xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision e23feb16)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38 
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53 
54 #include "cpumap.h"
55 
56 int sparc64_multi_core __read_mostly;
57 
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61 
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64 
65 static cpumask_t smp_commenced_mask;
66 
67 void smp_info(struct seq_file *m)
68 {
69 	int i;
70 
71 	seq_printf(m, "State:\n");
72 	for_each_online_cpu(i)
73 		seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75 
76 void smp_bogo(struct seq_file *m)
77 {
78 	int i;
79 
80 	for_each_online_cpu(i)
81 		seq_printf(m,
82 			   "Cpu%dClkTck\t: %016lx\n",
83 			   i, cpu_data(i).clock_tick);
84 }
85 
86 extern void setup_sparc64_timer(void);
87 
88 static volatile unsigned long callin_flag = 0;
89 
90 void smp_callin(void)
91 {
92 	int cpuid = hard_smp_processor_id();
93 
94 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
95 
96 	if (tlb_type == hypervisor)
97 		sun4v_ktsb_register();
98 
99 	__flush_tlb_all();
100 
101 	setup_sparc64_timer();
102 
103 	if (cheetah_pcache_forced_on)
104 		cheetah_enable_pcache();
105 
106 	callin_flag = 1;
107 	__asm__ __volatile__("membar #Sync\n\t"
108 			     "flush  %%g6" : : : "memory");
109 
110 	/* Clear this or we will die instantly when we
111 	 * schedule back to this idler...
112 	 */
113 	current_thread_info()->new_child = 0;
114 
115 	/* Attach to the address space of init_task. */
116 	atomic_inc(&init_mm.mm_count);
117 	current->active_mm = &init_mm;
118 
119 	/* inform the notifiers about the new cpu */
120 	notify_cpu_starting(cpuid);
121 
122 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123 		rmb();
124 
125 	set_cpu_online(cpuid, true);
126 	local_irq_enable();
127 
128 	/* idle thread is expected to have preempt disabled */
129 	preempt_disable();
130 
131 	cpu_startup_entry(CPUHP_ONLINE);
132 }
133 
134 void cpu_panic(void)
135 {
136 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
137 	panic("SMP bolixed\n");
138 }
139 
140 /* This tick register synchronization scheme is taken entirely from
141  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
142  *
143  * The only change I've made is to rework it so that the master
144  * initiates the synchonization instead of the slave. -DaveM
145  */
146 
147 #define MASTER	0
148 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
149 
150 #define NUM_ROUNDS	64	/* magic value */
151 #define NUM_ITERS	5	/* likewise */
152 
153 static DEFINE_SPINLOCK(itc_sync_lock);
154 static unsigned long go[SLAVE + 1];
155 
156 #define DEBUG_TICK_SYNC	0
157 
158 static inline long get_delta (long *rt, long *master)
159 {
160 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
161 	unsigned long tcenter, t0, t1, tm;
162 	unsigned long i;
163 
164 	for (i = 0; i < NUM_ITERS; i++) {
165 		t0 = tick_ops->get_tick();
166 		go[MASTER] = 1;
167 		membar_safe("#StoreLoad");
168 		while (!(tm = go[SLAVE]))
169 			rmb();
170 		go[SLAVE] = 0;
171 		wmb();
172 		t1 = tick_ops->get_tick();
173 
174 		if (t1 - t0 < best_t1 - best_t0)
175 			best_t0 = t0, best_t1 = t1, best_tm = tm;
176 	}
177 
178 	*rt = best_t1 - best_t0;
179 	*master = best_tm - best_t0;
180 
181 	/* average best_t0 and best_t1 without overflow: */
182 	tcenter = (best_t0/2 + best_t1/2);
183 	if (best_t0 % 2 + best_t1 % 2 == 2)
184 		tcenter++;
185 	return tcenter - best_tm;
186 }
187 
188 void smp_synchronize_tick_client(void)
189 {
190 	long i, delta, adj, adjust_latency = 0, done = 0;
191 	unsigned long flags, rt, master_time_stamp;
192 #if DEBUG_TICK_SYNC
193 	struct {
194 		long rt;	/* roundtrip time */
195 		long master;	/* master's timestamp */
196 		long diff;	/* difference between midpoint and master's timestamp */
197 		long lat;	/* estimate of itc adjustment latency */
198 	} t[NUM_ROUNDS];
199 #endif
200 
201 	go[MASTER] = 1;
202 
203 	while (go[MASTER])
204 		rmb();
205 
206 	local_irq_save(flags);
207 	{
208 		for (i = 0; i < NUM_ROUNDS; i++) {
209 			delta = get_delta(&rt, &master_time_stamp);
210 			if (delta == 0)
211 				done = 1;	/* let's lock on to this... */
212 
213 			if (!done) {
214 				if (i > 0) {
215 					adjust_latency += -delta;
216 					adj = -delta + adjust_latency/4;
217 				} else
218 					adj = -delta;
219 
220 				tick_ops->add_tick(adj);
221 			}
222 #if DEBUG_TICK_SYNC
223 			t[i].rt = rt;
224 			t[i].master = master_time_stamp;
225 			t[i].diff = delta;
226 			t[i].lat = adjust_latency/4;
227 #endif
228 		}
229 	}
230 	local_irq_restore(flags);
231 
232 #if DEBUG_TICK_SYNC
233 	for (i = 0; i < NUM_ROUNDS; i++)
234 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
