xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <asm/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38 
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53 
54 #include "cpumap.h"
55 
56 int sparc64_multi_core __read_mostly;
57 
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61 
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64 
65 static cpumask_t smp_commenced_mask;
66 
67 void smp_info(struct seq_file *m)
68 {
69 	int i;
70 
71 	seq_printf(m, "State:\n");
72 	for_each_online_cpu(i)
73 		seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75 
76 void smp_bogo(struct seq_file *m)
77 {
78 	int i;
79 
80 	for_each_online_cpu(i)
81 		seq_printf(m,
82 			   "Cpu%dClkTck\t: %016lx\n",
83 			   i, cpu_data(i).clock_tick);
84 }
85 
86 extern void setup_sparc64_timer(void);
87 
88 static volatile unsigned long callin_flag = 0;
89 
90 void __cpuinit smp_callin(void)
91 {
92 	int cpuid = hard_smp_processor_id();
93 
94 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
95 
96 	if (tlb_type == hypervisor)
97 		sun4v_ktsb_register();
98 
99 	__flush_tlb_all();
100 
101 	setup_sparc64_timer();
102 
103 	if (cheetah_pcache_forced_on)
104 		cheetah_enable_pcache();
105 
106 	local_irq_enable();
107 
108 	callin_flag = 1;
109 	__asm__ __volatile__("membar #Sync\n\t"
110 			     "flush  %%g6" : : : "memory");
111 
112 	/* Clear this or we will die instantly when we
113 	 * schedule back to this idler...
114 	 */
115 	current_thread_info()->new_child = 0;
116 
117 	/* Attach to the address space of init_task. */
118 	atomic_inc(&init_mm.mm_count);
119 	current->active_mm = &init_mm;
120 
121 	/* inform the notifiers about the new cpu */
122 	notify_cpu_starting(cpuid);
123 
124 	while (!cpu_isset(cpuid, smp_commenced_mask))
125 		rmb();
126 
127 	ipi_call_lock_irq();
128 	cpu_set(cpuid, cpu_online_map);
129 	ipi_call_unlock_irq();
130 
131 	/* idle thread is expected to have preempt disabled */
132 	preempt_disable();
133 }
134 
135 void cpu_panic(void)
136 {
137 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138 	panic("SMP bolixed\n");
139 }
140 
141 /* This tick register synchronization scheme is taken entirely from
142  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
143  *
144  * The only change I've made is to rework it so that the master
145  * initiates the synchonization instead of the slave. -DaveM
146  */
147 
148 #define MASTER	0
149 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
150 
151 #define NUM_ROUNDS	64	/* magic value */
152 #define NUM_ITERS	5	/* likewise */
153 
154 static DEFINE_SPINLOCK(itc_sync_lock);
155 static unsigned long go[SLAVE + 1];
156 
157 #define DEBUG_TICK_SYNC	0
158 
159 static inline long get_delta (long *rt, long *master)
160 {
161 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
162 	unsigned long tcenter, t0, t1, tm;
163 	unsigned long i;
164 
165 	for (i = 0; i < NUM_ITERS; i++) {
166 		t0 = tick_ops->get_tick();
167 		go[MASTER] = 1;
168 		membar_safe("#StoreLoad");
169 		while (!(tm = go[SLAVE]))
170 			rmb();
171 		go[SLAVE] = 0;
172 		wmb();
173 		t1 = tick_ops->get_tick();
174 
175 		if (t1 - t0 < best_t1 - best_t0)
176 			best_t0 = t0, best_t1 = t1, best_tm = tm;
177 	}
178 
179 	*rt = best_t1 - best_t0;
180 	*master = best_tm - best_t0;
181 
182 	/* average best_t0 and best_t1 without overflow: */
183 	tcenter = (best_t0/2 + best_t1/2);
184 	if (best_t0 % 2 + best_t1 % 2 == 2)
185 		tcenter++;
186 	return tcenter - best_tm;
187 }
188 
189 void smp_synchronize_tick_client(void)
190 {
191 	long i, delta, adj, adjust_latency = 0, done = 0;
192 	unsigned long flags, rt, master_time_stamp, bound;
193 #if DEBUG_TICK_SYNC
194 	struct {
195 		long rt;	/* roundtrip time */
196 		long master;	/* master's timestamp */
197 		long diff;	/* difference between midpoint and master's timestamp */
198 		long lat;	/* estimate of itc adjustment latency */
199 	} t[NUM_ROUNDS];
200 #endif
201 
202 	go[MASTER] = 1;
203 
204 	while (go[MASTER])
205 		rmb();
206 
207 	local_irq_save(flags);
208 	{
209 		for (i = 0; i < NUM_ROUNDS; i++) {
210 			delta = get_delta(&rt, &master_time_stamp);
211 			if (delta == 0) {
212 				done = 1;	/* let's lock on to this... */
213 				bound = rt;
214 			}
215 
216 			if (!done) {
217 				if (i > 0) {
218 					adjust_latency += -delta;
219 					adj = -delta + adjust_latency/4;
220 				} else
221 					adj = -delta;
222 
223 				tick_ops->add_tick(adj);
224 			}
225 #if DEBUG_TICK_SYNC
226 			t[i].rt = rt;
227 			t[i].master = master_time_stamp;
228 			t[i].diff = delta;
229 			t[i].lat = adjust_latency/4;
230 #endif
231 		}
232 	}
233 	local_irq_restore(flags);
234 
235 #if DEBUG_TICK_SYNC
236 	for (i = 0; i < NUM_ROUNDS; i++)
