xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision e190bfe5)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <asm/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38 
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 
53 #include "cpumap.h"
54 
55 int sparc64_multi_core __read_mostly;
56 
57 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
58 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
59 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
60 
61 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
62 EXPORT_SYMBOL(cpu_core_map);
63 
64 static cpumask_t smp_commenced_mask;
65 
66 void smp_info(struct seq_file *m)
67 {
68 	int i;
69 
70 	seq_printf(m, "State:\n");
71 	for_each_online_cpu(i)
72 		seq_printf(m, "CPU%d:\t\tonline\n", i);
73 }
74 
75 void smp_bogo(struct seq_file *m)
76 {
77 	int i;
78 
79 	for_each_online_cpu(i)
80 		seq_printf(m,
81 			   "Cpu%dClkTck\t: %016lx\n",
82 			   i, cpu_data(i).clock_tick);
83 }
84 
85 extern void setup_sparc64_timer(void);
86 
87 static volatile unsigned long callin_flag = 0;
88 
89 void __cpuinit smp_callin(void)
90 {
91 	int cpuid = hard_smp_processor_id();
92 
93 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
94 
95 	if (tlb_type == hypervisor)
96 		sun4v_ktsb_register();
97 
98 	__flush_tlb_all();
99 
100 	setup_sparc64_timer();
101 
102 	if (cheetah_pcache_forced_on)
103 		cheetah_enable_pcache();
104 
105 	local_irq_enable();
106 
107 	callin_flag = 1;
108 	__asm__ __volatile__("membar #Sync\n\t"
109 			     "flush  %%g6" : : : "memory");
110 
111 	/* Clear this or we will die instantly when we
112 	 * schedule back to this idler...
113 	 */
114 	current_thread_info()->new_child = 0;
115 
116 	/* Attach to the address space of init_task. */
117 	atomic_inc(&init_mm.mm_count);
118 	current->active_mm = &init_mm;
119 
120 	/* inform the notifiers about the new cpu */
121 	notify_cpu_starting(cpuid);
122 
123 	while (!cpu_isset(cpuid, smp_commenced_mask))
124 		rmb();
125 
126 	ipi_call_lock_irq();
127 	cpu_set(cpuid, cpu_online_map);
128 	ipi_call_unlock_irq();
129 
130 	/* idle thread is expected to have preempt disabled */
131 	preempt_disable();
132 }
133 
134 void cpu_panic(void)
135 {
136 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
137 	panic("SMP bolixed\n");
138 }
139 
140 /* This tick register synchronization scheme is taken entirely from
141  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
142  *
143  * The only change I've made is to rework it so that the master
144  * initiates the synchonization instead of the slave. -DaveM
145  */
146 
147 #define MASTER	0
148 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
149 
150 #define NUM_ROUNDS	64	/* magic value */
151 #define NUM_ITERS	5	/* likewise */
152 
153 static DEFINE_SPINLOCK(itc_sync_lock);
154 static unsigned long go[SLAVE + 1];
155 
156 #define DEBUG_TICK_SYNC	0
157 
158 static inline long get_delta (long *rt, long *master)
159 {
160 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
161 	unsigned long tcenter, t0, t1, tm;
162 	unsigned long i;
163 
164 	for (i = 0; i < NUM_ITERS; i++) {
165 		t0 = tick_ops->get_tick();
166 		go[MASTER] = 1;
167 		membar_safe("#StoreLoad");
168 		while (!(tm = go[SLAVE]))
169 			rmb();
170 		go[SLAVE] = 0;
171 		wmb();
172 		t1 = tick_ops->get_tick();
173 
174 		if (t1 - t0 < best_t1 - best_t0)
175 			best_t0 = t0, best_t1 = t1, best_tm = tm;
176 	}
177 
178 	*rt = best_t1 - best_t0;
179 	*master = best_tm - best_t0;
180 
181 	/* average best_t0 and best_t1 without overflow: */
182 	tcenter = (best_t0/2 + best_t1/2);
183 	if (best_t0 % 2 + best_t1 % 2 == 2)
184 		tcenter++;
185 	return tcenter - best_tm;
186 }
187 
188 void smp_synchronize_tick_client(void)
189 {
190 	long i, delta, adj, adjust_latency = 0, done = 0;
191 	unsigned long flags, rt, master_time_stamp, bound;
192 #if DEBUG_TICK_SYNC
193 	struct {
194 		long rt;	/* roundtrip time */
195 		long master;	/* master's timestamp */
196 		long diff;	/* difference between midpoint and master's timestamp */
197 		long lat;	/* estimate of itc adjustment latency */
198 	} t[NUM_ROUNDS];
199 #endif
200 
201 	go[MASTER] = 1;
202 
203 	while (go[MASTER])
204 		rmb();
205 
206 	local_irq_save(flags);
207 	{
208 		for (i = 0; i < NUM_ROUNDS; i++) {
209 			delta = get_delta(&rt, &master_time_stamp);
210 			if (delta == 0) {
211 				done = 1;	/* let's lock on to this... */
212 				bound = rt;
213 			}
214 
215 			if (!done) {
216 				if (i > 0) {
217 					adjust_latency += -delta;
218 					adj = -delta + adjust_latency/4;
219 				} else
220 					adj = -delta;
221 
222 				tick_ops->add_tick(adj);
223 			}
224 #if DEBUG_TICK_SYNC
225 			t[i].rt = rt;
226 			t[i].master = master_time_stamp;
227 			t[i].diff = delta;
228 			t[i].lat = adjust_latency/4;
229 #endif
230 		}
231 	}
232 	local_irq_restore(flags);
233 
234 #if DEBUG_TICK_SYNC
235 	for (i = 0; i < NUM_ROUNDS; i++)
