xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision d0b73b48)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38 
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53 
54 #include "cpumap.h"
55 
56 int sparc64_multi_core __read_mostly;
57 
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61 
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64 
65 static cpumask_t smp_commenced_mask;
66 
67 void smp_info(struct seq_file *m)
68 {
69 	int i;
70 
71 	seq_printf(m, "State:\n");
72 	for_each_online_cpu(i)
73 		seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75 
76 void smp_bogo(struct seq_file *m)
77 {
78 	int i;
79 
80 	for_each_online_cpu(i)
81 		seq_printf(m,
82 			   "Cpu%dClkTck\t: %016lx\n",
83 			   i, cpu_data(i).clock_tick);
84 }
85 
86 extern void setup_sparc64_timer(void);
87 
88 static volatile unsigned long callin_flag = 0;
89 
90 void __cpuinit smp_callin(void)
91 {
92 	int cpuid = hard_smp_processor_id();
93 
94 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
95 
96 	if (tlb_type == hypervisor)
97 		sun4v_ktsb_register();
98 
99 	__flush_tlb_all();
100 
101 	setup_sparc64_timer();
102 
103 	if (cheetah_pcache_forced_on)
104 		cheetah_enable_pcache();
105 
106 	callin_flag = 1;
107 	__asm__ __volatile__("membar #Sync\n\t"
108 			     "flush  %%g6" : : : "memory");
109 
110 	/* Clear this or we will die instantly when we
111 	 * schedule back to this idler...
112 	 */
113 	current_thread_info()->new_child = 0;
114 
115 	/* Attach to the address space of init_task. */
116 	atomic_inc(&init_mm.mm_count);
117 	current->active_mm = &init_mm;
118 
119 	/* inform the notifiers about the new cpu */
120 	notify_cpu_starting(cpuid);
121 
122 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123 		rmb();
124 
125 	set_cpu_online(cpuid, true);
126 	local_irq_enable();
127 
128 	/* idle thread is expected to have preempt disabled */
129 	preempt_disable();
130 }
131 
132 void cpu_panic(void)
133 {
134 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
135 	panic("SMP bolixed\n");
136 }
137 
138 /* This tick register synchronization scheme is taken entirely from
139  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140  *
141  * The only change I've made is to rework it so that the master
142  * initiates the synchonization instead of the slave. -DaveM
143  */
144 
145 #define MASTER	0
146 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
147 
148 #define NUM_ROUNDS	64	/* magic value */
149 #define NUM_ITERS	5	/* likewise */
150 
151 static DEFINE_SPINLOCK(itc_sync_lock);
152 static unsigned long go[SLAVE + 1];
153 
154 #define DEBUG_TICK_SYNC	0
155 
156 static inline long get_delta (long *rt, long *master)
157 {
158 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
159 	unsigned long tcenter, t0, t1, tm;
160 	unsigned long i;
161 
162 	for (i = 0; i < NUM_ITERS; i++) {
163 		t0 = tick_ops->get_tick();
164 		go[MASTER] = 1;
165 		membar_safe("#StoreLoad");
166 		while (!(tm = go[SLAVE]))
167 			rmb();
168 		go[SLAVE] = 0;
169 		wmb();
170 		t1 = tick_ops->get_tick();
171 
172 		if (t1 - t0 < best_t1 - best_t0)
173 			best_t0 = t0, best_t1 = t1, best_tm = tm;
174 	}
175 
176 	*rt = best_t1 - best_t0;
177 	*master = best_tm - best_t0;
178 
179 	/* average best_t0 and best_t1 without overflow: */
180 	tcenter = (best_t0/2 + best_t1/2);
181 	if (best_t0 % 2 + best_t1 % 2 == 2)
182 		tcenter++;
183 	return tcenter - best_tm;
184 }
185 
186 void smp_synchronize_tick_client(void)
187 {
188 	long i, delta, adj, adjust_latency = 0, done = 0;
189 	unsigned long flags, rt, master_time_stamp;
190 #if DEBUG_TICK_SYNC
191 	struct {
192 		long rt;	/* roundtrip time */
193 		long master;	/* master's timestamp */
194 		long diff;	/* difference between midpoint and master's timestamp */
195 		long lat;	/* estimate of itc adjustment latency */
196 	} t[NUM_ROUNDS];
197 #endif
198 
199 	go[MASTER] = 1;
200 
201 	while (go[MASTER])
202 		rmb();
203 
204 	local_irq_save(flags);
205 	{
206 		for (i = 0; i < NUM_ROUNDS; i++) {
207 			delta = get_delta(&rt, &master_time_stamp);
208 			if (delta == 0)
209 				done = 1;	/* let's lock on to this... */
210 
211 			if (!done) {
212 				if (i > 0) {
213 					adjust_latency += -delta;
214 					adj = -delta + adjust_latency/4;
215 				} else
216 					adj = -delta;
217 
218 				tick_ops->add_tick(adj);
219 			}
220 #if DEBUG_TICK_SYNC
221 			t[i].rt = rt;
222 			t[i].master = master_time_stamp;
223 			t[i].diff = delta;
224 			t[i].lat = adjust_latency/4;
225 #endif
226 		}
227 	}
228 	local_irq_restore(flags);
229 
230 #if DEBUG_TICK_SYNC
231 	for (i = 0; i < NUM_ROUNDS; i++)
