1093 } 1094 1095 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr) 1096 { 1097 unsigned long context = CTX_HWBITS(mm->context); 1098 1099 get_cpu(); 1100 1101 smp_cross_call_masked(&xcall_flush_tlb_page, 1102 context, vaddr, 0, 1103 mm_cpumask(mm)); 1104 1105 __flush_tlb_page(context, vaddr); 1106 1107 put_cpu(); 1108 } 1109 1110 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) 1111 { 1112 start &= PAGE_MASK; 1113 end = PAGE_ALIGN(end); 1114 if (start != end) { 1115 smp_cross_call(&xcall_flush_tlb_kernel_range, 1116 0, start, end); 1117 1118 __flush_tlb_kernel_range(start, end); 1119 } 1120 } 1121 1122 /* CPU capture. */ 1123 /* #define CAPTURE_DEBUG */ 1124 extern unsigned long xcall_capture; 1125 1126 static atomic_t smp_capture_depth = ATOMIC_INIT(0); 1127 static atomic_t smp_capture_registry = ATOMIC_INIT(0); 1128 static unsigned long penguins_are_doing_time; 1129 1130 void smp_capture(void) 1131 { 1132 int result = atomic_add_return(1, &smp_capture_depth); 1133 1134 if (result == 1) { 1135 int ncpus = num_online_cpus(); 1136 1137 #ifdef CAPTURE_DEBUG 1138 printk("CPU[%d]: Sending penguins to jail...", 1139 smp_processor_id()); 1140 #endif 1141 penguins_are_doing_time = 1; 1142 atomic_inc(&smp_capture_registry); 1143 smp_cross_call(&xcall_capture, 0, 0, 0); 1144 while (atomic_read(&smp_capture_registry) != ncpus) 1145 rmb(); 1146 #ifdef CAPTURE_DEBUG 1147 printk("done\n"); 1148 #endif 1149 } 1150 } 1151 1152 void smp_release(void) 1153 { 1154 if (atomic_dec_and_test(&smp_capture_depth)) { 1155 #ifdef CAPTURE_DEBUG 1156 printk("CPU[%d]: Giving pardon to " 1157 "imprisoned penguins\n", 1158 smp_processor_id()); 1159 #endif 1160 penguins_are_doing_time = 0; 1161 membar_safe("#StoreLoad"); 1162 atomic_dec(&smp_capture_registry); 1163 } 1164 } 1165 1166 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE 1167 * set, so they can service tlb flush xcalls... 1168 */ 1169 extern void prom_world(int); 1170 1171 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs) 1172 { 1173 clear_softint(1 << irq); 1174 1175 preempt_disable(); 1176 1177 __asm__ __volatile__("flushw"); 1178 prom_world(1); 1179 atomic_inc(&smp_capture_registry); 1180 membar_safe("#StoreLoad"); 1181 while (penguins_are_doing_time) 1182 rmb(); 1183 atomic_dec(&smp_capture_registry); 1184 prom_world(0); 1185 1186 preempt_enable(); 1187 } 1188 1189 /* /proc/profile writes can call this, don't __init it please. */ 1190 int setup_profiling_timer(unsigned int multiplier) 1191 { 1192 return -EINVAL; 1193 } 1194 1195 void __init smp_prepare_cpus(unsigned int max_cpus) 1196 { 1197 } 1198 1199 void smp_prepare_boot_cpu(void) 1200 { 1201 } 1202 1203 void __init smp_setup_processor_id(void) 1204 { 1205 if (tlb_type == spitfire) 1206 xcall_deliver_impl = spitfire_xcall_deliver; 1207 else if (tlb_type == cheetah || tlb_type == cheetah_plus) 1208 xcall_deliver_impl = cheetah_xcall_deliver; 1209 else 1210 xcall_deliver_impl = hypervisor_xcall_deliver; 1211 } 1212 1213 void __init smp_fill_in_cpu_possible_map(void) 1214 { 1215 int possible_cpus = num_possible_cpus(); 1216 int i; 1217 1218 if (possible_cpus > nr_cpu_ids) 1219 possible_cpus = nr_cpu_ids; 1220 1221 for (i = 0; i < possible_cpus; i++) 1222 set_cpu_possible(i, true); 1223 for (; i < NR_CPUS; i++) 1224 set_cpu_possible(i, false); 1225 } 1226 1227 void smp_fill_in_sib_core_maps(void) 1228 { 1229 unsigned int i; 1230 1231 for_each_present_cpu(i) { 1232 unsigned int j; 1233 1234 cpumask_clear(&cpu_core_map[i]); 1235 if (cpu_data(i).core_id == 0) { 1236 cpumask_set_cpu(i, &cpu_core_map[i]); 1237 continue; 1238 } 1239 1240 for_each_present_cpu(j) { 1241 if (cpu_data(i).core_id == 1242 cpu_data(j).core_id) 1243 cpumask_set_cpu(j, &cpu_core_map[i]); 1244 } 1245 } 1246 1247 for_each_present_cpu(i) { 1248 unsigned int j; 1249 1250 for_each_present_cpu(j) { 1251 if (cpu_data(i).max_cache_id == 1252 cpu_data(j).max_cache_id) 1253 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]); 1254 1255 if (cpu_data(i).sock_id == cpu_data(j).sock_id) 1256 cpumask_set_cpu(j, &cpu_core_sib_map[i]); 1257 } 1258 } 1259 1260 for_each_present_cpu(i) { 1261 unsigned int j; 1262 1263 cpumask_clear(&per_cpu(cpu_sibling_map, i)); 1264 if (cpu_data(i).proc_id == -1) { 1265 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i)); 1266 continue; 1267 } 1268 1269 for_each_present_cpu(j) { 1270 if (cpu_data(i).proc_id == 1271 cpu_data(j).proc_id) 1272 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i)); 1273 } 1274 } 1275 } 1276 1277 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1278 { 1279 int ret = smp_boot_one_cpu(cpu, tidle); 1280 1281 if (!ret) { 1282 cpumask_set_cpu(cpu, &smp_commenced_mask); 1283 while (!cpu_online(cpu)) 1284 mb(); 1285 if (!cpu_online(cpu)) { 1286 ret = -ENODEV; 1287 } else { 1288 /* On SUN4V, writes to %tick and %stick are 1289 * not allowed. 1290 */ 1291 if (tlb_type != hypervisor) 1292 smp_synchronize_one_tick(cpu); 1293 } 1294 } 1295 return ret; 1296 } 1297 1298 #ifdef CONFIG_HOTPLUG_CPU 1299 void cpu_play_dead(void) 1300 { 1301 int cpu = smp_processor_id(); 1302 unsigned long pstate; 1303 1304 idle_task_exit(); 1305 1306 if (tlb_type == hypervisor) { 1307 struct trap_per_cpu *tb = &trap_block[cpu]; 1308 1309 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, 1310 tb->cpu_mondo_pa, 0); 1311 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, 1312 tb->dev_mondo_pa, 0); 1313 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, 1314 tb->resum_mondo_pa, 0); 1315 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, 1316 tb->nonresum_mondo_pa, 0); 1317 } 1318 1319 cpumask_clear_cpu(cpu, &smp_commenced_mask); 1320 membar_safe("#Sync"); 1321 1322 local_irq_disable(); 1323 1324 __asm__ __volatile__( 1325 "rdpr %%pstate, %0\n\t" 1326 "wrpr %0, %1, %%pstate" 1327 : "=r" (pstate) 1328 : "i" (PSTATE_IE)); 1329 1330 while (1) 1331 barrier(); 1332 } 1333 1334 int __cpu_disable(void) 1335 { 1336 int cpu = smp_processor_id(); 1337 cpuinfo_sparc *c; 1338 int i; 1339 1340 for_each_cpu(i, &cpu_core_map[cpu]) 1341 cpumask_clear_cpu(cpu, &cpu_core_map[i]); 1342 cpumask_clear(&cpu_core_map[cpu]); 1343 1344 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) 1345 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); 1346 cpumask_clear(&per_cpu(cpu_sibling_map, cpu)); 1347 1348 c = &cpu_data(cpu); 1349 1350 c->core_id = 0; 1351 c->proc_id = -1; 1352 1353 smp_wmb(); 1354 1355 /* Make sure no interrupts point to this cpu. */ 1356 fixup_irqs(); 1357 1358 local_irq_enable(); 1359 mdelay(1); 1360 local_irq_disable(); 1361 1362 set_cpu_online(cpu, false); 1363 1364 cpu_map_rebuild(); 1365 1366 return 0; 1367 } 1368 1369 void __cpu_die(unsigned int cpu) 1370 { 1371 int i; 1372 1373 for (i = 0; i < 100; i++) { 1374 smp_rmb(); 1375 if (!cpumask_test_cpu(cpu, &smp_commenced_mask)) 1376 break; 1377 msleep(100); 1378 } 1379 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) { 1380 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 1381 } else { 1382 #if defined(CONFIG_SUN_LDOMS) 