235 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
236 #endif
237 
238 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
239 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
240 	       smp_processor_id(), delta, rt);
241 }
242 
243 static void smp_start_sync_tick_client(int cpu);
244 
245 static void smp_synchronize_one_tick(int cpu)
246 {
247 	unsigned long flags, i;
248 
249 	go[MASTER] = 0;
250 
251 	smp_start_sync_tick_client(cpu);
252 
253 	/* wait for client to be ready */
254 	while (!go[MASTER])
255 		rmb();
256 
257 	/* now let the client proceed into his loop */
258 	go[MASTER] = 0;
259 	membar_safe("#StoreLoad");
260 
261 	spin_lock_irqsave(&itc_sync_lock, flags);
262 	{
263 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
264 			while (!go[MASTER])
265 				rmb();
266 			go[MASTER] = 0;
267 			wmb();
268 			go[SLAVE] = tick_ops->get_tick();
269 			membar_safe("#StoreLoad");
270 		}
271 	}
272 	spin_unlock_irqrestore(&itc_sync_lock, flags);
273 }
274 
275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
276 /* XXX Put this in some common place. XXX */
277 static unsigned long kimage_addr_to_ra(void *p)
278 {
279 	unsigned long val = (unsigned long) p;
280 
281 	return kern_base + (val - KERNBASE);
282 }
283 
284 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
285 				void **descrp)
286 {
287 	extern unsigned long sparc64_ttable_tl0;
288 	extern unsigned long kern_locked_tte_data;
289 	struct hvtramp_descr *hdesc;
290 	unsigned long trampoline_ra;
291 	struct trap_per_cpu *tb;
292 	u64 tte_vaddr, tte_data;
293 	unsigned long hv_err;
294 	int i;
295 
296 	hdesc = kzalloc(sizeof(*hdesc) +
297 			(sizeof(struct hvtramp_mapping) *
298 			 num_kernel_image_mappings - 1),
299 			GFP_KERNEL);
300 	if (!hdesc) {
301 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
302 		       "hvtramp_descr.\n");
303 		return;
304 	}
305 	*descrp = hdesc;
306 
307 	hdesc->cpu = cpu;
308 	hdesc->num_mappings = num_kernel_image_mappings;
309 
310 	tb = &trap_block[cpu];
311 
312 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
313 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
314 
315 	hdesc->thread_reg = thread_reg;
316 
317 	tte_vaddr = (unsigned long) KERNBASE;
318 	tte_data = kern_locked_tte_data;
319 
320 	for (i = 0; i < hdesc->num_mappings; i++) {
321 		hdesc->maps[i].vaddr = tte_vaddr;
322 		hdesc->maps[i].tte   = tte_data;
323 		tte_vaddr += 0x400000;
324 		tte_data  += 0x400000;
325 	}
326 
327 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
328 
329 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
330 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
331 				 __pa(hdesc));
332 	if (hv_err)
333 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
334 		       "gives error %lu\n", hv_err);
335 }
336 #endif
337 
338 extern unsigned long sparc64_cpu_startup;
339 
340 /* The OBP cpu startup callback truncates the 3rd arg cookie to
341  * 32-bits (I think) so to be safe we have it read the pointer
342  * contained here so we work on >4GB machines. -DaveM
343  */
344 static struct thread_info *cpu_new_thread = NULL;
345 
346 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
347 {
348 	unsigned long entry =
349 		(unsigned long)(&sparc64_cpu_startup);
350 	unsigned long cookie =
351 		(unsigned long)(&cpu_new_thread);
352 	void *descr = NULL;
353 	int timeout, ret;
354 
355 	callin_flag = 0;
356 	cpu_new_thread = task_thread_info(idle);
357 
358 	if (tlb_type == hypervisor) {
359 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
360 		if (ldom_domaining_enabled)
361 			ldom_startcpu_cpuid(cpu,
362 					    (unsigned long) cpu_new_thread,
363 					    &descr);
364 		else
365 #endif
366 			prom_startcpu_cpuid(cpu, entry, cookie);
367 	} else {
368 		struct device_node *dp = of_find_node_by_cpuid(cpu);
369 
370 		prom_startcpu(dp->phandle, entry, cookie);
371 	}
372 
373 	for (timeout = 0; timeout < 50000; timeout++) {
374 		if (callin_flag)
375 			break;
376 		udelay(100);
377 	}
378 
379 	if (callin_flag) {
380 		ret = 0;
381 	} else {
382 		printk("Processor %d is stuck.\n", cpu);
383 		ret = -ENODEV;
384 	}
385 	cpu_new_thread = NULL;
386 
387 	kfree(descr);
388 
389 	return ret;
390 }
391 
392 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
393 {
394 	u64 result, target;
395 	int stuck, tmp;
396 
397 	if (this_is_starfire) {
398 		/* map to real upaid */
399 		cpu = (((cpu & 0x3c) << 1) |
400 			((cpu & 0x40) >> 4) |
401 			(cpu & 0x3));
402 	}
403 
404 	target = (cpu << 14) | 0x70;
405 again:
406 	/* Ok, this is the real Spitfire Errata #54.
407 	 * One must read back from a UDB internal register
408 	 * after writes to the UDB interrupt dispatch, but
409 	 * before the membar Sync for that write.