237 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
238 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
239 #endif
240 
241 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
242 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
243 	       smp_processor_id(), delta, rt);
244 }
245 
246 static void smp_start_sync_tick_client(int cpu);
247 
248 static void smp_synchronize_one_tick(int cpu)
249 {
250 	unsigned long flags, i;
251 
252 	go[MASTER] = 0;
253 
254 	smp_start_sync_tick_client(cpu);
255 
256 	/* wait for client to be ready */
257 	while (!go[MASTER])
258 		rmb();
259 
260 	/* now let the client proceed into his loop */
261 	go[MASTER] = 0;
262 	membar_safe("#StoreLoad");
263 
264 	spin_lock_irqsave(&itc_sync_lock, flags);
265 	{
266 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
267 			while (!go[MASTER])
268 				rmb();
269 			go[MASTER] = 0;
270 			wmb();
271 			go[SLAVE] = tick_ops->get_tick();
272 			membar_safe("#StoreLoad");
273 		}
274 	}
275 	spin_unlock_irqrestore(&itc_sync_lock, flags);
276 }
277 
278 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
279 /* XXX Put this in some common place. XXX */
280 static unsigned long kimage_addr_to_ra(void *p)
281 {
282 	unsigned long val = (unsigned long) p;
283 
284 	return kern_base + (val - KERNBASE);
285 }
286 
287 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
288 {
289 	extern unsigned long sparc64_ttable_tl0;
290 	extern unsigned long kern_locked_tte_data;
291 	struct hvtramp_descr *hdesc;
292 	unsigned long trampoline_ra;
293 	struct trap_per_cpu *tb;
294 	u64 tte_vaddr, tte_data;
295 	unsigned long hv_err;
296 	int i;
297 
298 	hdesc = kzalloc(sizeof(*hdesc) +
299 			(sizeof(struct hvtramp_mapping) *
300 			 num_kernel_image_mappings - 1),
301 			GFP_KERNEL);
302 	if (!hdesc) {
303 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
304 		       "hvtramp_descr.\n");
305 		return;
306 	}
307 	*descrp = hdesc;
308 
309 	hdesc->cpu = cpu;
310 	hdesc->num_mappings = num_kernel_image_mappings;
311 
312 	tb = &trap_block[cpu];
313 
314 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316 
317 	hdesc->thread_reg = thread_reg;
318 
319 	tte_vaddr = (unsigned long) KERNBASE;
320 	tte_data = kern_locked_tte_data;
321 
322 	for (i = 0; i < hdesc->num_mappings; i++) {
323 		hdesc->maps[i].vaddr = tte_vaddr;
324 		hdesc->maps[i].tte   = tte_data;
325 		tte_vaddr += 0x400000;
326 		tte_data  += 0x400000;
327 	}
328 
329 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330 
331 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
333 				 __pa(hdesc));
334 	if (hv_err)
335 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336 		       "gives error %lu\n", hv_err);
337 }
338 #endif
339 
340 extern unsigned long sparc64_cpu_startup;
341 
342 /* The OBP cpu startup callback truncates the 3rd arg cookie to
343  * 32-bits (I think) so to be safe we have it read the pointer
344  * contained here so we work on >4GB machines. -DaveM
345  */
346 static struct thread_info *cpu_new_thread = NULL;
347 
348 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
349 {
350 	unsigned long entry =
351 		(unsigned long)(&sparc64_cpu_startup);
352 	unsigned long cookie =
353 		(unsigned long)(&cpu_new_thread);
354 	struct task_struct *p;
355 	void *descr = NULL;
356 	int timeout, ret;
357 
358 	p = fork_idle(cpu);
359 	if (IS_ERR(p))
360 		return PTR_ERR(p);
361 	callin_flag = 0;
362 	cpu_new_thread = task_thread_info(p);
363 
364 	if (tlb_type == hypervisor) {
365 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
366 		if (ldom_domaining_enabled)
367 			ldom_startcpu_cpuid(cpu,
368 					    (unsigned long) cpu_new_thread,
369 					    &descr);
370 		else
371 #endif
372 			prom_startcpu_cpuid(cpu, entry, cookie);
373 	} else {
374 		struct device_node *dp = of_find_node_by_cpuid(cpu);
375 
376 		prom_startcpu(dp->phandle, entry, cookie);
377 	}
378 
379 	for (timeout = 0; timeout < 50000; timeout++) {
380 		if (callin_flag)
381 			break;
382 		udelay(100);
383 	}
384 
385 	if (callin_flag) {
386 		ret = 0;
387 	} else {
388 		printk("Processor %d is stuck.\n", cpu);
389 		ret = -ENODEV;
390 	}
391 	cpu_new_thread = NULL;
392 
393 	kfree(descr);
394 
395 	return ret;
396 }
397 
398 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
399 {
400 	u64 result, target;
401 	int stuck, tmp;
402 
403 	if (this_is_starfire) {
404 		/* map to real upaid */
405 		cpu = (((cpu & 0x3c) << 1) |
406 			((cpu & 0x40) >> 4) |
407 			(cpu & 0x3));
408 	}
409 
410 	target = (cpu << 14) | 0x70;
411 again:
412 	/* Ok, this is the real Spitfire Errata #54.
413 	 * One must read back from a UDB internal register
414 	 * after writes to the UDB interrupt dispatch, but
415 	 * before the membar Sync for that write.