232 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
233 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
234 #endif
235 
236 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
237 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
238 	       smp_processor_id(), delta, rt);
239 }
240 
241 static void smp_start_sync_tick_client(int cpu);
242 
243 static void smp_synchronize_one_tick(int cpu)
244 {
245 	unsigned long flags, i;
246 
247 	go[MASTER] = 0;
248 
249 	smp_start_sync_tick_client(cpu);
250 
251 	/* wait for client to be ready */
252 	while (!go[MASTER])
253 		rmb();
254 
255 	/* now let the client proceed into his loop */
256 	go[MASTER] = 0;
257 	membar_safe("#StoreLoad");
258 
259 	spin_lock_irqsave(&itc_sync_lock, flags);
260 	{
261 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
262 			while (!go[MASTER])
263 				rmb();
264 			go[MASTER] = 0;
265 			wmb();
266 			go[SLAVE] = tick_ops->get_tick();
267 			membar_safe("#StoreLoad");
268 		}
269 	}
270 	spin_unlock_irqrestore(&itc_sync_lock, flags);
271 }
272 
273 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
274 /* XXX Put this in some common place. XXX */
275 static unsigned long kimage_addr_to_ra(void *p)
276 {
277 	unsigned long val = (unsigned long) p;
278 
279 	return kern_base + (val - KERNBASE);
280 }
281 
282 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
283 {
284 	extern unsigned long sparc64_ttable_tl0;
285 	extern unsigned long kern_locked_tte_data;
286 	struct hvtramp_descr *hdesc;
287 	unsigned long trampoline_ra;
288 	struct trap_per_cpu *tb;
289 	u64 tte_vaddr, tte_data;
290 	unsigned long hv_err;
291 	int i;
292 
293 	hdesc = kzalloc(sizeof(*hdesc) +
294 			(sizeof(struct hvtramp_mapping) *
295 			 num_kernel_image_mappings - 1),
296 			GFP_KERNEL);
297 	if (!hdesc) {
298 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
299 		       "hvtramp_descr.\n");
300 		return;
301 	}
302 	*descrp = hdesc;
303 
304 	hdesc->cpu = cpu;
305 	hdesc->num_mappings = num_kernel_image_mappings;
306 
307 	tb = &trap_block[cpu];
308 
309 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
310 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311 
312 	hdesc->thread_reg = thread_reg;
313 
314 	tte_vaddr = (unsigned long) KERNBASE;
315 	tte_data = kern_locked_tte_data;
316 
317 	for (i = 0; i < hdesc->num_mappings; i++) {
318 		hdesc->maps[i].vaddr = tte_vaddr;
319 		hdesc->maps[i].tte   = tte_data;
320 		tte_vaddr += 0x400000;
321 		tte_data  += 0x400000;
322 	}
323 
324 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
325 
326 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
327 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
328 				 __pa(hdesc));
329 	if (hv_err)
330 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
331 		       "gives error %lu\n", hv_err);
332 }
333 #endif
334 
335 extern unsigned long sparc64_cpu_startup;
336 
337 /* The OBP cpu startup callback truncates the 3rd arg cookie to
338  * 32-bits (I think) so to be safe we have it read the pointer
339  * contained here so we work on >4GB machines. -DaveM
340  */
341 static struct thread_info *cpu_new_thread = NULL;
342 
343 static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
344 {
345 	unsigned long entry =
346 		(unsigned long)(&sparc64_cpu_startup);
347 	unsigned long cookie =
348 		(unsigned long)(&cpu_new_thread);
349 	void *descr = NULL;
350 	int timeout, ret;
351 
352 	callin_flag = 0;
353 	cpu_new_thread = task_thread_info(idle);
354 
355 	if (tlb_type == hypervisor) {
356 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
357 		if (ldom_domaining_enabled)
358 			ldom_startcpu_cpuid(cpu,
359 					    (unsigned long) cpu_new_thread,
360 					    &descr);
361 		else
362 #endif
363 			prom_startcpu_cpuid(cpu, entry, cookie);
364 	} else {
365 		struct device_node *dp = of_find_node_by_cpuid(cpu);
366 
367 		prom_startcpu(dp->phandle, entry, cookie);
368 	}
369 
370 	for (timeout = 0; timeout < 50000; timeout++) {
371 		if (callin_flag)
372 			break;
373 		udelay(100);
374 	}
375 
376 	if (callin_flag) {
377 		ret = 0;
378 	} else {
379 		printk("Processor %d is stuck.\n", cpu);
380 		ret = -ENODEV;
381 	}
382 	cpu_new_thread = NULL;
383 
384 	kfree(descr);
385 
386 	return ret;
387 }
388 
389 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
390 {
391 	u64 result, target;
392 	int stuck, tmp;
393 
394 	if (this_is_starfire) {
395 		/* map to real upaid */
396 		cpu = (((cpu & 0x3c) << 1) |
397 			((cpu & 0x40) >> 4) |
398 			(cpu & 0x3));
399 	}
400 
401 	target = (cpu << 14) | 0x70;
402 again:
403 	/* Ok, this is the real Spitfire Errata #54.