410 	 * So we use the high UDB control register (ASI 0x7f,
411 	 * ADDR 0x20) for the dummy read. -DaveM
412 	 */
413 	tmp = 0x40;
414 	__asm__ __volatile__(
415 	"wrpr	%1, %2, %%pstate\n\t"
416 	"stxa	%4, [%0] %3\n\t"
417 	"stxa	%5, [%0+%8] %3\n\t"
418 	"add	%0, %8, %0\n\t"
419 	"stxa	%6, [%0+%8] %3\n\t"
420 	"membar	#Sync\n\t"
421 	"stxa	%%g0, [%7] %3\n\t"
422 	"membar	#Sync\n\t"
423 	"mov	0x20, %%g1\n\t"
424 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
425 	"membar	#Sync"
426 	: "=r" (tmp)
427 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
428 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
429 	  "r" (0x10), "0" (tmp)
430         : "g1");
431 
432 	/* NOTE: PSTATE_IE is still clear. */
433 	stuck = 100000;
434 	do {
435 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
436 			: "=r" (result)
437 			: "i" (ASI_INTR_DISPATCH_STAT));
438 		if (result == 0) {
439 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
440 					     : : "r" (pstate));
441 			return;
442 		}
443 		stuck -= 1;
444 		if (stuck == 0)
445 			break;
446 	} while (result & 0x1);
447 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
448 			     : : "r" (pstate));
449 	if (stuck == 0) {
450 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
451 		       smp_processor_id(), result);
452 	} else {
453 		udelay(2);
454 		goto again;
455 	}
456 }
457 
458 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
459 {
460 	u64 *mondo, data0, data1, data2;
461 	u16 *cpu_list;
462 	u64 pstate;
463 	int i;
464 
465 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
466 	cpu_list = __va(tb->cpu_list_pa);
467 	mondo = __va(tb->cpu_mondo_block_pa);
468 	data0 = mondo[0];
469 	data1 = mondo[1];
470 	data2 = mondo[2];
471 	for (i = 0; i < cnt; i++)
472 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
473 }
474 
475 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
476  * packet, but we have no use for that.  However we do take advantage of
477  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
478  */
479 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
480 {
481 	int nack_busy_id, is_jbus, need_more;
482 	u64 *mondo, pstate, ver, busy_mask;
483 	u16 *cpu_list;
484 
485 	cpu_list = __va(tb->cpu_list_pa);
486 	mondo = __va(tb->cpu_mondo_block_pa);
487 
488 	/* Unfortunately, someone at Sun had the brilliant idea to make the
489 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
490 	 * derivative processor.
491 	 */
492 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
493 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
494 		   (ver >> 32) == __SERRANO_ID);
495 
496 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
497 
498 retry:
499 	need_more = 0;
500 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
501 			     : : "r" (pstate), "i" (PSTATE_IE));
502 
503 	/* Setup the dispatch data registers. */
504 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
505 			     "stxa	%1, [%4] %6\n\t"
506 			     "stxa	%2, [%5] %6\n\t"
507 			     "membar	#Sync\n\t"
508 			     : /* no outputs */
509 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
510 			       "r" (0x40), "r" (0x50), "r" (0x60),
511 			       "i" (ASI_INTR_W));
512 
513 	nack_busy_id = 0;
514 	busy_mask = 0;
515 	{
516 		int i;
517 
518 		for (i = 0; i < cnt; i++) {
519 			u64 target, nr;
520 
521 			nr = cpu_list[i];
522 			if (nr == 0xffff)
523 				continue;
524 
525 			target = (nr << 14) | 0x70;
526 			if (is_jbus) {
527 				busy_mask |= (0x1UL << (nr * 2));
528 			} else {
529 				target |= (nack_busy_id << 24);
530 				busy_mask |= (0x1UL <<
531 					      (nack_busy_id * 2));
532 			}
533 			__asm__ __volatile__(
534 				"stxa	%%g0, [%0] %1\n\t"
535 				"membar	#Sync\n\t"
536 				: /* no outputs */
537 				: "r" (target), "i" (ASI_INTR_W));
538 			nack_busy_id++;
539 			if (nack_busy_id == 32) {
540 				need_more = 1;
541 				break;
542 			}
543 		}
544 	}
545 
546 	/* Now, poll for completion. */
547 	{
548 		u64 dispatch_stat, nack_mask;
549 		long stuck;
550 
551 		stuck = 100000 * nack_busy_id;
552 		nack_mask = busy_mask << 1;
553 		do {
554 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
555 					     : "=r" (dispatch_stat)
556 					     : "i" (ASI_INTR_DISPATCH_STAT));
557 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
558 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
559 						     : : "r" (pstate));
560 				if (unlikely(need_more)) {
561 					int i, this_cnt = 0;
562 					for (i = 0; i < cnt; i++) {
563 						if (cpu_list[i] == 0xffff)
564 							continue;
565 						cpu_list[i] = 0xffff;
566 						this_cnt++;
567 						if (this_cnt == 32)
568 							break;
569 					}
570 					goto retry;
571 				}
572 				return;
573 			}
574 			if (!--stuck)
575 				break;
576 		} while (dispatch_stat & busy_mask);
577 
578 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
579 				     : : "r" (pstate));
580 
581 		if (dispatch_stat & busy_mask) {
582 			/* Busy bits will not clear, continue instead
583 			 * of freezing up on this cpu.
584 			 */
585 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
586 			       smp_processor_id(), dispatch_stat);
587 		} else {
588 			int i, this_busy_nack = 0;
589 
590 			/* Delay some random time with interrupts enabled
591 			 * to prevent deadlock.
592 			 */
593 			udelay(2 * nack_busy_id);
594 
595 			/* Clear out the mask bits for cpus which did not
596 			 * NACK us.