416 	 * So we use the high UDB control register (ASI 0x7f,
417 	 * ADDR 0x20) for the dummy read. -DaveM
418 	 */
419 	tmp = 0x40;
420 	__asm__ __volatile__(
421 	"wrpr	%1, %2, %%pstate\n\t"
422 	"stxa	%4, [%0] %3\n\t"
423 	"stxa	%5, [%0+%8] %3\n\t"
424 	"add	%0, %8, %0\n\t"
425 	"stxa	%6, [%0+%8] %3\n\t"
426 	"membar	#Sync\n\t"
427 	"stxa	%%g0, [%7] %3\n\t"
428 	"membar	#Sync\n\t"
429 	"mov	0x20, %%g1\n\t"
430 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
431 	"membar	#Sync"
432 	: "=r" (tmp)
433 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
434 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
435 	  "r" (0x10), "0" (tmp)
436         : "g1");
437 
438 	/* NOTE: PSTATE_IE is still clear. */
439 	stuck = 100000;
440 	do {
441 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
442 			: "=r" (result)
443 			: "i" (ASI_INTR_DISPATCH_STAT));
444 		if (result == 0) {
445 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446 					     : : "r" (pstate));
447 			return;
448 		}
449 		stuck -= 1;
450 		if (stuck == 0)
451 			break;
452 	} while (result & 0x1);
453 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
454 			     : : "r" (pstate));
455 	if (stuck == 0) {
456 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
457 		       smp_processor_id(), result);
458 	} else {
459 		udelay(2);
460 		goto again;
461 	}
462 }
463 
464 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
465 {
466 	u64 *mondo, data0, data1, data2;
467 	u16 *cpu_list;
468 	u64 pstate;
469 	int i;
470 
471 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
472 	cpu_list = __va(tb->cpu_list_pa);
473 	mondo = __va(tb->cpu_mondo_block_pa);
474 	data0 = mondo[0];
475 	data1 = mondo[1];
476 	data2 = mondo[2];
477 	for (i = 0; i < cnt; i++)
478 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
479 }
480 
481 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
482  * packet, but we have no use for that.  However we do take advantage of
483  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
484  */
485 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
486 {
487 	int nack_busy_id, is_jbus, need_more;
488 	u64 *mondo, pstate, ver, busy_mask;
489 	u16 *cpu_list;
490 
491 	cpu_list = __va(tb->cpu_list_pa);
492 	mondo = __va(tb->cpu_mondo_block_pa);
493 
494 	/* Unfortunately, someone at Sun had the brilliant idea to make the
495 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
496 	 * derivative processor.
497 	 */
498 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
499 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
500 		   (ver >> 32) == __SERRANO_ID);
501 
502 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
503 
504 retry:
505 	need_more = 0;
506 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
507 			     : : "r" (pstate), "i" (PSTATE_IE));
508 
509 	/* Setup the dispatch data registers. */
510 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
511 			     "stxa	%1, [%4] %6\n\t"
512 			     "stxa	%2, [%5] %6\n\t"
513 			     "membar	#Sync\n\t"
514 			     : /* no outputs */
515 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
516 			       "r" (0x40), "r" (0x50), "r" (0x60),
517 			       "i" (ASI_INTR_W));
518 
519 	nack_busy_id = 0;
520 	busy_mask = 0;
521 	{
522 		int i;
523 
524 		for (i = 0; i < cnt; i++) {
525 			u64 target, nr;
526 
527 			nr = cpu_list[i];
528 			if (nr == 0xffff)
529 				continue;
530 
531 			target = (nr << 14) | 0x70;
532 			if (is_jbus) {
533 				busy_mask |= (0x1UL << (nr * 2));
534 			} else {
535 				target |= (nack_busy_id << 24);
536 				busy_mask |= (0x1UL <<
537 					      (nack_busy_id * 2));
538 			}
539 			__asm__ __volatile__(
540 				"stxa	%%g0, [%0] %1\n\t"
541 				"membar	#Sync\n\t"
542 				: /* no outputs */
543 				: "r" (target), "i" (ASI_INTR_W));
544 			nack_busy_id++;
545 			if (nack_busy_id == 32) {
546 				need_more = 1;
547 				break;
548 			}
549 		}
550 	}
551 
552 	/* Now, poll for completion. */
553 	{
554 		u64 dispatch_stat, nack_mask;
555 		long stuck;
556 
557 		stuck = 100000 * nack_busy_id;
558 		nack_mask = busy_mask << 1;
559 		do {
560 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
561 					     : "=r" (dispatch_stat)
562 					     : "i" (ASI_INTR_DISPATCH_STAT));
563 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
564 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
565 						     : : "r" (pstate));
566 				if (unlikely(need_more)) {
567 					int i, this_cnt = 0;
568 					for (i = 0; i < cnt; i++) {
569 						if (cpu_list[i] == 0xffff)
570 							continue;
571 						cpu_list[i] = 0xffff;
572 						this_cnt++;
573 						if (this_cnt == 32)
574 							break;
575 					}
576 					goto retry;
577 				}
578 				return;
579 			}
580 			if (!--stuck)
581 				break;
582 		} while (dispatch_stat & busy_mask);
583 
584 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
585 				     : : "r" (pstate));
586 
587 		if (dispatch_stat & busy_mask) {
588 			/* Busy bits will not clear, continue instead
589 			 * of freezing up on this cpu.
590 			 */
591 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
592 			       smp_processor_id(), dispatch_stat);
593 		} else {
594 			int i, this_busy_nack = 0;
595 
596 			/* Delay some random time with interrupts enabled
597 			 * to prevent deadlock.
598 			 */
599 			udelay(2 * nack_busy_id);
600 
601 			/* Clear out the mask bits for cpus which did not
602 			 * NACK us.