404 	 * One must read back from a UDB internal register
405 	 * after writes to the UDB interrupt dispatch, but
406 	 * before the membar Sync for that write.
407 	 * So we use the high UDB control register (ASI 0x7f,
408 	 * ADDR 0x20) for the dummy read. -DaveM
409 	 */
410 	tmp = 0x40;
411 	__asm__ __volatile__(
412 	"wrpr	%1, %2, %%pstate\n\t"
413 	"stxa	%4, [%0] %3\n\t"
414 	"stxa	%5, [%0+%8] %3\n\t"
415 	"add	%0, %8, %0\n\t"
416 	"stxa	%6, [%0+%8] %3\n\t"
417 	"membar	#Sync\n\t"
418 	"stxa	%%g0, [%7] %3\n\t"
419 	"membar	#Sync\n\t"
420 	"mov	0x20, %%g1\n\t"
421 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
422 	"membar	#Sync"
423 	: "=r" (tmp)
424 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
425 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
426 	  "r" (0x10), "0" (tmp)
427         : "g1");
428 
429 	/* NOTE: PSTATE_IE is still clear. */
430 	stuck = 100000;
431 	do {
432 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
433 			: "=r" (result)
434 			: "i" (ASI_INTR_DISPATCH_STAT));
435 		if (result == 0) {
436 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
437 					     : : "r" (pstate));
438 			return;
439 		}
440 		stuck -= 1;
441 		if (stuck == 0)
442 			break;
443 	} while (result & 0x1);
444 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445 			     : : "r" (pstate));
446 	if (stuck == 0) {
447 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
448 		       smp_processor_id(), result);
449 	} else {
450 		udelay(2);
451 		goto again;
452 	}
453 }
454 
455 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
456 {
457 	u64 *mondo, data0, data1, data2;
458 	u16 *cpu_list;
459 	u64 pstate;
460 	int i;
461 
462 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
463 	cpu_list = __va(tb->cpu_list_pa);
464 	mondo = __va(tb->cpu_mondo_block_pa);
465 	data0 = mondo[0];
466 	data1 = mondo[1];
467 	data2 = mondo[2];
468 	for (i = 0; i < cnt; i++)
469 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
470 }
471 
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473  * packet, but we have no use for that.  However we do take advantage of
474  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
475  */
476 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
477 {
478 	int nack_busy_id, is_jbus, need_more;
479 	u64 *mondo, pstate, ver, busy_mask;
480 	u16 *cpu_list;
481 
482 	cpu_list = __va(tb->cpu_list_pa);
483 	mondo = __va(tb->cpu_mondo_block_pa);
484 
485 	/* Unfortunately, someone at Sun had the brilliant idea to make the
486 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
487 	 * derivative processor.