597 			 */
598 			for (i = 0; i < cnt; i++) {
599 				u64 check_mask, nr;
600 
601 				nr = cpu_list[i];
602 				if (nr == 0xffff)
603 					continue;
604 
605 				if (is_jbus)
606 					check_mask = (0x2UL << (2*nr));
607 				else
608 					check_mask = (0x2UL <<
609 						      this_busy_nack);
610 				if ((dispatch_stat & check_mask) == 0)
611 					cpu_list[i] = 0xffff;
612 				this_busy_nack += 2;
613 				if (this_busy_nack == 64)
614 					break;
615 			}
616 
617 			goto retry;
618 		}
619 	}
620 }
621 
622 /* Multi-cpu list version.  */
623 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
624 {
625 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
626 	unsigned long status;
627 	u16 *cpu_list;
628 
629 	this_cpu = smp_processor_id();
630 
631 	cpu_list = __va(tb->cpu_list_pa);
632 
633 	saw_cpu_error = 0;
634 	retries = 0;
635 	prev_sent = 0;
636 	do {
637 		int forward_progress, n_sent;
638 
639 		status = sun4v_cpu_mondo_send(cnt,
640 					      tb->cpu_list_pa,
641 					      tb->cpu_mondo_block_pa);
642 
643 		/* HV_EOK means all cpus received the xcall, we're done.  */
644 		if (likely(status == HV_EOK))
645 			break;
646 
647 		/* First, see if we made any forward progress.
648 		 *
649 		 * The hypervisor indicates successful sends by setting
650 		 * cpu list entries to the value 0xffff.
651 		 */
652 		n_sent = 0;
653 		for (i = 0; i < cnt; i++) {
654 			if (likely(cpu_list[i] == 0xffff))
655 				n_sent++;
656 		}
657 
658 		forward_progress = 0;
659 		if (n_sent > prev_sent)
660 			forward_progress = 1;
661 
662 		prev_sent = n_sent;
663 
664 		/* If we get a HV_ECPUERROR, then one or more of the cpus
665 		 * in the list are in error state.  Use the cpu_state()
666 		 * hypervisor call to find out which cpus are in error state.
667 		 */
668 		if (unlikely(status == HV_ECPUERROR)) {
669 			for (i = 0; i < cnt; i++) {
670 				long err;
671 				u16 cpu;
672 
673 				cpu = cpu_list[i];
674 				if (cpu == 0xffff)
675 					continue;
676 
677 				err = sun4v_cpu_state(cpu);
678 				if (err == HV_CPU_STATE_ERROR) {
679 					saw_cpu_error = (cpu + 1);
680 					cpu_list[i] = 0xffff;
681 				}
682 			}
683 		} else if (unlikely(status != HV_EWOULDBLOCK))
684 			goto fatal_mondo_error;
685 
686 		/* Don't bother rewriting the CPU list, just leave the
687 		 * 0xffff and non-0xffff entries in there and the
688 		 * hypervisor will do the right thing.
689 		 *
690 		 * Only advance timeout state if we didn't make any
691 		 * forward progress.
692 		 */
693 		if (unlikely(!forward_progress)) {
694 			if (unlikely(++retries > 10000))
695 				goto fatal_mondo_timeout;
696 
697 			/* Delay a little bit to let other cpus catch up
698 			 * on their cpu mondo queue work.
699 			 */
700 			udelay(2 * cnt);
701 		}
702 	} while (1);
703 
704 	if (unlikely(saw_cpu_error))
705 		goto fatal_mondo_cpu_error;
706 
707 	return;
708 
709 fatal_mondo_cpu_error:
710 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
711 	       "(including %d) were in error state\n",
712 	       this_cpu, saw_cpu_error - 1);
713 	return;
714 
715 fatal_mondo_timeout:
716 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
717 	       " progress after %d retries.\n",
718 	       this_cpu, retries);
719 	goto dump_cpu_list_and_out;
720 
721 fatal_mondo_error:
722 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
723 	       this_cpu, status);
724 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
725 	       "mondo_block_pa(%lx)\n",
726 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
727 
728 dump_cpu_list_and_out:
729 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
730 	for (i = 0; i < cnt; i++)
731 		printk("%u ", cpu_list[i]);
732 	printk("]\n");
733 }
734 
735 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
736 
737 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
738 {
739 	struct trap_per_cpu *tb;
740 	int this_cpu, i, cnt;
741 	unsigned long flags;
742 	u16 *cpu_list;
743 	u64 *mondo;
744 
745 	/* We have to do this whole thing with interrupts fully disabled.
746 	 * Otherwise if we send an xcall from interrupt context it will
747 	 * corrupt both our mondo block and cpu list state.
748 	 *
749 	 * One consequence of this is that we cannot use timeout mechanisms
750 	 * that depend upon interrupts being delivered locally.  So, for
751 	 * example, we cannot sample jiffies and expect it to advance.
752 	 *
753 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
754 	 */
755 	local_irq_save(flags);
756 
757 	this_cpu = smp_processor_id();
758 	tb = &trap_block[this_cpu];
759 
760 	mondo = __va(tb->cpu_mondo_block_pa);
761 	mondo[0] = data0;
762 	mondo[1] = data1;
763 	mondo[2] = data2;
764 	wmb();
765 
766 	cpu_list = __va(tb->cpu_list_pa);
767 
768 	/* Setup the initial cpu list.  */
769 	cnt = 0;
770 	for_each_cpu(i, mask) {
771 		if (i == this_cpu || !cpu_online(i))
772 			continue;
773 		cpu_list[cnt++] = i;
774 	}
775 
776 	if (cnt)
777 		xcall_deliver_impl(tb, cnt);
778 
779 	local_irq_restore(flags);
780 }
781 
782 /* Send cross call to all processors mentioned in MASK_P
783  * except self.  Really, there are only two cases currently,
784  * "cpu_online_mask" and "mm_cpumask(mm)".