603 			 */
604 			for (i = 0; i < cnt; i++) {
605 				u64 check_mask, nr;
606 
607 				nr = cpu_list[i];
608 				if (nr == 0xffff)
609 					continue;
610 
611 				if (is_jbus)
612 					check_mask = (0x2UL << (2*nr));
613 				else
614 					check_mask = (0x2UL <<
615 						      this_busy_nack);
616 				if ((dispatch_stat & check_mask) == 0)
617 					cpu_list[i] = 0xffff;
618 				this_busy_nack += 2;
619 				if (this_busy_nack == 64)
620 					break;
621 			}
622 
623 			goto retry;
624 		}
625 	}
626 }
627 
628 /* Multi-cpu list version.  */
629 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
630 {
631 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
632 	unsigned long status;
633 	u16 *cpu_list;
634 
635 	this_cpu = smp_processor_id();
636 
637 	cpu_list = __va(tb->cpu_list_pa);
638 
639 	saw_cpu_error = 0;
640 	retries = 0;
641 	prev_sent = 0;
642 	do {
643 		int forward_progress, n_sent;
644 
645 		status = sun4v_cpu_mondo_send(cnt,
646 					      tb->cpu_list_pa,
647 					      tb->cpu_mondo_block_pa);
648 
649 		/* HV_EOK means all cpus received the xcall, we're done.  */
650 		if (likely(status == HV_EOK))
651 			break;
652 
653 		/* First, see if we made any forward progress.
654 		 *
655 		 * The hypervisor indicates successful sends by setting
656 		 * cpu list entries to the value 0xffff.
657 		 */
658 		n_sent = 0;
659 		for (i = 0; i < cnt; i++) {
660 			if (likely(cpu_list[i] == 0xffff))
661 				n_sent++;
662 		}
663 
664 		forward_progress = 0;
665 		if (n_sent > prev_sent)
666 			forward_progress = 1;
667 
668 		prev_sent = n_sent;
669 
670 		/* If we get a HV_ECPUERROR, then one or more of the cpus
671 		 * in the list are in error state.  Use the cpu_state()
672 		 * hypervisor call to find out which cpus are in error state.
673 		 */
674 		if (unlikely(status == HV_ECPUERROR)) {
675 			for (i = 0; i < cnt; i++) {
676 				long err;
677 				u16 cpu;
678 
679 				cpu = cpu_list[i];
680 				if (cpu == 0xffff)
681 					continue;
682 
683 				err = sun4v_cpu_state(cpu);
684 				if (err == HV_CPU_STATE_ERROR) {
685 					saw_cpu_error = (cpu + 1);
686 					cpu_list[i] = 0xffff;
687 				}
688 			}
689 		} else if (unlikely(status != HV_EWOULDBLOCK))
690 			goto fatal_mondo_error;
691 
692 		/* Don't bother rewriting the CPU list, just leave the
693 		 * 0xffff and non-0xffff entries in there and the
694 		 * hypervisor will do the right thing.
695 		 *
696 		 * Only advance timeout state if we didn't make any
697 		 * forward progress.
698 		 */
699 		if (unlikely(!forward_progress)) {
700 			if (unlikely(++retries > 10000))
701 				goto fatal_mondo_timeout;
702 
703 			/* Delay a little bit to let other cpus catch up
704 			 * on their cpu mondo queue work.
705 			 */
706 			udelay(2 * cnt);
707 		}
708 	} while (1);
709 
710 	if (unlikely(saw_cpu_error))
711 		goto fatal_mondo_cpu_error;
712 
713 	return;
714 
715 fatal_mondo_cpu_error:
716 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
717 	       "(including %d) were in error state\n",
718 	       this_cpu, saw_cpu_error - 1);
719 	return;
720 
721 fatal_mondo_timeout:
722 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
723 	       " progress after %d retries.\n",
724 	       this_cpu, retries);
725 	goto dump_cpu_list_and_out;
726 
727 fatal_mondo_error:
728 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
729 	       this_cpu, status);
730 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
731 	       "mondo_block_pa(%lx)\n",
732 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
733 
734 dump_cpu_list_and_out:
735 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
736 	for (i = 0; i < cnt; i++)
737 		printk("%u ", cpu_list[i]);
738 	printk("]\n");
739 }
740 
741 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
742 
743 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
744 {
745 	struct trap_per_cpu *tb;
746 	int this_cpu, i, cnt;
747 	unsigned long flags;
748 	u16 *cpu_list;
749 	u64 *mondo;
750 
751 	/* We have to do this whole thing with interrupts fully disabled.
752 	 * Otherwise if we send an xcall from interrupt context it will
753 	 * corrupt both our mondo block and cpu list state.
754 	 *
755 	 * One consequence of this is that we cannot use timeout mechanisms
756 	 * that depend upon interrupts being delivered locally.  So, for
757 	 * example, we cannot sample jiffies and expect it to advance.
758 	 *
759 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
760 	 */
761 	local_irq_save(flags);
762 
763 	this_cpu = smp_processor_id();
764 	tb = &trap_block[this_cpu];
765 
766 	mondo = __va(tb->cpu_mondo_block_pa);
767 	mondo[0] = data0;
768 	mondo[1] = data1;
769 	mondo[2] = data2;
770 	wmb();
771 
772 	cpu_list = __va(tb->cpu_list_pa);
773 
774 	/* Setup the initial cpu list.  */
775 	cnt = 0;
776 	for_each_cpu(i, mask) {
777 		if (i == this_cpu || !cpu_online(i))
778 			continue;
779 		cpu_list[cnt++] = i;
780 	}
781 
782 	if (cnt)
783 		xcall_deliver_impl(tb, cnt);
784 
785 	local_irq_restore(flags);
786 }
787 
788 /* Send cross call to all processors mentioned in MASK_P
789  * except self.  Really, there are only two cases currently,
790  * "&cpu_online_map" and "&mm->cpu_vm_mask".