1383 unsigned long hv_err; 1384 int limit = 100; 1385 1386 do { 1387 hv_err = sun4v_cpu_stop(cpu); 1388 if (hv_err == HV_EOK) { 1389 set_cpu_present(cpu, false); 1390 break; 1391 } 1392 } while (--limit > 0); 1393 if (limit <= 0) { 1394 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", 1395 hv_err); 1396 } 1397 #endif 1398 } 1399 } 1400 #endif 1401 1402 void __init smp_cpus_done(unsigned int max_cpus) 1403 { 1404 } 1405 1406 static void send_cpu_ipi(int cpu) 1407 { 1408 xcall_deliver((u64) &xcall_receive_signal, 1409 0, 0, cpumask_of(cpu)); 1410 } 1411 1412 void scheduler_poke(void) 1413 { 1414 if (!cpu_poke) 1415 return; 1416 1417 if (!__this_cpu_read(poke)) 1418 return; 1419 1420 __this_cpu_write(poke, false); 1421 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL); 1422 } 1423 1424 static unsigned long send_cpu_poke(int cpu) 1425 { 1426 unsigned long hv_err; 1427 1428 per_cpu(poke, cpu) = true; 1429 hv_err = sun4v_cpu_poke(cpu); 1430 if (hv_err != HV_EOK) { 1431 per_cpu(poke, cpu) = false; 1432 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n", 1433 __func__, hv_err); 1434 } 1435 1436 return hv_err; 1437 } 1438 1439 void smp_send_reschedule(int cpu) 1440 { 1441 if (cpu == smp_processor_id()) { 1442 WARN_ON_ONCE(preemptible()); 1443 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL); 1444 return; 1445 } 1446 1447 /* Use cpu poke to resume idle cpu if supported. */ 1448 if (cpu_poke && idle_cpu(cpu)) { 1449 unsigned long ret; 1450 1451 ret = send_cpu_poke(cpu); 1452 if (ret == HV_EOK) 1453 return; 1454 } 1455 1456 /* Use IPI in following cases: 1457 * - cpu poke not supported 1458 * - cpu not idle 1459 * - send_cpu_poke() returns with error 1460 */ 1461 send_cpu_ipi(cpu); 1462 } 1463 1464 void smp_init_cpu_poke(void) 1465 { 1466 unsigned long major; 1467 unsigned long minor; 1468 int ret; 1469 1470 if (tlb_type != hypervisor) 1471 return; 1472 1473 ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor); 1474 if (ret) { 1475 pr_debug("HV_GRP_CORE is not registered\n"); 1476 return; 1477 } 1478 1479 if (major == 1 && minor >= 6) { 1480 /* CPU POKE is registered. */ 1481 cpu_poke = true; 1482 return; 1483 } 1484 1485 pr_debug("CPU_POKE not supported\n"); 1486 } 1487 1488 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs) 1489 { 1490 clear_softint(1 << irq); 1491 scheduler_ipi(); 1492 } 1493 1494 static void stop_this_cpu(void *dummy) 1495 { 1496 set_cpu_online(smp_processor_id(), false); 1497 prom_stopself(); 1498 } 1499 1500 void smp_send_stop(void) 1501 { 1502 int cpu; 1503 1504 if (tlb_type == hypervisor) { 1505 int this_cpu = smp_processor_id(); 1506 #ifdef CONFIG_SERIAL_SUNHV 1507 sunhv_migrate_hvcons_irq(this_cpu); 1508 #endif 1509 for_each_online_cpu(cpu) { 1510 if (cpu == this_cpu) 1511 continue; 1512 1513 set_cpu_online(cpu, false); 1514 #ifdef CONFIG_SUN_LDOMS 1515 if (ldom_domaining_enabled) { 1516 unsigned long hv_err; 1517 hv_err = sun4v_cpu_stop(cpu); 1518 if (hv_err) 1519 printk(KERN_ERR "sun4v_cpu_stop() " 1520 "failed err=%lu\n", hv_err); 1521 } else 1522 #endif 1523 prom_stopcpu_cpuid(cpu); 1524 } 1525 } else 1526 smp_call_function(stop_this_cpu, NULL, 0); 1527 } 1528 1529 /** 1530 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu 1531 * @cpu: cpu to allocate for 1532 * @size: size allocation in bytes 1533 * @align: alignment 1534 * 1535 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper 1536 * does the right thing for NUMA regardless of the current 1537 * configuration. 