488 	 */
489 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
490 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
491 		   (ver >> 32) == __SERRANO_ID);
492 
493 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
494 
495 retry:
496 	need_more = 0;
497 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
498 			     : : "r" (pstate), "i" (PSTATE_IE));
499 
500 	/* Setup the dispatch data registers. */
501 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
502 			     "stxa	%1, [%4] %6\n\t"
503 			     "stxa	%2, [%5] %6\n\t"
504 			     "membar	#Sync\n\t"
505 			     : /* no outputs */
506 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
507 			       "r" (0x40), "r" (0x50), "r" (0x60),
508 			       "i" (ASI_INTR_W));
509 
510 	nack_busy_id = 0;
511 	busy_mask = 0;
512 	{
513 		int i;
514 
515 		for (i = 0; i < cnt; i++) {
516 			u64 target, nr;
517 
518 			nr = cpu_list[i];
519 			if (nr == 0xffff)
520 				continue;
521 
522 			target = (nr << 14) | 0x70;
523 			if (is_jbus) {
524 				busy_mask |= (0x1UL << (nr * 2));
525 			} else {
526 				target |= (nack_busy_id << 24);
527 				busy_mask |= (0x1UL <<
528 					      (nack_busy_id * 2));
529 			}
530 			__asm__ __volatile__(
531 				"stxa	%%g0, [%0] %1\n\t"
532 				"membar	#Sync\n\t"
533 				: /* no outputs */
534 				: "r" (target), "i" (ASI_INTR_W));
535 			nack_busy_id++;
536 			if (nack_busy_id == 32) {
537 				need_more = 1;
538 				break;
539 			}
540 		}
541 	}
542 
543 	/* Now, poll for completion. */
544 	{
545 		u64 dispatch_stat, nack_mask;
546 		long stuck;
547 
548 		stuck = 100000 * nack_busy_id;
549 		nack_mask = busy_mask << 1;
550 		do {
551 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
552 					     : "=r" (dispatch_stat)
553 					     : "i" (ASI_INTR_DISPATCH_STAT));
554 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
555 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
556 						     : : "r" (pstate));
557 				if (unlikely(need_more)) {
558 					int i, this_cnt = 0;
559 					for (i = 0; i < cnt; i++) {
560 						if (cpu_list[i] == 0xffff)
561 							continue;
562 						cpu_list[i] = 0xffff;
563 						this_cnt++;
564 						if (this_cnt == 32)
565 							break;
566 					}
567 					goto retry;
568 				}
569 				return;
570 			}
571 			if (!--stuck)
572 				break;
573 		} while (dispatch_stat & busy_mask);
574 
575 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
576 				     : : "r" (pstate));
577 
578 		if (dispatch_stat & busy_mask) {
579 			/* Busy bits will not clear, continue instead
580 			 * of freezing up on this cpu.
581 			 */
582 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
583 			       smp_processor_id(), dispatch_stat);
584 		} else {
585 			int i, this_busy_nack = 0;
586 
587 			/* Delay some random time with interrupts enabled
588 			 * to prevent deadlock.
589 			 */
590 			udelay(2 * nack_busy_id);
591 
592 			/* Clear out the mask bits for cpus which did not
593 			 * NACK us.
594 			 */
595 			for (i = 0; i < cnt; i++) {
596 				u64 check_mask, nr;
597 
598 				nr = cpu_list[i];
599 				if (nr == 0xffff)
600 					continue;
601 
602 				if (is_jbus)
603 					check_mask = (0x2UL << (2*nr));
604 				else
605 					check_mask = (0x2UL <<
606 						      this_busy_nack);
607 				if ((dispatch_stat & check_mask) == 0)
608 					cpu_list[i] = 0xffff;
609 				this_busy_nack += 2;
610 				if (this_busy_nack == 64)
611 					break;
612 			}
613 
614 			goto retry;
615 		}
616 	}
617 }
618 
619 /* Multi-cpu list version.  */
620 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
621 {
622 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
623 	unsigned long status;
624 	u16 *cpu_list;
625 
626 	this_cpu = smp_processor_id();
627 
628 	cpu_list = __va(tb->cpu_list_pa);
629 
630 	saw_cpu_error = 0;
631 	retries = 0;
632 	prev_sent = 0;
633 	do {
634 		int forward_progress, n_sent;
635 
636 		status = sun4v_cpu_mondo_send(cnt,
637 					      tb->cpu_list_pa,
638 					      tb->cpu_mondo_block_pa);
639 
640 		/* HV_EOK means all cpus received the xcall, we're done.  */
641 		if (likely(status == HV_EOK))
642 			break;
643 
644 		/* First, see if we made any forward progress.
645 		 *
646 		 * The hypervisor indicates successful sends by setting
647 		 * cpu list entries to the value 0xffff.
648 		 */
649 		n_sent = 0;
650 		for (i = 0; i < cnt; i++) {
651 			if (likely(cpu_list[i] == 0xffff))
652 				n_sent++;
653 		}
654 
655 		forward_progress = 0;
656 		if (n_sent > prev_sent)
657 			forward_progress = 1;
658 
659 		prev_sent = n_sent;
660 
661 		/* If we get a HV_ECPUERROR, then one or more of the cpus
662 		 * in the list are in error state.  Use the cpu_state()
663 		 * hypervisor call to find out which cpus are in error state.