791  */
792 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
793 {
794 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
795 
796 	xcall_deliver(data0, data1, data2, mask);
797 }
798 
799 /* Send cross call to all processors except self. */
800 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
801 {
802 	smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
803 }
804 
805 extern unsigned long xcall_sync_tick;
806 
807 static void smp_start_sync_tick_client(int cpu)
808 {
809 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
810 		      &cpumask_of_cpu(cpu));
811 }
812 
813 extern unsigned long xcall_call_function;
814 
815 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
816 {
817 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
818 }
819 
820 extern unsigned long xcall_call_function_single;
821 
822 void arch_send_call_function_single_ipi(int cpu)
823 {
824 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
825 		      &cpumask_of_cpu(cpu));
826 }
827 
828 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
829 {
830 	clear_softint(1 << irq);
831 	generic_smp_call_function_interrupt();
832 }
833 
834 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
835 {
836 	clear_softint(1 << irq);
837 	generic_smp_call_function_single_interrupt();
838 }
839 
840 static void tsb_sync(void *info)
841 {
842 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
843 	struct mm_struct *mm = info;
844 
845 	/* It is not valid to test "currrent->active_mm == mm" here.
846 	 *
847 	 * The value of "current" is not changed atomically with
848 	 * switch_mm().  But that's OK, we just need to check the
849 	 * current cpu's trap block PGD physical address.
850 	 */
851 	if (tp->pgd_paddr == __pa(mm->pgd))
852 		tsb_context_switch(mm);
853 }
854 
855 void smp_tsb_sync(struct mm_struct *mm)
856 {
857 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
858 }
859 
860 extern unsigned long xcall_flush_tlb_mm;
861 extern unsigned long xcall_flush_tlb_pending;
862 extern unsigned long xcall_flush_tlb_kernel_range;
863 extern unsigned long xcall_fetch_glob_regs;
864 extern unsigned long xcall_receive_signal;
865 extern unsigned long xcall_new_mmu_context_version;
866 #ifdef CONFIG_KGDB
867 extern unsigned long xcall_kgdb_capture;
868 #endif
869 
870 #ifdef DCACHE_ALIASING_POSSIBLE
871 extern unsigned long xcall_flush_dcache_page_cheetah;
872 #endif
873 extern unsigned long xcall_flush_dcache_page_spitfire;
874 
875 #ifdef CONFIG_DEBUG_DCFLUSH
876 extern atomic_t dcpage_flushes;
877 extern atomic_t dcpage_flushes_xcall;
878 #endif
879 
880 static inline void __local_flush_dcache_page(struct page *page)
881 {
882 #ifdef DCACHE_ALIASING_POSSIBLE
883 	__flush_dcache_page(page_address(page),
884 			    ((tlb_type == spitfire) &&
885 			     page_mapping(page) != NULL));
886 #else
887 	if (page_mapping(page) != NULL &&
888 	    tlb_type == spitfire)
889 		__flush_icache_page(__pa(page_address(page)));
890 #endif
891 }
892 
893 void smp_flush_dcache_page_impl(struct page *page, int cpu)
894 {
895 	int this_cpu;
896 
897 	if (tlb_type == hypervisor)
898 		return;
899 
900 #ifdef CONFIG_DEBUG_DCFLUSH
901 	atomic_inc(&dcpage_flushes);
902 #endif
903 
904 	this_cpu = get_cpu();
905 
906 	if (cpu == this_cpu) {
907 		__local_flush_dcache_page(page);
908 	} else if (cpu_online(cpu)) {
909 		void *pg_addr = page_address(page);
910 		u64 data0 = 0;
911 
912 		if (tlb_type == spitfire) {
913 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
914 			if (page_mapping(page) != NULL)
915 				data0 |= ((u64)1 << 32);
916 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
917 #ifdef DCACHE_ALIASING_POSSIBLE
918 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
919 #endif
920 		}
921 		if (data0) {
922 			xcall_deliver(data0, __pa(pg_addr),
923 				      (u64) pg_addr, &cpumask_of_cpu(cpu));
924 #ifdef CONFIG_DEBUG_DCFLUSH
925 			atomic_inc(&dcpage_flushes_xcall);
926 #endif
927 		}
928 	}
929 
930 	put_cpu();
931 }
932 
933 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
934 {
935 	void *pg_addr;
936 	int this_cpu;
937 	u64 data0;
938 
939 	if (tlb_type == hypervisor)
940 		return;
941 
942 	this_cpu = get_cpu();
943 
944 #ifdef CONFIG_DEBUG_DCFLUSH
945 	atomic_inc(&dcpage_flushes);
946 #endif
947 	data0 = 0;
948 	pg_addr = page_address(page);
949 	if (tlb_type == spitfire) {
950 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
951 		if (page_mapping(page) != NULL)
952 			data0 |= ((u64)1 << 32);
953 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
954 #ifdef DCACHE_ALIASING_POSSIBLE
955 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
956 #endif
957 	}
958 	if (data0) {
959 		xcall_deliver(data0, __pa(pg_addr),
960 			      (u64) pg_addr, &cpu_online_map);
961 #ifdef CONFIG_DEBUG_DCFLUSH
962 		atomic_inc(&dcpage_flushes_xcall);
963 #endif
964 	}
965 	__local_flush_dcache_page(page);
966 
967 	put_cpu();
968 }
969 
970 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
971 {
972 	struct mm_struct *mm;
973 	unsigned long flags;
974 
975 	clear_softint(1 << irq);
976 
977 	/* See if we need to allocate a new TLB context because
978 	 * the version of the one we are using is now out of date.