236 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
237 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
238 #endif
239 
240 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
241 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
242 	       smp_processor_id(), delta, rt);
243 }
244 
245 static void smp_start_sync_tick_client(int cpu);
246 
247 static void smp_synchronize_one_tick(int cpu)
248 {
249 	unsigned long flags, i;
250 
251 	go[MASTER] = 0;
252 
253 	smp_start_sync_tick_client(cpu);
254 
255 	/* wait for client to be ready */
256 	while (!go[MASTER])
257 		rmb();
258 
259 	/* now let the client proceed into his loop */
260 	go[MASTER] = 0;
261 	membar_safe("#StoreLoad");
262 
263 	spin_lock_irqsave(&itc_sync_lock, flags);
264 	{
265 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
266 			while (!go[MASTER])
267 				rmb();
268 			go[MASTER] = 0;
269 			wmb();
270 			go[SLAVE] = tick_ops->get_tick();
271 			membar_safe("#StoreLoad");
272 		}
273 	}
274 	spin_unlock_irqrestore(&itc_sync_lock, flags);
275 }
276 
277 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
278 /* XXX Put this in some common place. XXX */
279 static unsigned long kimage_addr_to_ra(void *p)
280 {
281 	unsigned long val = (unsigned long) p;
282 
283 	return kern_base + (val - KERNBASE);
284 }
285 
286 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
287 {
288 	extern unsigned long sparc64_ttable_tl0;
289 	extern unsigned long kern_locked_tte_data;
290 	struct hvtramp_descr *hdesc;
291 	unsigned long trampoline_ra;
292 	struct trap_per_cpu *tb;
293 	u64 tte_vaddr, tte_data;
294 	unsigned long hv_err;
295 	int i;
296 
297 	hdesc = kzalloc(sizeof(*hdesc) +
298 			(sizeof(struct hvtramp_mapping) *
299 			 num_kernel_image_mappings - 1),
300 			GFP_KERNEL);
301 	if (!hdesc) {
302 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
303 		       "hvtramp_descr.\n");
304 		return;
305 	}
306 	*descrp = hdesc;
307 
308 	hdesc->cpu = cpu;
309 	hdesc->num_mappings = num_kernel_image_mappings;
310 
311 	tb = &trap_block[cpu];
312 
313 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
314 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
315 
316 	hdesc->thread_reg = thread_reg;
317 
318 	tte_vaddr = (unsigned long) KERNBASE;
319 	tte_data = kern_locked_tte_data;
320 
321 	for (i = 0; i < hdesc->num_mappings; i++) {
322 		hdesc->maps[i].vaddr = tte_vaddr;
323 		hdesc->maps[i].tte   = tte_data;
324 		tte_vaddr += 0x400000;
325 		tte_data  += 0x400000;
326 	}
327 
328 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
329 
330 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
331 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
332 				 __pa(hdesc));
333 	if (hv_err)
334 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
335 		       "gives error %lu\n", hv_err);
336 }
337 #endif
338 
339 extern unsigned long sparc64_cpu_startup;
340 
341 /* The OBP cpu startup callback truncates the 3rd arg cookie to
342  * 32-bits (I think) so to be safe we have it read the pointer
343  * contained here so we work on >4GB machines. -DaveM
344  */
345 static struct thread_info *cpu_new_thread = NULL;
346 
347 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
348 {
349 	unsigned long entry =
350 		(unsigned long)(&sparc64_cpu_startup);
351 	unsigned long cookie =
352 		(unsigned long)(&cpu_new_thread);
353 	struct task_struct *p;
354 	void *descr = NULL;
355 	int timeout, ret;
356 
357 	p = fork_idle(cpu);
358 	if (IS_ERR(p))
359 		return PTR_ERR(p);
360 	callin_flag = 0;
361 	cpu_new_thread = task_thread_info(p);
362 
363 	if (tlb_type == hypervisor) {
364 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
365 		if (ldom_domaining_enabled)
366 			ldom_startcpu_cpuid(cpu,
367 					    (unsigned long) cpu_new_thread,
368 					    &descr);
369 		else
370 #endif
371 			prom_startcpu_cpuid(cpu, entry, cookie);
372 	} else {
373 		struct device_node *dp = of_find_node_by_cpuid(cpu);
374 
375 		prom_startcpu(dp->phandle, entry, cookie);
376 	}
377 
378 	for (timeout = 0; timeout < 50000; timeout++) {
379 		if (callin_flag)
380 			break;
381 		udelay(100);
382 	}
383 
384 	if (callin_flag) {
385 		ret = 0;
386 	} else {
387 		printk("Processor %d is stuck.\n", cpu);
388 		ret = -ENODEV;
389 	}
390 	cpu_new_thread = NULL;
391 
392 	kfree(descr);
393 
394 	return ret;
395 }
396 
397 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
398 {
399 	u64 result, target;
400 	int stuck, tmp;
401 
402 	if (this_is_starfire) {
403 		/* map to real upaid */
404 		cpu = (((cpu & 0x3c) << 1) |
405 			((cpu & 0x40) >> 4) |
406 			(cpu & 0x3));
407 	}
408 
409 	target = (cpu << 14) | 0x70;
410 again:
411 	/* Ok, this is the real Spitfire Errata #54.
412 	 * One must read back from a UDB internal register
413 	 * after writes to the UDB interrupt dispatch, but
414 	 * before the membar Sync for that write.