664 		 */
665 		if (unlikely(status == HV_ECPUERROR)) {
666 			for (i = 0; i < cnt; i++) {
667 				long err;
668 				u16 cpu;
669 
670 				cpu = cpu_list[i];
671 				if (cpu == 0xffff)
672 					continue;
673 
674 				err = sun4v_cpu_state(cpu);
675 				if (err == HV_CPU_STATE_ERROR) {
676 					saw_cpu_error = (cpu + 1);
677 					cpu_list[i] = 0xffff;
678 				}
679 			}
680 		} else if (unlikely(status != HV_EWOULDBLOCK))
681 			goto fatal_mondo_error;
682 
683 		/* Don't bother rewriting the CPU list, just leave the
684 		 * 0xffff and non-0xffff entries in there and the
685 		 * hypervisor will do the right thing.
686 		 *
687 		 * Only advance timeout state if we didn't make any
688 		 * forward progress.
689 		 */
690 		if (unlikely(!forward_progress)) {
691 			if (unlikely(++retries > 10000))
692 				goto fatal_mondo_timeout;
693 
694 			/* Delay a little bit to let other cpus catch up
695 			 * on their cpu mondo queue work.
696 			 */
697 			udelay(2 * cnt);
698 		}
699 	} while (1);
700 
701 	if (unlikely(saw_cpu_error))
702 		goto fatal_mondo_cpu_error;
703 
704 	return;
705 
706 fatal_mondo_cpu_error:
707 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
708 	       "(including %d) were in error state\n",
709 	       this_cpu, saw_cpu_error - 1);
710 	return;
711 
712 fatal_mondo_timeout:
713 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
714 	       " progress after %d retries.\n",
715 	       this_cpu, retries);
716 	goto dump_cpu_list_and_out;
717 
718 fatal_mondo_error:
719 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
720 	       this_cpu, status);
721 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
722 	       "mondo_block_pa(%lx)\n",
723 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
724 
725 dump_cpu_list_and_out:
726 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
727 	for (i = 0; i < cnt; i++)
728 		printk("%u ", cpu_list[i]);
729 	printk("]\n");
730 }
731 
732 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
733 
734 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
735 {
736 	struct trap_per_cpu *tb;
737 	int this_cpu, i, cnt;
738 	unsigned long flags;
739 	u16 *cpu_list;
740 	u64 *mondo;
741 
742 	/* We have to do this whole thing with interrupts fully disabled.
743 	 * Otherwise if we send an xcall from interrupt context it will
744 	 * corrupt both our mondo block and cpu list state.
745 	 *
746 	 * One consequence of this is that we cannot use timeout mechanisms
747 	 * that depend upon interrupts being delivered locally.  So, for
748 	 * example, we cannot sample jiffies and expect it to advance.
749 	 *
750 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
751 	 */
752 	local_irq_save(flags);
753 
754 	this_cpu = smp_processor_id();
755 	tb = &trap_block[this_cpu];
756 
757 	mondo = __va(tb->cpu_mondo_block_pa);
758 	mondo[0] = data0;
759 	mondo[1] = data1;
760 	mondo[2] = data2;
761 	wmb();
762 
763 	cpu_list = __va(tb->cpu_list_pa);
764 
765 	/* Setup the initial cpu list.  */
766 	cnt = 0;
767 	for_each_cpu(i, mask) {
768 		if (i == this_cpu || !cpu_online(i))
769 			continue;
770 		cpu_list[cnt++] = i;
771 	}
772 
773 	if (cnt)
774 		xcall_deliver_impl(tb, cnt);
775 
776 	local_irq_restore(flags);
777 }
778 
779 /* Send cross call to all processors mentioned in MASK_P
780  * except self.  Really, there are only two cases currently,
781  * "cpu_online_mask" and "mm_cpumask(mm)".
782  */
783 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
784 {
785 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
786 
787 	xcall_deliver(data0, data1, data2, mask);
788 }
789 
790 /* Send cross call to all processors except self. */
791 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
792 {
793 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
794 }
795 
796 extern unsigned long xcall_sync_tick;
797 
798 static void smp_start_sync_tick_client(int cpu)
799 {
800 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
801 		      cpumask_of(cpu));
802 }
803 
804 extern unsigned long xcall_call_function;
805 
806 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
807 {
808 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
809 }
810 
811 extern unsigned long xcall_call_function_single;
812 
813 void arch_send_call_function_single_ipi(int cpu)
814 {
815 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
816 		      cpumask_of(cpu));
817 }
818 
819 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
820 {
821 	clear_softint(1 << irq);
822 	generic_smp_call_function_interrupt();
823 }
824 
825 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
826 {
827 	clear_softint(1 << irq);
828 	generic_smp_call_function_single_interrupt();
829 }
830 
831 static void tsb_sync(void *info)
832 {
833 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
834 	struct mm_struct *mm = info;
835 
836 	/* It is not valid to test "current->active_mm == mm" here.