1538 * 1539 * RETURNS: 1540 * Pointer to the allocated area on success, NULL on failure. 1541 */ 1542 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, 1543 size_t align) 1544 { 1545 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 1546 #ifdef CONFIG_NUMA 1547 int node = cpu_to_node(cpu); 1548 void *ptr; 1549 1550 if (!node_online(node) || !NODE_DATA(node)) { 1551 ptr = memblock_alloc_from(size, align, goal); 1552 pr_info("cpu %d has no node %d or node-local memory\n", 1553 cpu, node); 1554 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", 1555 cpu, size, __pa(ptr)); 1556 } else { 1557 ptr = memblock_alloc_try_nid(size, align, goal, 1558 MEMBLOCK_ALLOC_ACCESSIBLE, node); 1559 pr_debug("per cpu data for cpu%d %lu bytes on node%d at " 1560 "%016lx\n", cpu, size, node, __pa(ptr)); 1561 } 1562 return ptr; 1563 #else 1564 return memblock_alloc_from(size, align, goal); 1565 #endif 1566 } 1567 1568 static void __init pcpu_free_bootmem(void *ptr, size_t size) 1569 { 1570 memblock_free(__pa(ptr), size); 1571 } 1572 1573 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 1574 { 1575 if (cpu_to_node(from) == cpu_to_node(to)) 1576 return LOCAL_DISTANCE; 1577 else 1578 return REMOTE_DISTANCE; 1579 } 1580 1581 static void __init pcpu_populate_pte(unsigned long addr) 1582 { 1583 pgd_t *pgd = pgd_offset_k(addr); 1584 p4d_t *p4d; 1585 pud_t *pud; 1586 pmd_t *pmd; 1587 1588 if (pgd_none(*pgd)) { 1589 pud_t *new; 1590 1591 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1592 if (!new) 1593 goto err_alloc; 1594 pgd_populate(&init_mm, pgd, new); 1595 } 1596 1597 p4d = p4d_offset(pgd, addr); 1598 if (p4d_none(*p4d)) { 1599 pud_t *new; 1600 1601 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1602 if (!new) 1603 goto err_alloc; 1604 p4d_populate(&init_mm, p4d, new); 1605 } 1606 1607 pud = pud_offset(p4d, addr); 1608 if (pud_none(*pud)) { 1609 pmd_t *new; 1610 1611 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1612 if (!new) 1613 goto err_alloc; 1614 pud_populate(&init_mm, pud, new); 1615 } 1616 1617 pmd = pmd_offset(pud, addr); 1618 if (!pmd_present(*pmd)) { 1619 pte_t *new; 1620 1621 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1622 if (!new) 1623 goto err_alloc; 1624 pmd_populate_kernel(&init_mm, pmd, new); 1625 } 1626 1627 return; 1628 1629 err_alloc: 1630 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n", 1631 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1632 } 1633 1634 void __init setup_per_cpu_areas(void) 1635 { 1636 unsigned long delta; 1637 unsigned int cpu; 1638 int rc = -EINVAL; 1639 1640 if (pcpu_chosen_fc != PCPU_FC_PAGE) { 1641 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1642 PERCPU_DYNAMIC_RESERVE, 4 << 20, 1643 pcpu_cpu_distance, 1644 pcpu_alloc_bootmem, 1645 pcpu_free_bootmem); 1646 if (rc) 1647 pr_warn("PERCPU: %s allocator failed (%d), " 1648 "falling back to page size\n", 1649 pcpu_fc_names[pcpu_chosen_fc], rc); 1650 } 1651 if (rc < 0) 1652 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, 1653 pcpu_alloc_bootmem, 1654 pcpu_free_bootmem, 1655 pcpu_populate_pte); 1656 if (rc < 0) 1657 panic("cannot initialize percpu area (err=%d)", rc); 1658 1659 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1660 for_each_possible_cpu(cpu) 1661 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; 1662 1663 /* Setup %g5 for the boot cpu. */ 1664 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); 1665 1666 of_fill_in_cpu_data(); 1667 if (tlb_type == hypervisor) 1668 mdesc_fill_in_cpu_data(cpu_all_mask); 1669 } 1670