415 	 * So we use the high UDB control register (ASI 0x7f,
416 	 * ADDR 0x20) for the dummy read. -DaveM
417 	 */
418 	tmp = 0x40;
419 	__asm__ __volatile__(
420 	"wrpr	%1, %2, %%pstate\n\t"
421 	"stxa	%4, [%0] %3\n\t"
422 	"stxa	%5, [%0+%8] %3\n\t"
423 	"add	%0, %8, %0\n\t"
424 	"stxa	%6, [%0+%8] %3\n\t"
425 	"membar	#Sync\n\t"
426 	"stxa	%%g0, [%7] %3\n\t"
427 	"membar	#Sync\n\t"
428 	"mov	0x20, %%g1\n\t"
429 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
430 	"membar	#Sync"
431 	: "=r" (tmp)
432 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
433 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
434 	  "r" (0x10), "0" (tmp)
435         : "g1");
436 
437 	/* NOTE: PSTATE_IE is still clear. */
438 	stuck = 100000;
439 	do {
440 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
441 			: "=r" (result)
442 			: "i" (ASI_INTR_DISPATCH_STAT));
443 		if (result == 0) {
444 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445 					     : : "r" (pstate));
446 			return;
447 		}
448 		stuck -= 1;
449 		if (stuck == 0)
450 			break;
451 	} while (result & 0x1);
452 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
453 			     : : "r" (pstate));
454 	if (stuck == 0) {
455 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
456 		       smp_processor_id(), result);
457 	} else {
458 		udelay(2);
459 		goto again;
460 	}
461 }
462 
463 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
464 {
465 	u64 *mondo, data0, data1, data2;
466 	u16 *cpu_list;
467 	u64 pstate;
468 	int i;
469 
470 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
471 	cpu_list = __va(tb->cpu_list_pa);
472 	mondo = __va(tb->cpu_mondo_block_pa);
473 	data0 = mondo[0];
474 	data1 = mondo[1];
475 	data2 = mondo[2];
476 	for (i = 0; i < cnt; i++)
477 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
478 }
479 
480 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
481  * packet, but we have no use for that.  However we do take advantage of
482  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
483  */
484 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
485 {
486 	int nack_busy_id, is_jbus, need_more;
487 	u64 *mondo, pstate, ver, busy_mask;
488 	u16 *cpu_list;
489 
490 	cpu_list = __va(tb->cpu_list_pa);
491 	mondo = __va(tb->cpu_mondo_block_pa);
492 
493 	/* Unfortunately, someone at Sun had the brilliant idea to make the
494 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
495 	 * derivative processor.
496 	 */
497 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
498 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
499 		   (ver >> 32) == __SERRANO_ID);
500 
501 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
502 
503 retry:
504 	need_more = 0;
505 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
506 			     : : "r" (pstate), "i" (PSTATE_IE));
507 
508 	/* Setup the dispatch data registers. */
509 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
510 			     "stxa	%1, [%4] %6\n\t"
511 			     "stxa	%2, [%5] %6\n\t"
512 			     "membar	#Sync\n\t"
513 			     : /* no outputs */
514 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
515 			       "r" (0x40), "r" (0x50), "r" (0x60),
516 			       "i" (ASI_INTR_W));
517 
518 	nack_busy_id = 0;
519 	busy_mask = 0;
520 	{
521 		int i;
522 
523 		for (i = 0; i < cnt; i++) {
524 			u64 target, nr;
525 
526 			nr = cpu_list[i];
527 			if (nr == 0xffff)
528 				continue;
529 
530 			target = (nr << 14) | 0x70;
531 			if (is_jbus) {
532 				busy_mask |= (0x1UL << (nr * 2));
533 			} else {
534 				target |= (nack_busy_id << 24);
535 				busy_mask |= (0x1UL <<
536 					      (nack_busy_id * 2));
537 			}
538 			__asm__ __volatile__(
539 				"stxa	%%g0, [%0] %1\n\t"
540 				"membar	#Sync\n\t"
541 				: /* no outputs */
542 				: "r" (target), "i" (ASI_INTR_W));
543 			nack_busy_id++;
544 			if (nack_busy_id == 32) {
545 				need_more = 1;
546 				break;
547 			}
548 		}
549 	}
550 
551 	/* Now, poll for completion. */
552 	{
553 		u64 dispatch_stat, nack_mask;
554 		long stuck;
555 
556 		stuck = 100000 * nack_busy_id;
557 		nack_mask = busy_mask << 1;
558 		do {
559 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
560 					     : "=r" (dispatch_stat)
561 					     : "i" (ASI_INTR_DISPATCH_STAT));
562 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
563 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
564 						     : : "r" (pstate));
565 				if (unlikely(need_more)) {
566 					int i, this_cnt = 0;
567 					for (i = 0; i < cnt; i++) {
568 						if (cpu_list[i] == 0xffff)
569 							continue;
570 						cpu_list[i] = 0xffff;
571 						this_cnt++;
572 						if (this_cnt == 32)
573 							break;
574 					}
575 					goto retry;
576 				}
577 				return;
578 			}
579 			if (!--stuck)
580 				break;
581 		} while (dispatch_stat & busy_mask);
582 
583 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
584 				     : : "r" (pstate));
585 
586 		if (dispatch_stat & busy_mask) {
587 			/* Busy bits will not clear, continue instead
588 			 * of freezing up on this cpu.
589 			 */
590 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
591 			       smp_processor_id(), dispatch_stat);
592 		} else {
593 			int i, this_busy_nack = 0;
594 
595 			/* Delay some random time with interrupts enabled
596 			 * to prevent deadlock.