837 	 *
838 	 * The value of "current" is not changed atomically with
839 	 * switch_mm().  But that's OK, we just need to check the
840 	 * current cpu's trap block PGD physical address.
841 	 */
842 	if (tp->pgd_paddr == __pa(mm->pgd))
843 		tsb_context_switch(mm);
844 }
845 
846 void smp_tsb_sync(struct mm_struct *mm)
847 {
848 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
849 }
850 
851 extern unsigned long xcall_flush_tlb_mm;
852 extern unsigned long xcall_flush_tlb_pending;
853 extern unsigned long xcall_flush_tlb_kernel_range;
854 extern unsigned long xcall_fetch_glob_regs;
855 extern unsigned long xcall_fetch_glob_pmu;
856 extern unsigned long xcall_fetch_glob_pmu_n4;
857 extern unsigned long xcall_receive_signal;
858 extern unsigned long xcall_new_mmu_context_version;
859 #ifdef CONFIG_KGDB
860 extern unsigned long xcall_kgdb_capture;
861 #endif
862 
863 #ifdef DCACHE_ALIASING_POSSIBLE
864 extern unsigned long xcall_flush_dcache_page_cheetah;
865 #endif
866 extern unsigned long xcall_flush_dcache_page_spitfire;
867 
868 #ifdef CONFIG_DEBUG_DCFLUSH
869 extern atomic_t dcpage_flushes;
870 extern atomic_t dcpage_flushes_xcall;
871 #endif
872 
873 static inline void __local_flush_dcache_page(struct page *page)
874 {
875 #ifdef DCACHE_ALIASING_POSSIBLE
876 	__flush_dcache_page(page_address(page),
877 			    ((tlb_type == spitfire) &&
878 			     page_mapping(page) != NULL));
879 #else
880 	if (page_mapping(page) != NULL &&
881 	    tlb_type == spitfire)
882 		__flush_icache_page(__pa(page_address(page)));
883 #endif
884 }
885 
886 void smp_flush_dcache_page_impl(struct page *page, int cpu)
887 {
888 	int this_cpu;
889 
890 	if (tlb_type == hypervisor)
891 		return;
892 
893 #ifdef CONFIG_DEBUG_DCFLUSH
894 	atomic_inc(&dcpage_flushes);
895 #endif
896 
897 	this_cpu = get_cpu();
898 
899 	if (cpu == this_cpu) {
900 		__local_flush_dcache_page(page);
901 	} else if (cpu_online(cpu)) {
902 		void *pg_addr = page_address(page);
903 		u64 data0 = 0;
904 
905 		if (tlb_type == spitfire) {
906 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
907 			if (page_mapping(page) != NULL)
908 				data0 |= ((u64)1 << 32);
909 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
910 #ifdef DCACHE_ALIASING_POSSIBLE
911 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
912 #endif
913 		}
914 		if (data0) {
915 			xcall_deliver(data0, __pa(pg_addr),
916 				      (u64) pg_addr, cpumask_of(cpu));
917 #ifdef CONFIG_DEBUG_DCFLUSH
918 			atomic_inc(&dcpage_flushes_xcall);
919 #endif
920 		}
921 	}
922 
923 	put_cpu();
924 }
925 
926 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
927 {
928 	void *pg_addr;
929 	u64 data0;
930 
931 	if (tlb_type == hypervisor)
932 		return;
933 
934 	preempt_disable();
935 
936 #ifdef CONFIG_DEBUG_DCFLUSH
937 	atomic_inc(&dcpage_flushes);
938 #endif
939 	data0 = 0;
940 	pg_addr = page_address(page);
941 	if (tlb_type == spitfire) {
942 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
943 		if (page_mapping(page) != NULL)
944 			data0 |= ((u64)1 << 32);
945 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
946 #ifdef DCACHE_ALIASING_POSSIBLE
947 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
948 #endif
949 	}
950 	if (data0) {
951 		xcall_deliver(data0, __pa(pg_addr),
952 			      (u64) pg_addr, cpu_online_mask);
953 #ifdef CONFIG_DEBUG_DCFLUSH
954 		atomic_inc(&dcpage_flushes_xcall);
955 #endif
956 	}
957 	__local_flush_dcache_page(page);
958 
959 	preempt_enable();
960 }
961 
962 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
963 {
964 	struct mm_struct *mm;
965 	unsigned long flags;
966 
967 	clear_softint(1 << irq);
968 
969 	/* See if we need to allocate a new TLB context because
970 	 * the version of the one we are using is now out of date.