785  */
786 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
787 {
788 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
789 
790 	xcall_deliver(data0, data1, data2, mask);
791 }
792 
793 /* Send cross call to all processors except self. */
794 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
795 {
796 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
797 }
798 
799 extern unsigned long xcall_sync_tick;
800 
801 static void smp_start_sync_tick_client(int cpu)
802 {
803 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
804 		      cpumask_of(cpu));
805 }
806 
807 extern unsigned long xcall_call_function;
808 
809 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
810 {
811 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
812 }
813 
814 extern unsigned long xcall_call_function_single;
815 
816 void arch_send_call_function_single_ipi(int cpu)
817 {
818 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
819 		      cpumask_of(cpu));
820 }
821 
822 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
823 {
824 	clear_softint(1 << irq);
825 	generic_smp_call_function_interrupt();
826 }
827 
828 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
829 {
830 	clear_softint(1 << irq);
831 	generic_smp_call_function_single_interrupt();
832 }
833 
834 static void tsb_sync(void *info)
835 {
836 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
837 	struct mm_struct *mm = info;
838 
839 	/* It is not valid to test "current->active_mm == mm" here.
840 	 *
841 	 * The value of "current" is not changed atomically with
842 	 * switch_mm().  But that's OK, we just need to check the
843 	 * current cpu's trap block PGD physical address.
844 	 */
845 	if (tp->pgd_paddr == __pa(mm->pgd))
846 		tsb_context_switch(mm);
847 }
848 
849 void smp_tsb_sync(struct mm_struct *mm)
850 {
851 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
852 }
853 
854 extern unsigned long xcall_flush_tlb_mm;
855 extern unsigned long xcall_flush_tlb_page;
856 extern unsigned long xcall_flush_tlb_kernel_range;
857 extern unsigned long xcall_fetch_glob_regs;
858 extern unsigned long xcall_fetch_glob_pmu;
859 extern unsigned long xcall_fetch_glob_pmu_n4;
860 extern unsigned long xcall_receive_signal;
861 extern unsigned long xcall_new_mmu_context_version;
862 #ifdef CONFIG_KGDB
863 extern unsigned long xcall_kgdb_capture;
864 #endif
865 
866 #ifdef DCACHE_ALIASING_POSSIBLE
867 extern unsigned long xcall_flush_dcache_page_cheetah;
868 #endif
869 extern unsigned long xcall_flush_dcache_page_spitfire;
870 
871 #ifdef CONFIG_DEBUG_DCFLUSH
872 extern atomic_t dcpage_flushes;
873 extern atomic_t dcpage_flushes_xcall;
874 #endif
875 
876 static inline void __local_flush_dcache_page(struct page *page)
877 {
878 #ifdef DCACHE_ALIASING_POSSIBLE
879 	__flush_dcache_page(page_address(page),
880 			    ((tlb_type == spitfire) &&
881 			     page_mapping(page) != NULL));
882 #else
883 	if (page_mapping(page) != NULL &&
884 	    tlb_type == spitfire)
885 		__flush_icache_page(__pa(page_address(page)));
886 #endif
887 }
888 
889 void smp_flush_dcache_page_impl(struct page *page, int cpu)
890 {
891 	int this_cpu;
892 
893 	if (tlb_type == hypervisor)
894 		return;
895 
896 #ifdef CONFIG_DEBUG_DCFLUSH
897 	atomic_inc(&dcpage_flushes);
898 #endif
899 
900 	this_cpu = get_cpu();
901 
902 	if (cpu == this_cpu) {
903 		__local_flush_dcache_page(page);
904 	} else if (cpu_online(cpu)) {
905 		void *pg_addr = page_address(page);
906 		u64 data0 = 0;
907 
908 		if (tlb_type == spitfire) {
909 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
910 			if (page_mapping(page) != NULL)
911 				data0 |= ((u64)1 << 32);
912 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
913 #ifdef DCACHE_ALIASING_POSSIBLE
914 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
915 #endif
916 		}
917 		if (data0) {
918 			xcall_deliver(data0, __pa(pg_addr),
919 				      (u64) pg_addr, cpumask_of(cpu));
920 #ifdef CONFIG_DEBUG_DCFLUSH
921 			atomic_inc(&dcpage_flushes_xcall);
922 #endif
923 		}
924 	}
925 
926 	put_cpu();
927 }
928 
929 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
930 {
931 	void *pg_addr;
932 	u64 data0;
933 
934 	if (tlb_type == hypervisor)
935 		return;
936 
937 	preempt_disable();
938 
939 #ifdef CONFIG_DEBUG_DCFLUSH
940 	atomic_inc(&dcpage_flushes);
941 #endif
942 	data0 = 0;
943 	pg_addr = page_address(page);
944 	if (tlb_type == spitfire) {
945 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
946 		if (page_mapping(page) != NULL)
947 			data0 |= ((u64)1 << 32);
948 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
949 #ifdef DCACHE_ALIASING_POSSIBLE
950 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
951 #endif
952 	}
953 	if (data0) {
954 		xcall_deliver(data0, __pa(pg_addr),
955 			      (u64) pg_addr, cpu_online_mask);
956 #ifdef CONFIG_DEBUG_DCFLUSH
957 		atomic_inc(&dcpage_flushes_xcall);
958 #endif
959 	}
960 	__local_flush_dcache_page(page);
961 
962 	preempt_enable();
963 }
964 
965 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
966 {
967 	struct mm_struct *mm;
968 	unsigned long flags;
969 
970 	clear_softint(1 << irq);
971 
972 	/* See if we need to allocate a new TLB context because
973 	 * the version of the one we are using is now out of date.