597 			 */
598 			udelay(2 * nack_busy_id);
599 
600 			/* Clear out the mask bits for cpus which did not
601 			 * NACK us.
602 			 */
603 			for (i = 0; i < cnt; i++) {
604 				u64 check_mask, nr;
605 
606 				nr = cpu_list[i];
607 				if (nr == 0xffff)
608 					continue;
609 
610 				if (is_jbus)
611 					check_mask = (0x2UL << (2*nr));
612 				else
613 					check_mask = (0x2UL <<
614 						      this_busy_nack);
615 				if ((dispatch_stat & check_mask) == 0)
616 					cpu_list[i] = 0xffff;
617 				this_busy_nack += 2;
618 				if (this_busy_nack == 64)
619 					break;
620 			}
621 
622 			goto retry;
623 		}
624 	}
625 }
626 
627 /* Multi-cpu list version.  */
628 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
629 {
630 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
631 	unsigned long status;
632 	u16 *cpu_list;
633 
634 	this_cpu = smp_processor_id();
635 
636 	cpu_list = __va(tb->cpu_list_pa);
637 
638 	saw_cpu_error = 0;
639 	retries = 0;
640 	prev_sent = 0;
641 	do {
642 		int forward_progress, n_sent;
643 
644 		status = sun4v_cpu_mondo_send(cnt,
645 					      tb->cpu_list_pa,
646 					      tb->cpu_mondo_block_pa);
647 
648 		/* HV_EOK means all cpus received the xcall, we're done.  */
649 		if (likely(status == HV_EOK))
650 			break;
651 
652 		/* First, see if we made any forward progress.
653 		 *
654 		 * The hypervisor indicates successful sends by setting
655 		 * cpu list entries to the value 0xffff.
656 		 */
657 		n_sent = 0;
658 		for (i = 0; i < cnt; i++) {
659 			if (likely(cpu_list[i] == 0xffff))
660 				n_sent++;
661 		}
662 
663 		forward_progress = 0;
664 		if (n_sent > prev_sent)
665 			forward_progress = 1;
666 
667 		prev_sent = n_sent;
668 
669 		/* If we get a HV_ECPUERROR, then one or more of the cpus
670 		 * in the list are in error state.  Use the cpu_state()
671 		 * hypervisor call to find out which cpus are in error state.
672 		 */
673 		if (unlikely(status == HV_ECPUERROR)) {
674 			for (i = 0; i < cnt; i++) {
675 				long err;
676 				u16 cpu;
677 
678 				cpu = cpu_list[i];
679 				if (cpu == 0xffff)
680 					continue;
681 
682 				err = sun4v_cpu_state(cpu);
683 				if (err == HV_CPU_STATE_ERROR) {
684 					saw_cpu_error = (cpu + 1);
685 					cpu_list[i] = 0xffff;
686 				}
687 			}
688 		} else if (unlikely(status != HV_EWOULDBLOCK))
689 			goto fatal_mondo_error;
690 
691 		/* Don't bother rewriting the CPU list, just leave the
692 		 * 0xffff and non-0xffff entries in there and the
693 		 * hypervisor will do the right thing.
694 		 *
695 		 * Only advance timeout state if we didn't make any
696 		 * forward progress.
697 		 */
698 		if (unlikely(!forward_progress)) {
699 			if (unlikely(++retries > 10000))
700 				goto fatal_mondo_timeout;
701 
702 			/* Delay a little bit to let other cpus catch up
703 			 * on their cpu mondo queue work.
704 			 */
705 			udelay(2 * cnt);
706 		}
707 	} while (1);
708 
709 	if (unlikely(saw_cpu_error))
710 		goto fatal_mondo_cpu_error;
711 
712 	return;
713 
714 fatal_mondo_cpu_error:
715 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
716 	       "(including %d) were in error state\n",
717 	       this_cpu, saw_cpu_error - 1);
718 	return;
719 
720 fatal_mondo_timeout:
721 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
722 	       " progress after %d retries.\n",
723 	       this_cpu, retries);
724 	goto dump_cpu_list_and_out;
725 
726 fatal_mondo_error:
727 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
728 	       this_cpu, status);
729 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
730 	       "mondo_block_pa(%lx)\n",
731 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
732 
733 dump_cpu_list_and_out:
734 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
735 	for (i = 0; i < cnt; i++)
736 		printk("%u ", cpu_list[i]);
737 	printk("]\n");
738 }
739 
740 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
741 
742 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
743 {
744 	struct trap_per_cpu *tb;
745 	int this_cpu, i, cnt;
746 	unsigned long flags;
747 	u16 *cpu_list;
748 	u64 *mondo;
749 
750 	/* We have to do this whole thing with interrupts fully disabled.
751 	 * Otherwise if we send an xcall from interrupt context it will
752 	 * corrupt both our mondo block and cpu list state.
753 	 *
754 	 * One consequence of this is that we cannot use timeout mechanisms
755 	 * that depend upon interrupts being delivered locally.  So, for
756 	 * example, we cannot sample jiffies and expect it to advance.
757 	 *
758 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
759 	 */
760 	local_irq_save(flags);
761 
762 	this_cpu = smp_processor_id();
763 	tb = &trap_block[this_cpu];
764 
765 	mondo = __va(tb->cpu_mondo_block_pa);
766 	mondo[0] = data0;
767 	mondo[1] = data1;
768 	mondo[2] = data2;
769 	wmb();
770 
771 	cpu_list = __va(tb->cpu_list_pa);
772 
773 	/* Setup the initial cpu list.  */
774 	cnt = 0;
775 	for_each_cpu(i, mask) {
776 		if (i == this_cpu || !cpu_online(i))
777 			continue;
778 		cpu_list[cnt++] = i;
779 	}
780 
781 	if (cnt)
782 		xcall_deliver_impl(tb, cnt);
783 
784 	local_irq_restore(flags);
785 }
786 
787 /* Send cross call to all processors mentioned in MASK_P
788  * except self.  Really, there are only two cases currently,
789  * "&cpu_online_map" and "&mm->cpu_vm_mask".