971 	 */
972 	mm = current->active_mm;
973 	if (unlikely(!mm || (mm == &init_mm)))
974 		return;
975 
976 	spin_lock_irqsave(&mm->context.lock, flags);
977 
978 	if (unlikely(!CTX_VALID(mm->context)))
979 		get_new_mmu_context(mm);
980 
981 	spin_unlock_irqrestore(&mm->context.lock, flags);
982 
983 	load_secondary_context(mm);
984 	__flush_tlb_mm(CTX_HWBITS(mm->context),
985 		       SECONDARY_CONTEXT);
986 }
987 
988 void smp_new_mmu_context_version(void)
989 {
990 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
991 }
992 
993 #ifdef CONFIG_KGDB
994 void kgdb_roundup_cpus(unsigned long flags)
995 {
996 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
997 }
998 #endif
999 
1000 void smp_fetch_global_regs(void)
1001 {
1002 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003 }
1004 
1005 void smp_fetch_global_pmu(void)
1006 {
1007 	if (tlb_type == hypervisor &&
1008 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010 	else
1011 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012 }
1013 
1014 /* We know that the window frames of the user have been flushed
1015  * to the stack before we get here because all callers of us
1016  * are flush_tlb_*() routines, and these run after flush_cache_*()
1017  * which performs the flushw.
1018  *
1019  * The SMP TLB coherency scheme we use works as follows:
1020  *
1021  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022  *    space has (potentially) executed on, this is the heuristic
1023  *    we use to avoid doing cross calls.
1024  *
1025  *    Also, for flushing from kswapd and also for clones, we
1026  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1027  *
1028  * 2) TLB context numbers are shared globally across all processors
1029  *    in the system, this allows us to play several games to avoid
1030  *    cross calls.
1031  *
1032  *    One invariant is that when a cpu switches to a process, and
1033  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1034  *    current cpu's bit set, that tlb context is flushed locally.
1035  *
1036  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1037  *    cross calls when we want to flush the currently running process's
1038  *    tlb state.  This is done by clearing all cpu bits except the current
1039  *    processor's in current->mm->cpu_vm_mask and performing the
1040  *    flush locally only.  This will force any subsequent cpus which run
1041  *    this task to flush the context from the local tlb if the process
1042  *    migrates to another cpu (again).
1043  *
1044  * 3) For shared address spaces (threads) and swapping we bite the
1045  *    bullet for most cases and perform the cross call (but only to
1046  *    the cpus listed in cpu_vm_mask).
1047  *
1048  *    The performance gain from "optimizing" away the cross call for threads is
1049  *    questionable (in theory the big win for threads is the massive sharing of
1050  *    address space state across processors).
1051  */
1052 
1053 /* This currently is only used by the hugetlb arch pre-fault
1054  * hook on UltraSPARC-III+ and later when changing the pagesize
1055  * bits of the context register for an address space.
1056  */
1057 void smp_flush_tlb_mm(struct mm_struct *mm)
1058 {
1059 	u32 ctx = CTX_HWBITS(mm->context);
1060 	int cpu = get_cpu();
1061 
1062 	if (atomic_read(&mm->mm_users) == 1) {
1063 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1064 		goto local_flush_and_out;
1065 	}
1066 
1067 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1068 			      ctx, 0, 0,
1069 			      mm_cpumask(mm));
1070 
1071 local_flush_and_out:
1072 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073 
1074 	put_cpu();
1075 }
1076 
1077 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1078 {
1079 	u32 ctx = CTX_HWBITS(mm->context);
1080 	int cpu = get_cpu();
1081 
1082 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1083 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1084 	else
1085 		smp_cross_call_masked(&xcall_flush_tlb_pending,
1086 				      ctx, nr, (unsigned long) vaddrs,
1087 				      mm_cpumask(mm));
1088 
1089 	__flush_tlb_pending(ctx, nr, vaddrs);
1090 
1091 	put_cpu();
1092 }
1093 
1094 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1095 {
1096 	start &= PAGE_MASK;
1097 	end    = PAGE_ALIGN(end);
1098 	if (start != end) {
1099 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1100 			       0, start, end);
1101 
1102 		__flush_tlb_kernel_range(start, end);
1103 	}
1104 }
1105 
1106 /* CPU capture. */
1107 /* #define CAPTURE_DEBUG */
1108 extern unsigned long xcall_capture;
1109 
1110 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1111 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1112 static unsigned long penguins_are_doing_time;
1113 
1114 void smp_capture(void)
1115 {
1116 	int result = atomic_add_ret(1, &smp_capture_depth);
1117 
1118 	if (result == 1) {
1119 		int ncpus = num_online_cpus();
1120 
1121 #ifdef CAPTURE_DEBUG
1122 		printk("CPU[%d]: Sending penguins to jail...",
1123 		       smp_processor_id());
1124 #endif
1125 		penguins_are_doing_time = 1;
1126 		atomic_inc(&smp_capture_registry);
1127 		smp_cross_call(&xcall_capture, 0, 0, 0);
1128 		while (atomic_read(&smp_capture_registry) != ncpus)
1129 			rmb();
1130 #ifdef CAPTURE_DEBUG
1131 		printk("done\n");
1132 #endif
1133 	}
1134 }
1135 
1136 void smp_release(void)
1137 {
1138 	if (atomic_dec_and_test(&smp_capture_depth)) {
1139 #ifdef CAPTURE_DEBUG
1140 		printk("CPU[%d]: Giving pardon to "
1141 		       "imprisoned penguins\n",
1142 		       smp_processor_id());
1143 #endif
1144 		penguins_are_doing_time = 0;
1145 		membar_safe("#StoreLoad");
1146 		atomic_dec(&smp_capture_registry);
1147 	}
1148 }
1149 
1150 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1151  * set, so they can service tlb flush xcalls...