974 	 */
975 	mm = current->active_mm;
976 	if (unlikely(!mm || (mm == &init_mm)))
977 		return;
978 
979 	spin_lock_irqsave(&mm->context.lock, flags);
980 
981 	if (unlikely(!CTX_VALID(mm->context)))
982 		get_new_mmu_context(mm);
983 
984 	spin_unlock_irqrestore(&mm->context.lock, flags);
985 
986 	load_secondary_context(mm);
987 	__flush_tlb_mm(CTX_HWBITS(mm->context),
988 		       SECONDARY_CONTEXT);
989 }
990 
991 void smp_new_mmu_context_version(void)
992 {
993 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
994 }
995 
996 #ifdef CONFIG_KGDB
997 void kgdb_roundup_cpus(unsigned long flags)
998 {
999 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1000 }
1001 #endif
1002 
1003 void smp_fetch_global_regs(void)
1004 {
1005 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1006 }
1007 
1008 void smp_fetch_global_pmu(void)
1009 {
1010 	if (tlb_type == hypervisor &&
1011 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1012 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1013 	else
1014 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1015 }
1016 
1017 /* We know that the window frames of the user have been flushed
1018  * to the stack before we get here because all callers of us
1019  * are flush_tlb_*() routines, and these run after flush_cache_*()
1020  * which performs the flushw.
1021  *
1022  * The SMP TLB coherency scheme we use works as follows:
1023  *
1024  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1025  *    space has (potentially) executed on, this is the heuristic
1026  *    we use to avoid doing cross calls.
1027  *
1028  *    Also, for flushing from kswapd and also for clones, we
1029  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1030  *
1031  * 2) TLB context numbers are shared globally across all processors
1032  *    in the system, this allows us to play several games to avoid
1033  *    cross calls.
1034  *
1035  *    One invariant is that when a cpu switches to a process, and
1036  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1037  *    current cpu's bit set, that tlb context is flushed locally.
1038  *
1039  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1040  *    cross calls when we want to flush the currently running process's
1041  *    tlb state.  This is done by clearing all cpu bits except the current
1042  *    processor's in current->mm->cpu_vm_mask and performing the
1043  *    flush locally only.  This will force any subsequent cpus which run
1044  *    this task to flush the context from the local tlb if the process
1045  *    migrates to another cpu (again).
1046  *
1047  * 3) For shared address spaces (threads) and swapping we bite the
1048  *    bullet for most cases and perform the cross call (but only to
1049  *    the cpus listed in cpu_vm_mask).
1050  *
1051  *    The performance gain from "optimizing" away the cross call for threads is
1052  *    questionable (in theory the big win for threads is the massive sharing of
1053  *    address space state across processors).
1054  */
1055 
1056 /* This currently is only used by the hugetlb arch pre-fault
1057  * hook on UltraSPARC-III+ and later when changing the pagesize
1058  * bits of the context register for an address space.
1059  */
1060 void smp_flush_tlb_mm(struct mm_struct *mm)
1061 {
1062 	u32 ctx = CTX_HWBITS(mm->context);
1063 	int cpu = get_cpu();
1064 
1065 	if (atomic_read(&mm->mm_users) == 1) {
1066 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1067 		goto local_flush_and_out;
1068 	}
1069 
1070 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1071 			      ctx, 0, 0,
1072 			      mm_cpumask(mm));
1073 
1074 local_flush_and_out:
1075 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1076 
1077 	put_cpu();
1078 }
1079 
1080 struct tlb_pending_info {
1081 	unsigned long ctx;
1082 	unsigned long nr;
1083 	unsigned long *vaddrs;
1084 };
1085 
1086 static void tlb_pending_func(void *info)
1087 {
1088 	struct tlb_pending_info *t = info;
1089 
1090 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1091 }
1092 
1093 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1094 {
1095 	u32 ctx = CTX_HWBITS(mm->context);
1096 	struct tlb_pending_info info;
1097 	int cpu = get_cpu();
1098 
1099 	info.ctx = ctx;
1100 	info.nr = nr;
1101 	info.vaddrs = vaddrs;
1102 
1103 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1104 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1105 	else
1106 		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1107 				       &info, 1);
1108 
1109 	__flush_tlb_pending(ctx, nr, vaddrs);
1110 
1111 	put_cpu();
1112 }
1113 
1114 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1115 {
1116 	unsigned long context = CTX_HWBITS(mm->context);
1117 	int cpu = get_cpu();
1118 
1119 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1120 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1121 	else
1122 		smp_cross_call_masked(&xcall_flush_tlb_page,
1123 				      context, vaddr, 0,
1124 				      mm_cpumask(mm));
1125 	__flush_tlb_page(context, vaddr);
1126 
1127 	put_cpu();
1128 }
1129 
1130 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1131 {
1132 	start &= PAGE_MASK;
1133 	end    = PAGE_ALIGN(end);
1134 	if (start != end) {
1135 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1136 			       0, start, end);
1137 
1138 		__flush_tlb_kernel_range(start, end);
1139 	}
1140 }
1141 
1142 /* CPU capture. */
1143 /* #define CAPTURE_DEBUG */
1144 extern unsigned long xcall_capture;
1145 
1146 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1147 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1148 static unsigned long penguins_are_doing_time;
1149 
1150 void smp_capture(void)
1151 {
1152 	int result = atomic_add_ret(1, &smp_capture_depth);
1153 
1154 	if (result == 1) {
1155 		int ncpus = num_online_cpus();
1156 
1157 #ifdef CAPTURE_DEBUG
1158 		printk("CPU[%d]: Sending penguins to jail...",
1159 		       smp_processor_id());
1160 #endif
1161 		penguins_are_doing_time = 1;
1162 		atomic_inc(&smp_capture_registry);
1163 		smp_cross_call(&xcall_capture, 0, 0, 0);
1164 		while (atomic_read(&smp_capture_registry) != ncpus)
1165 			rmb();
1166 #ifdef CAPTURE_DEBUG
1167 		printk("done\n");
1168 #endif
1169 	}
1170 }
1171 
1172 void smp_release(void)
1173 {
1174 	if (atomic_dec_and_test(&smp_capture_depth)) {
1175 #ifdef CAPTURE_DEBUG
1176 		printk("CPU[%d]: Giving pardon to "
1177 		       "imprisoned penguins\n",
1178 		       smp_processor_id());
1179 #endif
1180 		penguins_are_doing_time = 0;
1181 		membar_safe("#StoreLoad");
1182 		atomic_dec(&smp_capture_registry);
1183 	}
1184 }
1185 
1186 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1187  * set, so they can service tlb flush xcalls...