790  */
791 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
792 {
793 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
794 
795 	xcall_deliver(data0, data1, data2, mask);
796 }
797 
798 /* Send cross call to all processors except self. */
799 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
800 {
801 	smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
802 }
803 
804 extern unsigned long xcall_sync_tick;
805 
806 static void smp_start_sync_tick_client(int cpu)
807 {
808 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
809 		      &cpumask_of_cpu(cpu));
810 }
811 
812 extern unsigned long xcall_call_function;
813 
814 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
815 {
816 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
817 }
818 
819 extern unsigned long xcall_call_function_single;
820 
821 void arch_send_call_function_single_ipi(int cpu)
822 {
823 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
824 		      &cpumask_of_cpu(cpu));
825 }
826 
827 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
828 {
829 	clear_softint(1 << irq);
830 	generic_smp_call_function_interrupt();
831 }
832 
833 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
834 {
835 	clear_softint(1 << irq);
836 	generic_smp_call_function_single_interrupt();
837 }
838 
839 static void tsb_sync(void *info)
840 {
841 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
842 	struct mm_struct *mm = info;
843 
844 	/* It is not valid to test "currrent->active_mm == mm" here.
845 	 *
846 	 * The value of "current" is not changed atomically with
847 	 * switch_mm().  But that's OK, we just need to check the
848 	 * current cpu's trap block PGD physical address.
849 	 */
850 	if (tp->pgd_paddr == __pa(mm->pgd))
851 		tsb_context_switch(mm);
852 }
853 
854 void smp_tsb_sync(struct mm_struct *mm)
855 {
856 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
857 }
858 
859 extern unsigned long xcall_flush_tlb_mm;
860 extern unsigned long xcall_flush_tlb_pending;
861 extern unsigned long xcall_flush_tlb_kernel_range;
862 extern unsigned long xcall_fetch_glob_regs;
863 extern unsigned long xcall_receive_signal;
864 extern unsigned long xcall_new_mmu_context_version;
865 #ifdef CONFIG_KGDB
866 extern unsigned long xcall_kgdb_capture;
867 #endif
868 
869 #ifdef DCACHE_ALIASING_POSSIBLE
870 extern unsigned long xcall_flush_dcache_page_cheetah;
871 #endif
872 extern unsigned long xcall_flush_dcache_page_spitfire;
873 
874 #ifdef CONFIG_DEBUG_DCFLUSH
875 extern atomic_t dcpage_flushes;
876 extern atomic_t dcpage_flushes_xcall;
877 #endif
878 
879 static inline void __local_flush_dcache_page(struct page *page)
880 {
881 #ifdef DCACHE_ALIASING_POSSIBLE
882 	__flush_dcache_page(page_address(page),
883 			    ((tlb_type == spitfire) &&
884 			     page_mapping(page) != NULL));
885 #else
886 	if (page_mapping(page) != NULL &&
887 	    tlb_type == spitfire)
888 		__flush_icache_page(__pa(page_address(page)));
889 #endif
890 }
891 
892 void smp_flush_dcache_page_impl(struct page *page, int cpu)
893 {
894 	int this_cpu;
895 
896 	if (tlb_type == hypervisor)
897 		return;
898 
899 #ifdef CONFIG_DEBUG_DCFLUSH
900 	atomic_inc(&dcpage_flushes);
901 #endif
902 
903 	this_cpu = get_cpu();
904 
905 	if (cpu == this_cpu) {
906 		__local_flush_dcache_page(page);
907 	} else if (cpu_online(cpu)) {
908 		void *pg_addr = page_address(page);
909 		u64 data0 = 0;
910 
911 		if (tlb_type == spitfire) {
912 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
913 			if (page_mapping(page) != NULL)
914 				data0 |= ((u64)1 << 32);
915 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
916 #ifdef DCACHE_ALIASING_POSSIBLE
917 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
918 #endif
919 		}
920 		if (data0) {
921 			xcall_deliver(data0, __pa(pg_addr),
922 				      (u64) pg_addr, &cpumask_of_cpu(cpu));
923 #ifdef CONFIG_DEBUG_DCFLUSH
924 			atomic_inc(&dcpage_flushes_xcall);
925 #endif
926 		}
927 	}
928 
929 	put_cpu();
930 }
931 
932 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
933 {
934 	void *pg_addr;
935 	int this_cpu;
936 	u64 data0;
937 
938 	if (tlb_type == hypervisor)
939 		return;
940 
941 	this_cpu = get_cpu();
942 
943 #ifdef CONFIG_DEBUG_DCFLUSH
944 	atomic_inc(&dcpage_flushes);
945 #endif
946 	data0 = 0;
947 	pg_addr = page_address(page);
948 	if (tlb_type == spitfire) {
949 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
950 		if (page_mapping(page) != NULL)
951 			data0 |= ((u64)1 << 32);
952 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
953 #ifdef DCACHE_ALIASING_POSSIBLE
954 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
955 #endif
956 	}
957 	if (data0) {
958 		xcall_deliver(data0, __pa(pg_addr),
959 			      (u64) pg_addr, &cpu_online_map);
960 #ifdef CONFIG_DEBUG_DCFLUSH
961 		atomic_inc(&dcpage_flushes_xcall);
962 #endif
963 	}
964 	__local_flush_dcache_page(page);
965 
966 	put_cpu();
967 }
968 
969 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
970 {
971 	struct mm_struct *mm;
972 	unsigned long flags;
973 
974 	clear_softint(1 << irq);
975 
976 	/* See if we need to allocate a new TLB context because
977 	 * the version of the one we are using is now out of date.