979 	 */
980 	mm = current->active_mm;
981 	if (unlikely(!mm || (mm == &init_mm)))
982 		return;
983 
984 	spin_lock_irqsave(&mm->context.lock, flags);
985 
986 	if (unlikely(!CTX_VALID(mm->context)))
987 		get_new_mmu_context(mm);
988 
989 	spin_unlock_irqrestore(&mm->context.lock, flags);
990 
991 	load_secondary_context(mm);
992 	__flush_tlb_mm(CTX_HWBITS(mm->context),
993 		       SECONDARY_CONTEXT);
994 }
995 
996 void smp_new_mmu_context_version(void)
997 {
998 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
999 }
1000 
1001 #ifdef CONFIG_KGDB
1002 void kgdb_roundup_cpus(unsigned long flags)
1003 {
1004 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1005 }
1006 #endif
1007 
1008 void smp_fetch_global_regs(void)
1009 {
1010 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1011 }
1012 
1013 /* We know that the window frames of the user have been flushed
1014  * to the stack before we get here because all callers of us
1015  * are flush_tlb_*() routines, and these run after flush_cache_*()
1016  * which performs the flushw.
1017  *
1018  * The SMP TLB coherency scheme we use works as follows:
1019  *
1020  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1021  *    space has (potentially) executed on, this is the heuristic
1022  *    we use to avoid doing cross calls.
1023  *
1024  *    Also, for flushing from kswapd and also for clones, we
1025  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1026  *
1027  * 2) TLB context numbers are shared globally across all processors
1028  *    in the system, this allows us to play several games to avoid
1029  *    cross calls.
1030  *
1031  *    One invariant is that when a cpu switches to a process, and
1032  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1033  *    current cpu's bit set, that tlb context is flushed locally.
1034  *
1035  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1036  *    cross calls when we want to flush the currently running process's
1037  *    tlb state.  This is done by clearing all cpu bits except the current
1038  *    processor's in current->mm->cpu_vm_mask and performing the
1039  *    flush locally only.  This will force any subsequent cpus which run
1040  *    this task to flush the context from the local tlb if the process
1041  *    migrates to another cpu (again).
1042  *
1043  * 3) For shared address spaces (threads) and swapping we bite the
1044  *    bullet for most cases and perform the cross call (but only to
1045  *    the cpus listed in cpu_vm_mask).
1046  *
1047  *    The performance gain from "optimizing" away the cross call for threads is
1048  *    questionable (in theory the big win for threads is the massive sharing of
1049  *    address space state across processors).
1050  */
1051 
1052 /* This currently is only used by the hugetlb arch pre-fault
1053  * hook on UltraSPARC-III+ and later when changing the pagesize
1054  * bits of the context register for an address space.
1055  */
1056 void smp_flush_tlb_mm(struct mm_struct *mm)
1057 {
1058 	u32 ctx = CTX_HWBITS(mm->context);
1059 	int cpu = get_cpu();
1060 
1061 	if (atomic_read(&mm->mm_users) == 1) {
1062 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1063 		goto local_flush_and_out;
1064 	}
1065 
1066 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1067 			      ctx, 0, 0,
1068 			      mm_cpumask(mm));
1069 
1070 local_flush_and_out:
1071 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1072 
1073 	put_cpu();
1074 }
1075 
1076 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1077 {
1078 	u32 ctx = CTX_HWBITS(mm->context);
1079 	int cpu = get_cpu();
1080 
1081 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1082 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1083 	else
1084 		smp_cross_call_masked(&xcall_flush_tlb_pending,
1085 				      ctx, nr, (unsigned long) vaddrs,
1086 				      mm_cpumask(mm));
1087 
1088 	__flush_tlb_pending(ctx, nr, vaddrs);
1089 
1090 	put_cpu();
1091 }
1092 
1093 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1094 {
1095 	start &= PAGE_MASK;
1096 	end    = PAGE_ALIGN(end);
1097 	if (start != end) {
1098 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1099 			       0, start, end);
1100 
1101 		__flush_tlb_kernel_range(start, end);
1102 	}
1103 }
1104 
1105 /* CPU capture. */
1106 /* #define CAPTURE_DEBUG */
1107 extern unsigned long xcall_capture;
1108 
1109 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1110 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1111 static unsigned long penguins_are_doing_time;
1112 
1113 void smp_capture(void)
1114 {
1115 	int result = atomic_add_ret(1, &smp_capture_depth);
1116 
1117 	if (result == 1) {
1118 		int ncpus = num_online_cpus();
1119 
1120 #ifdef CAPTURE_DEBUG
1121 		printk("CPU[%d]: Sending penguins to jail...",
1122 		       smp_processor_id());
1123 #endif
1124 		penguins_are_doing_time = 1;
1125 		atomic_inc(&smp_capture_registry);
1126 		smp_cross_call(&xcall_capture, 0, 0, 0);
1127 		while (atomic_read(&smp_capture_registry) != ncpus)
1128 			rmb();
1129 #ifdef CAPTURE_DEBUG
1130 		printk("done\n");
1131 #endif
1132 	}
1133 }
1134 
1135 void smp_release(void)
1136 {
1137 	if (atomic_dec_and_test(&smp_capture_depth)) {
1138 #ifdef CAPTURE_DEBUG
1139 		printk("CPU[%d]: Giving pardon to "
1140 		       "imprisoned penguins\n",
1141 		       smp_processor_id());
1142 #endif
1143 		penguins_are_doing_time = 0;
1144 		membar_safe("#StoreLoad");
1145 		atomic_dec(&smp_capture_registry);
1146 	}
1147 }
1148 
1149 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1150  * set, so they can service tlb flush xcalls...