1188  */
1189 extern void prom_world(int);
1190 
1191 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1192 {
1193 	clear_softint(1 << irq);
1194 
1195 	preempt_disable();
1196 
1197 	__asm__ __volatile__("flushw");
1198 	prom_world(1);
1199 	atomic_inc(&smp_capture_registry);
1200 	membar_safe("#StoreLoad");
1201 	while (penguins_are_doing_time)
1202 		rmb();
1203 	atomic_dec(&smp_capture_registry);
1204 	prom_world(0);
1205 
1206 	preempt_enable();
1207 }
1208 
1209 /* /proc/profile writes can call this, don't __init it please. */
1210 int setup_profiling_timer(unsigned int multiplier)
1211 {
1212 	return -EINVAL;
1213 }
1214 
1215 void __init smp_prepare_cpus(unsigned int max_cpus)
1216 {
1217 }
1218 
1219 void smp_prepare_boot_cpu(void)
1220 {
1221 }
1222 
1223 void __init smp_setup_processor_id(void)
1224 {
1225 	if (tlb_type == spitfire)
1226 		xcall_deliver_impl = spitfire_xcall_deliver;
1227 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1228 		xcall_deliver_impl = cheetah_xcall_deliver;
1229 	else
1230 		xcall_deliver_impl = hypervisor_xcall_deliver;
1231 }
1232 
1233 void smp_fill_in_sib_core_maps(void)
1234 {
1235 	unsigned int i;
1236 
1237 	for_each_present_cpu(i) {
1238 		unsigned int j;
1239 
1240 		cpumask_clear(&cpu_core_map[i]);
1241 		if (cpu_data(i).core_id == 0) {
1242 			cpumask_set_cpu(i, &cpu_core_map[i]);
1243 			continue;
1244 		}
1245 
1246 		for_each_present_cpu(j) {
1247 			if (cpu_data(i).core_id ==
1248 			    cpu_data(j).core_id)
1249 				cpumask_set_cpu(j, &cpu_core_map[i]);
1250 		}
1251 	}
1252 
1253 	for_each_present_cpu(i) {
1254 		unsigned int j;
1255 
1256 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1257 		if (cpu_data(i).proc_id == -1) {
1258 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1259 			continue;
1260 		}
1261 
1262 		for_each_present_cpu(j) {
1263 			if (cpu_data(i).proc_id ==
1264 			    cpu_data(j).proc_id)
1265 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1266 		}
1267 	}
1268 }
1269 
1270 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1271 {
1272 	int ret = smp_boot_one_cpu(cpu, tidle);
1273 
1274 	if (!ret) {
1275 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1276 		while (!cpu_online(cpu))
1277 			mb();
1278 		if (!cpu_online(cpu)) {
1279 			ret = -ENODEV;
1280 		} else {
1281 			/* On SUN4V, writes to %tick and %stick are
1282 			 * not allowed.