978 	 */
979 	mm = current->active_mm;
980 	if (unlikely(!mm || (mm == &init_mm)))
981 		return;
982 
983 	spin_lock_irqsave(&mm->context.lock, flags);
984 
985 	if (unlikely(!CTX_VALID(mm->context)))
986 		get_new_mmu_context(mm);
987 
988 	spin_unlock_irqrestore(&mm->context.lock, flags);
989 
990 	load_secondary_context(mm);
991 	__flush_tlb_mm(CTX_HWBITS(mm->context),
992 		       SECONDARY_CONTEXT);
993 }
994 
995 void smp_new_mmu_context_version(void)
996 {
997 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
998 }
999 
1000 #ifdef CONFIG_KGDB
1001 void kgdb_roundup_cpus(unsigned long flags)
1002 {
1003 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1004 }
1005 #endif
1006 
1007 void smp_fetch_global_regs(void)
1008 {
1009 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1010 }
1011 
1012 /* We know that the window frames of the user have been flushed
1013  * to the stack before we get here because all callers of us
1014  * are flush_tlb_*() routines, and these run after flush_cache_*()
1015  * which performs the flushw.
1016  *
1017  * The SMP TLB coherency scheme we use works as follows:
1018  *
1019  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1020  *    space has (potentially) executed on, this is the heuristic
1021  *    we use to avoid doing cross calls.
1022  *
1023  *    Also, for flushing from kswapd and also for clones, we
1024  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1025  *
1026  * 2) TLB context numbers are shared globally across all processors
1027  *    in the system, this allows us to play several games to avoid
1028  *    cross calls.
1029  *
1030  *    One invariant is that when a cpu switches to a process, and
1031  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1032  *    current cpu's bit set, that tlb context is flushed locally.
1033  *
1034  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1035  *    cross calls when we want to flush the currently running process's
1036  *    tlb state.  This is done by clearing all cpu bits except the current
1037  *    processor's in current->mm->cpu_vm_mask and performing the
1038  *    flush locally only.  This will force any subsequent cpus which run
1039  *    this task to flush the context from the local tlb if the process
1040  *    migrates to another cpu (again).
1041  *
1042  * 3) For shared address spaces (threads) and swapping we bite the
1043  *    bullet for most cases and perform the cross call (but only to
1044  *    the cpus listed in cpu_vm_mask).
1045  *
1046  *    The performance gain from "optimizing" away the cross call for threads is
1047  *    questionable (in theory the big win for threads is the massive sharing of
1048  *    address space state across processors).
1049  */
1050 
1051 /* This currently is only used by the hugetlb arch pre-fault
1052  * hook on UltraSPARC-III+ and later when changing the pagesize
1053  * bits of the context register for an address space.
1054  */
1055 void smp_flush_tlb_mm(struct mm_struct *mm)
1056 {
1057 	u32 ctx = CTX_HWBITS(mm->context);
1058 	int cpu = get_cpu();
1059 
1060 	if (atomic_read(&mm->mm_users) == 1) {
1061 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1062 		goto local_flush_and_out;
1063 	}
1064 
1065 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1066 			      ctx, 0, 0,
1067 			      mm_cpumask(mm));
1068 
1069 local_flush_and_out:
1070 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1071 
1072 	put_cpu();
1073 }
1074 
1075 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1076 {
1077 	u32 ctx = CTX_HWBITS(mm->context);
1078 	int cpu = get_cpu();
1079 
1080 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1081 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1082 	else
1083 		smp_cross_call_masked(&xcall_flush_tlb_pending,
1084 				      ctx, nr, (unsigned long) vaddrs,
1085 				      mm_cpumask(mm));
1086 
1087 	__flush_tlb_pending(ctx, nr, vaddrs);
1088 
1089 	put_cpu();
1090 }
1091 
1092 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1093 {
1094 	start &= PAGE_MASK;
1095 	end    = PAGE_ALIGN(end);
1096 	if (start != end) {
1097 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1098 			       0, start, end);
1099 
1100 		__flush_tlb_kernel_range(start, end);
1101 	}
1102 }
1103 
1104 /* CPU capture. */
1105 /* #define CAPTURE_DEBUG */
1106 extern unsigned long xcall_capture;
1107 
1108 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1109 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1110 static unsigned long penguins_are_doing_time;
1111 
1112 void smp_capture(void)
1113 {
1114 	int result = atomic_add_ret(1, &smp_capture_depth);
1115 
1116 	if (result == 1) {
1117 		int ncpus = num_online_cpus();
1118 
1119 #ifdef CAPTURE_DEBUG
1120 		printk("CPU[%d]: Sending penguins to jail...",
1121 		       smp_processor_id());
1122 #endif
1123 		penguins_are_doing_time = 1;
1124 		atomic_inc(&smp_capture_registry);
1125 		smp_cross_call(&xcall_capture, 0, 0, 0);
1126 		while (atomic_read(&smp_capture_registry) != ncpus)
1127 			rmb();
1128 #ifdef CAPTURE_DEBUG
1129 		printk("done\n");
1130 #endif
1131 	}
1132 }
1133 
1134 void smp_release(void)
1135 {
1136 	if (atomic_dec_and_test(&smp_capture_depth)) {
1137 #ifdef CAPTURE_DEBUG
1138 		printk("CPU[%d]: Giving pardon to "
1139 		       "imprisoned penguins\n",
1140 		       smp_processor_id());
1141 #endif
1142 		penguins_are_doing_time = 0;
1143 		membar_safe("#StoreLoad");
1144 		atomic_dec(&smp_capture_registry);
1145 	}
1146 }
1147 
1148 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1149  * set, so they can service tlb flush xcalls...