1151  */
1152 extern void prom_world(int);
1153 
1154 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1155 {
1156 	clear_softint(1 << irq);
1157 
1158 	preempt_disable();
1159 
1160 	__asm__ __volatile__("flushw");
1161 	prom_world(1);
1162 	atomic_inc(&smp_capture_registry);
1163 	membar_safe("#StoreLoad");
1164 	while (penguins_are_doing_time)
1165 		rmb();
1166 	atomic_dec(&smp_capture_registry);
1167 	prom_world(0);
1168 
1169 	preempt_enable();
1170 }
1171 
1172 /* /proc/profile writes can call this, don't __init it please. */
1173 int setup_profiling_timer(unsigned int multiplier)
1174 {
1175 	return -EINVAL;
1176 }
1177 
1178 void __init smp_prepare_cpus(unsigned int max_cpus)
1179 {
1180 }
1181 
1182 void __devinit smp_prepare_boot_cpu(void)
1183 {
1184 }
1185 
1186 void __init smp_setup_processor_id(void)
1187 {
1188 	if (tlb_type == spitfire)
1189 		xcall_deliver_impl = spitfire_xcall_deliver;
1190 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1191 		xcall_deliver_impl = cheetah_xcall_deliver;
1192 	else
1193 		xcall_deliver_impl = hypervisor_xcall_deliver;
1194 }
1195 
1196 void __devinit smp_fill_in_sib_core_maps(void)
1197 {
1198 	unsigned int i;
1199 
1200 	for_each_present_cpu(i) {
1201 		unsigned int j;
1202 
1203 		cpus_clear(cpu_core_map[i]);
1204 		if (cpu_data(i).core_id == 0) {
1205 			cpu_set(i, cpu_core_map[i]);
1206 			continue;
1207 		}
1208 
1209 		for_each_present_cpu(j) {
1210 			if (cpu_data(i).core_id ==
1211 			    cpu_data(j).core_id)
1212 				cpu_set(j, cpu_core_map[i]);
1213 		}
1214 	}
1215 
1216 	for_each_present_cpu(i) {
1217 		unsigned int j;
1218 
1219 		cpus_clear(per_cpu(cpu_sibling_map, i));
1220 		if (cpu_data(i).proc_id == -1) {
1221 			cpu_set(i, per_cpu(cpu_sibling_map, i));
1222 			continue;
1223 		}
1224 
1225 		for_each_present_cpu(j) {
1226 			if (cpu_data(i).proc_id ==
1227 			    cpu_data(j).proc_id)
1228 				cpu_set(j, per_cpu(cpu_sibling_map, i));
1229 		}
1230 	}
1231 }
1232 
1233 int __cpuinit __cpu_up(unsigned int cpu)
1234 {
1235 	int ret = smp_boot_one_cpu(cpu);
1236 
1237 	if (!ret) {
1238 		cpu_set(cpu, smp_commenced_mask);
1239 		while (!cpu_isset(cpu, cpu_online_map))
1240 			mb();
1241 		if (!cpu_isset(cpu, cpu_online_map)) {
1242 			ret = -ENODEV;
1243 		} else {
1244 			/* On SUN4V, writes to %tick and %stick are
1245 			 * not allowed.
1246 			 */
1247 			if (tlb_type != hypervisor)
1248 				smp_synchronize_one_tick(cpu);
1249 		}
1250 	}
1251 	return ret;
1252 }
1253 
1254 #ifdef CONFIG_HOTPLUG_CPU
1255 void cpu_play_dead(void)
1256 {
1257 	int cpu = smp_processor_id();
1258 	unsigned long pstate;
1259 
1260 	idle_task_exit();
1261 
1262 	if (tlb_type == hypervisor) {
1263 		struct trap_per_cpu *tb = &trap_block[cpu];
1264 
1265 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1266 				tb->cpu_mondo_pa, 0);
1267 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1268 				tb->dev_mondo_pa, 0);
1269 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1270 				tb->resum_mondo_pa, 0);
1271 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1272 				tb->nonresum_mondo_pa, 0);
1273 	}
1274 
1275 	cpu_clear(cpu, smp_commenced_mask);
1276 	membar_safe("#Sync");
1277 
1278 	local_irq_disable();
1279 
1280 	__asm__ __volatile__(
1281 		"rdpr	%%pstate, %0\n\t"
1282 		"wrpr	%0, %1, %%pstate"
1283 		: "=r" (pstate)
1284 		: "i" (PSTATE_IE));
1285 
1286 	while (1)
1287 		barrier();
1288 }
1289 
1290 int __cpu_disable(void)
1291 {
1292 	int cpu = smp_processor_id();
1293 	cpuinfo_sparc *c;
1294 	int i;
1295 
1296 	for_each_cpu_mask(i, cpu_core_map[cpu])
1297 		cpu_clear(cpu, cpu_core_map[i]);
1298 	cpus_clear(cpu_core_map[cpu]);
1299 
1300 	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1301 		cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1302 	cpus_clear(per_cpu(cpu_sibling_map, cpu));
1303 
1304 	c = &cpu_data(cpu);
1305 
1306 	c->core_id = 0;
1307 	c->proc_id = -1;
1308 
1309 	smp_wmb();
1310 
1311 	/* Make sure no interrupts point to this cpu.  */
1312 	fixup_irqs();
1313 
1314 	local_irq_enable();
1315 	mdelay(1);
1316 	local_irq_disable();
1317 
1318 	ipi_call_lock();
1319 	cpu_clear(cpu, cpu_online_map);
1320 	ipi_call_unlock();
1321 
1322 	cpu_map_rebuild();
1323 
1324 	return 0;
1325 }
1326 
1327 void __cpu_die(unsigned int cpu)
1328 {
1329 	int i;
1330 
1331 	for (i = 0; i < 100; i++) {
1332 		smp_rmb();
1333 		if (!cpu_isset(cpu, smp_commenced_mask))
1334 			break;
1335 		msleep(100);