1283 			 */
1284 			if (tlb_type != hypervisor)
1285 				smp_synchronize_one_tick(cpu);
1286 		}
1287 	}
1288 	return ret;
1289 }
1290 
1291 #ifdef CONFIG_HOTPLUG_CPU
1292 void cpu_play_dead(void)
1293 {
1294 	int cpu = smp_processor_id();
1295 	unsigned long pstate;
1296 
1297 	idle_task_exit();
1298 
1299 	if (tlb_type == hypervisor) {
1300 		struct trap_per_cpu *tb = &trap_block[cpu];
1301 
1302 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1303 				tb->cpu_mondo_pa, 0);
1304 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1305 				tb->dev_mondo_pa, 0);
1306 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1307 				tb->resum_mondo_pa, 0);
1308 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1309 				tb->nonresum_mondo_pa, 0);
1310 	}
1311 
1312 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1313 	membar_safe("#Sync");
1314 
1315 	local_irq_disable();
1316 
1317 	__asm__ __volatile__(
1318 		"rdpr	%%pstate, %0\n\t"
1319 		"wrpr	%0, %1, %%pstate"
1320 		: "=r" (pstate)
1321 		: "i" (PSTATE_IE));
1322 
1323 	while (1)
1324 		barrier();
1325 }
1326 
1327 int __cpu_disable(void)
1328 {
1329 	int cpu = smp_processor_id();
1330 	cpuinfo_sparc *c;
1331 	int i;
1332 
1333 	for_each_cpu(i, &cpu_core_map[cpu])
1334 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1335 	cpumask_clear(&cpu_core_map[cpu]);
1336 
1337 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1338 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1339 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1340 
1341 	c = &cpu_data(cpu);
1342 
1343 	c->core_id = 0;
1344 	c->proc_id = -1;
1345 
1346 	smp_wmb();
1347 
1348 	/* Make sure no interrupts point to this cpu.  */
1349 	fixup_irqs();
1350 
1351 	local_irq_enable();
1352 	mdelay(1);
1353 	local_irq_disable();
1354 
1355 	set_cpu_online(cpu, false);
1356 
1357 	cpu_map_rebuild();
1358 
1359 	return 0;
1360 }
1361 
1362 void __cpu_die(unsigned int cpu)
1363 {
1364 	int i;
1365 
1366 	for (i = 0; i < 100; i++) {
1367 		smp_rmb();
1368 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1369 			break;
1370 		msleep(100);
1371 	}
1372 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1373 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1374 	} else {
1375 #if defined(CONFIG_SUN_LDOMS)
1376 		unsigned long hv_err;
1377 		int limit = 100;
1378 
1379 		do {
1380 			hv_err = sun4v_cpu_stop(cpu);
1381 			if (hv_err == HV_EOK) {
1382 				set_cpu_present(cpu, false);
1383 				break;
1384 			}
1385 		} while (--limit > 0);
1386 		if (limit <= 0) {
1387 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1388 			       hv_err);
1389 		}
1390 #endif
1391 	}
1392 }
1393 #endif
1394 
1395 void __init smp_cpus_done(unsigned int max_cpus)
1396 {
1397 	pcr_arch_init();
1398 }
1399 
1400 void smp_send_reschedule(int cpu)
1401 {
1402 	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1403 		      cpumask_of(cpu));
1404 }
1405 
1406 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1407 {
1408 	clear_softint(1 << irq);
1409 	scheduler_ipi();
1410 }
1411 
1412 /* This is a nop because we capture all other cpus
1413  * anyways when making the PROM active.
1414  */
1415 void smp_send_stop(void)
1416 {
1417 }
1418 
1419 /**
1420  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1421  * @cpu: cpu to allocate for
1422  * @size: size allocation in bytes
1423  * @align: alignment
1424  *
1425  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1426  * does the right thing for NUMA regardless of the current
1427  * configuration.
1428  *
1429  * RETURNS:
1430  * Pointer to the allocated area on success, NULL on failure.
1431  */
1432 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1433 					size_t align)
1434 {
1435 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1436 #ifdef CONFIG_NEED_MULTIPLE_NODES
1437 	int node = cpu_to_node(cpu);
1438 	void *ptr;
1439 
1440 	if (!node_online(node) || !NODE_DATA(node)) {
1441 		ptr = __alloc_bootmem(size, align, goal);
1442 		pr_info("cpu %d has no node %d or node-local memory\n",
1443 			cpu, node);
1444 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1445 			 cpu, size, __pa(ptr));
1446 	} else {
1447 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1448 					   size, align, goal);
1449 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1450 			 "%016lx\n", cpu, size, node, __pa(ptr));
1451 	}
1452 	return ptr;
1453 #else
1454 	return __alloc_bootmem(size, align, goal);
1455 #endif
1456 }
1457 
1458 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1459 {
1460 	free_bootmem(__pa(ptr), size);
1461 }
1462 
1463 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1464 {
1465 	if (cpu_to_node(from) == cpu_to_node(to))
1466 		return LOCAL_DISTANCE;
1467 	else
1468 		return REMOTE_DISTANCE;
1469 }
1470 
1471 static void __init pcpu_populate_pte(unsigned long addr)
1472 {
1473 	pgd_t *pgd = pgd_offset_k(addr);
1474 	pud_t *pud;
1475 	pmd_t *pmd;
1476 
1477 	pud = pud_offset(pgd, addr);
1478 	if (pud_none(*pud)) {
1479 		pmd_t *new;
1480 
1481 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1482 		pud_populate(&init_mm, pud, new);
1483 	}
1484 
1485 	pmd = pmd_offset(pud, addr);
1486 	if (!pmd_present(*pmd)) {
1487 		pte_t *new;
1488 
1489 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1490 		pmd_populate_kernel(&init_mm, pmd, new);
1491 	}
1492 }
1493 
1494 void __init setup_per_cpu_areas(void)
1495 {
1496 	unsigned long delta;
1497 	unsigned int cpu;
1498 	int rc = -EINVAL;
1499 
1500 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1501 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1502 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1503 					    pcpu_cpu_distance,
1504 					    pcpu_alloc_bootmem,
1505 					    pcpu_free_bootmem);
1506 		if (rc)
1507 			pr_warning("PERCPU: %s allocator failed (%d), "
1508 				   "falling back to page size\n",
1509 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1510 	}
1511 	if (rc < 0)
1512 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1513 					   pcpu_alloc_bootmem,
1514 					   pcpu_free_bootmem,
1515 					   pcpu_populate_pte);
1516 	if (rc < 0)
1517 		panic("cannot initialize percpu area (err=%d)", rc);
1518 
1519 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1520 	for_each_possible_cpu(cpu)
1521 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1522 
1523 	/* Setup %g5 for the boot cpu.  */
1524 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1525 
1526 	of_fill_in_cpu_data();
1527 	if (tlb_type == hypervisor)
1528 		mdesc_fill_in_cpu_data(cpu_all_mask);
1529 }
1530