1150  */
1151 extern void prom_world(int);
1152 
1153 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1154 {
1155 	clear_softint(1 << irq);
1156 
1157 	preempt_disable();
1158 
1159 	__asm__ __volatile__("flushw");
1160 	prom_world(1);
1161 	atomic_inc(&smp_capture_registry);
1162 	membar_safe("#StoreLoad");
1163 	while (penguins_are_doing_time)
1164 		rmb();
1165 	atomic_dec(&smp_capture_registry);
1166 	prom_world(0);
1167 
1168 	preempt_enable();
1169 }
1170 
1171 /* /proc/profile writes can call this, don't __init it please. */
1172 int setup_profiling_timer(unsigned int multiplier)
1173 {
1174 	return -EINVAL;
1175 }
1176 
1177 void __init smp_prepare_cpus(unsigned int max_cpus)
1178 {
1179 }
1180 
1181 void __devinit smp_prepare_boot_cpu(void)
1182 {
1183 }
1184 
1185 void __init smp_setup_processor_id(void)
1186 {
1187 	if (tlb_type == spitfire)
1188 		xcall_deliver_impl = spitfire_xcall_deliver;
1189 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1190 		xcall_deliver_impl = cheetah_xcall_deliver;
1191 	else
1192 		xcall_deliver_impl = hypervisor_xcall_deliver;
1193 }
1194 
1195 void __devinit smp_fill_in_sib_core_maps(void)
1196 {
1197 	unsigned int i;
1198 
1199 	for_each_present_cpu(i) {
1200 		unsigned int j;
1201 
1202 		cpus_clear(cpu_core_map[i]);
1203 		if (cpu_data(i).core_id == 0) {
1204 			cpu_set(i, cpu_core_map[i]);
1205 			continue;
1206 		}
1207 
1208 		for_each_present_cpu(j) {
1209 			if (cpu_data(i).core_id ==
1210 			    cpu_data(j).core_id)
1211 				cpu_set(j, cpu_core_map[i]);
1212 		}
1213 	}
1214 
1215 	for_each_present_cpu(i) {
1216 		unsigned int j;
1217 
1218 		cpus_clear(per_cpu(cpu_sibling_map, i));
1219 		if (cpu_data(i).proc_id == -1) {
1220 			cpu_set(i, per_cpu(cpu_sibling_map, i));
1221 			continue;
1222 		}
1223 
1224 		for_each_present_cpu(j) {
1225 			if (cpu_data(i).proc_id ==
1226 			    cpu_data(j).proc_id)
1227 				cpu_set(j, per_cpu(cpu_sibling_map, i));
1228 		}
1229 	}
1230 }
1231 
1232 int __cpuinit __cpu_up(unsigned int cpu)
1233 {
1234 	int ret = smp_boot_one_cpu(cpu);
1235 
1236 	if (!ret) {
1237 		cpu_set(cpu, smp_commenced_mask);
1238 		while (!cpu_isset(cpu, cpu_online_map))
1239 			mb();
1240 		if (!cpu_isset(cpu, cpu_online_map)) {
1241 			ret = -ENODEV;
1242 		} else {
1243 			/* On SUN4V, writes to %tick and %stick are
1244 			 * not allowed.
1245 			 */
1246 			if (tlb_type != hypervisor)
1247 				smp_synchronize_one_tick(cpu);
1248 		}
1249 	}
1250 	return ret;
1251 }
1252 
1253 #ifdef CONFIG_HOTPLUG_CPU
1254 void cpu_play_dead(void)
1255 {
1256 	int cpu = smp_processor_id();
1257 	unsigned long pstate;
1258 
1259 	idle_task_exit();
1260 
1261 	if (tlb_type == hypervisor) {
1262 		struct trap_per_cpu *tb = &trap_block[cpu];
1263 
1264 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1265 				tb->cpu_mondo_pa, 0);
1266 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1267 				tb->dev_mondo_pa, 0);
1268 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1269 				tb->resum_mondo_pa, 0);
1270 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1271 				tb->nonresum_mondo_pa, 0);
1272 	}
1273 
1274 	cpu_clear(cpu, smp_commenced_mask);
1275 	membar_safe("#Sync");
1276 
1277 	local_irq_disable();
1278 
1279 	__asm__ __volatile__(
1280 		"rdpr	%%pstate, %0\n\t"
1281 		"wrpr	%0, %1, %%pstate"
1282 		: "=r" (pstate)
1283 		: "i" (PSTATE_IE));
1284 
1285 	while (1)
1286 		barrier();
1287 }
1288 
1289 int __cpu_disable(void)
1290 {
1291 	int cpu = smp_processor_id();
1292 	cpuinfo_sparc *c;
1293 	int i;
1294 
1295 	for_each_cpu_mask(i, cpu_core_map[cpu])
1296 		cpu_clear(cpu, cpu_core_map[i]);
1297 	cpus_clear(cpu_core_map[cpu]);
1298 
1299 	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1300 		cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1301 	cpus_clear(per_cpu(cpu_sibling_map, cpu));
1302 
1303 	c = &cpu_data(cpu);
1304 
1305 	c->core_id = 0;
1306 	c->proc_id = -1;
1307 
1308 	smp_wmb();
1309 
1310 	/* Make sure no interrupts point to this cpu.  */
1311 	fixup_irqs();
1312 
1313 	local_irq_enable();
1314 	mdelay(1);
1315 	local_irq_disable();
1316 
1317 	ipi_call_lock();
1318 	cpu_clear(cpu, cpu_online_map);
1319 	ipi_call_unlock();
1320 
1321 	cpu_map_rebuild();
1322 
1323 	return 0;
1324 }
1325 
1326 void __cpu_die(unsigned int cpu)
1327 {
1328 	int i;
1329 
1330 	for (i = 0; i < 100; i++) {
1331 		smp_rmb();
1332 		if (!cpu_isset(cpu, smp_commenced_mask))
1333 			break;