1336 	}
1337 	if (cpu_isset(cpu, smp_commenced_mask)) {
1338 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1339 	} else {
1340 #if defined(CONFIG_SUN_LDOMS)
1341 		unsigned long hv_err;
1342 		int limit = 100;
1343 
1344 		do {
1345 			hv_err = sun4v_cpu_stop(cpu);
1346 			if (hv_err == HV_EOK) {
1347 				cpu_clear(cpu, cpu_present_map);
1348 				break;
1349 			}
1350 		} while (--limit > 0);
1351 		if (limit <= 0) {
1352 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1353 			       hv_err);
1354 		}
1355 #endif
1356 	}
1357 }
1358 #endif
1359 
1360 void __init smp_cpus_done(unsigned int max_cpus)
1361 {
1362 	pcr_arch_init();
1363 }
1364 
1365 void smp_send_reschedule(int cpu)
1366 {
1367 	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1368 		      &cpumask_of_cpu(cpu));
1369 }
1370 
1371 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1372 {
1373 	clear_softint(1 << irq);
1374 }
1375 
1376 /* This is a nop because we capture all other cpus
1377  * anyways when making the PROM active.
1378  */
1379 void smp_send_stop(void)
1380 {
1381 }
1382 
1383 /**
1384  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1385  * @cpu: cpu to allocate for
1386  * @size: size allocation in bytes
1387  * @align: alignment
1388  *
1389  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1390  * does the right thing for NUMA regardless of the current
1391  * configuration.
1392  *
1393  * RETURNS:
1394  * Pointer to the allocated area on success, NULL on failure.
1395  */
1396 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1397 					size_t align)
1398 {
1399 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1400 #ifdef CONFIG_NEED_MULTIPLE_NODES
1401 	int node = cpu_to_node(cpu);
1402 	void *ptr;
1403 
1404 	if (!node_online(node) || !NODE_DATA(node)) {
1405 		ptr = __alloc_bootmem(size, align, goal);
1406 		pr_info("cpu %d has no node %d or node-local memory\n",
1407 			cpu, node);
1408 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1409 			 cpu, size, __pa(ptr));
1410 	} else {
1411 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1412 					   size, align, goal);
1413 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1414 			 "%016lx\n", cpu, size, node, __pa(ptr));
1415 	}
1416 	return ptr;
1417 #else
1418 	return __alloc_bootmem(size, align, goal);
1419 #endif
1420 }
1421 
1422 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1423 {
1424 	free_bootmem(__pa(ptr), size);
1425 }
1426 
1427 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1428 {
1429 	if (cpu_to_node(from) == cpu_to_node(to))
1430 		return LOCAL_DISTANCE;
1431 	else
1432 		return REMOTE_DISTANCE;
1433 }
1434 
1435 static void __init pcpu_populate_pte(unsigned long addr)
1436 {
1437 	pgd_t *pgd = pgd_offset_k(addr);
1438 	pud_t *pud;
1439 	pmd_t *pmd;
1440 
1441 	pud = pud_offset(pgd, addr);
1442 	if (pud_none(*pud)) {
1443 		pmd_t *new;
1444 
1445 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1446 		pud_populate(&init_mm, pud, new);
1447 	}
1448 
1449 	pmd = pmd_offset(pud, addr);
1450 	if (!pmd_present(*pmd)) {
1451 		pte_t *new;
1452 
1453 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1454 		pmd_populate_kernel(&init_mm, pmd, new);
1455 	}
1456 }
1457 
1458 void __init setup_per_cpu_areas(void)
1459 {
1460 	unsigned long delta;
1461 	unsigned int cpu;
1462 	int rc = -EINVAL;
1463 
1464 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1465 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1466 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1467 					    pcpu_cpu_distance,
1468 					    pcpu_alloc_bootmem,
1469 					    pcpu_free_bootmem);
1470 		if (rc)
1471 			pr_warning("PERCPU: %s allocator failed (%d), "
1472 				   "falling back to page size\n",
1473 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1474 	}
1475 	if (rc < 0)
1476 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1477 					   pcpu_alloc_bootmem,
1478 					   pcpu_free_bootmem,
1479 					   pcpu_populate_pte);
1480 	if (rc < 0)
1481 		panic("cannot initialize percpu area (err=%d)", rc);
1482 
1483 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1484 	for_each_possible_cpu(cpu)
1485 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1486 
1487 	/* Setup %g5 for the boot cpu.  */
1488 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1489 
1490 	of_fill_in_cpu_data();
1491 	if (tlb_type == hypervisor)
1492 		mdesc_fill_in_cpu_data(cpu_all_mask);
1493 }
1494