1334 		msleep(100);
1335 	}
1336 	if (cpu_isset(cpu, smp_commenced_mask)) {
1337 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1338 	} else {
1339 #if defined(CONFIG_SUN_LDOMS)
1340 		unsigned long hv_err;
1341 		int limit = 100;
1342 
1343 		do {
1344 			hv_err = sun4v_cpu_stop(cpu);
1345 			if (hv_err == HV_EOK) {
1346 				cpu_clear(cpu, cpu_present_map);
1347 				break;
1348 			}
1349 		} while (--limit > 0);
1350 		if (limit <= 0) {
1351 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1352 			       hv_err);
1353 		}
1354 #endif
1355 	}
1356 }
1357 #endif
1358 
1359 void __init smp_cpus_done(unsigned int max_cpus)
1360 {
1361 }
1362 
1363 void smp_send_reschedule(int cpu)
1364 {
1365 	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1366 		      &cpumask_of_cpu(cpu));
1367 }
1368 
1369 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1370 {
1371 	clear_softint(1 << irq);
1372 }
1373 
1374 /* This is a nop because we capture all other cpus
1375  * anyways when making the PROM active.
1376  */
1377 void smp_send_stop(void)
1378 {
1379 }
1380 
1381 /**
1382  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1383  * @cpu: cpu to allocate for
1384  * @size: size allocation in bytes
1385  * @align: alignment
1386  *
1387  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1388  * does the right thing for NUMA regardless of the current
1389  * configuration.
1390  *
1391  * RETURNS:
1392  * Pointer to the allocated area on success, NULL on failure.
1393  */
1394 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1395 					size_t align)
1396 {
1397 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1398 #ifdef CONFIG_NEED_MULTIPLE_NODES
1399 	int node = cpu_to_node(cpu);
1400 	void *ptr;
1401 
1402 	if (!node_online(node) || !NODE_DATA(node)) {
1403 		ptr = __alloc_bootmem(size, align, goal);
1404 		pr_info("cpu %d has no node %d or node-local memory\n",
1405 			cpu, node);
1406 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1407 			 cpu, size, __pa(ptr));
1408 	} else {
1409 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1410 					   size, align, goal);
1411 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1412 			 "%016lx\n", cpu, size, node, __pa(ptr));
1413 	}
1414 	return ptr;
1415 #else
1416 	return __alloc_bootmem(size, align, goal);
1417 #endif
1418 }
1419 
1420 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1421 {
1422 	free_bootmem(__pa(ptr), size);
1423 }
1424 
1425 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1426 {
1427 	if (cpu_to_node(from) == cpu_to_node(to))
1428 		return LOCAL_DISTANCE;
1429 	else
1430 		return REMOTE_DISTANCE;
1431 }
1432 
1433 static void __init pcpu_populate_pte(unsigned long addr)
1434 {
1435 	pgd_t *pgd = pgd_offset_k(addr);
1436 	pud_t *pud;
1437 	pmd_t *pmd;
1438 
1439 	pud = pud_offset(pgd, addr);
1440 	if (pud_none(*pud)) {
1441 		pmd_t *new;
1442 
1443 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1444 		pud_populate(&init_mm, pud, new);
1445 	}
1446 
1447 	pmd = pmd_offset(pud, addr);
1448 	if (!pmd_present(*pmd)) {
1449 		pte_t *new;
1450 
1451 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1452 		pmd_populate_kernel(&init_mm, pmd, new);
1453 	}
1454 }
1455 
1456 void __init setup_per_cpu_areas(void)
1457 {
1458 	unsigned long delta;
1459 	unsigned int cpu;
1460 	int rc = -EINVAL;
1461 
1462 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1463 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1464 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1465 					    pcpu_cpu_distance,
1466 					    pcpu_alloc_bootmem,
1467 					    pcpu_free_bootmem);
1468 		if (rc)
1469 			pr_warning("PERCPU: %s allocator failed (%d), "
1470 				   "falling back to page size\n",
1471 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1472 	}
1473 	if (rc < 0)
1474 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1475 					   pcpu_alloc_bootmem,
1476 					   pcpu_free_bootmem,
1477 					   pcpu_populate_pte);
1478 	if (rc < 0)
1479 		panic("cannot initialize percpu area (err=%d)", rc);
1480 
1481 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1482 	for_each_possible_cpu(cpu)
1483 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1484 
1485 	/* Setup %g5 for the boot cpu.  */
1486 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1487 
1488 	of_fill_in_cpu_data();
1489 	if (tlb_type == hypervisor)
1490 		mdesc_fill_in_cpu_data(cpu_all_mask);
1491 }
1492