1152  */
1153 extern void prom_world(int);
1154 
1155 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1156 {
1157 	clear_softint(1 << irq);
1158 
1159 	preempt_disable();
1160 
1161 	__asm__ __volatile__("flushw");
1162 	prom_world(1);
1163 	atomic_inc(&smp_capture_registry);
1164 	membar_safe("#StoreLoad");
1165 	while (penguins_are_doing_time)
1166 		rmb();
1167 	atomic_dec(&smp_capture_registry);
1168 	prom_world(0);
1169 
1170 	preempt_enable();
1171 }
1172 
1173 /* /proc/profile writes can call this, don't __init it please. */
1174 int setup_profiling_timer(unsigned int multiplier)
1175 {
1176 	return -EINVAL;
1177 }
1178 
1179 void __init smp_prepare_cpus(unsigned int max_cpus)
1180 {
1181 }
1182 
1183 void smp_prepare_boot_cpu(void)
1184 {
1185 }
1186 
1187 void __init smp_setup_processor_id(void)
1188 {
1189 	if (tlb_type == spitfire)
1190 		xcall_deliver_impl = spitfire_xcall_deliver;
1191 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1192 		xcall_deliver_impl = cheetah_xcall_deliver;
1193 	else
1194 		xcall_deliver_impl = hypervisor_xcall_deliver;
1195 }
1196 
1197 void smp_fill_in_sib_core_maps(void)
1198 {
1199 	unsigned int i;
1200 
1201 	for_each_present_cpu(i) {
1202 		unsigned int j;
1203 
1204 		cpumask_clear(&cpu_core_map[i]);
1205 		if (cpu_data(i).core_id == 0) {
1206 			cpumask_set_cpu(i, &cpu_core_map[i]);
1207 			continue;
1208 		}
1209 
1210 		for_each_present_cpu(j) {
1211 			if (cpu_data(i).core_id ==
1212 			    cpu_data(j).core_id)
1213 				cpumask_set_cpu(j, &cpu_core_map[i]);
1214 		}
1215 	}
1216 
1217 	for_each_present_cpu(i) {
1218 		unsigned int j;
1219 
1220 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1221 		if (cpu_data(i).proc_id == -1) {
1222 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1223 			continue;
1224 		}
1225 
1226 		for_each_present_cpu(j) {
1227 			if (cpu_data(i).proc_id ==
1228 			    cpu_data(j).proc_id)
1229 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1230 		}
1231 	}
1232 }
1233 
1234 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1235 {
1236 	int ret = smp_boot_one_cpu(cpu, tidle);
1237 
1238 	if (!ret) {
1239 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1240 		while (!cpu_online(cpu))
1241 			mb();
1242 		if (!cpu_online(cpu)) {
1243 			ret = -ENODEV;
1244 		} else {
1245 			/* On SUN4V, writes to %tick and %stick are
1246 			 * not allowed.
1247 			 */
1248 			if (tlb_type != hypervisor)
1249 				smp_synchronize_one_tick(cpu);
1250 		}
1251 	}
1252 	return ret;
1253 }
1254 
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 void cpu_play_dead(void)
1257 {
1258 	int cpu = smp_processor_id();
1259 	unsigned long pstate;
1260 
1261 	idle_task_exit();
1262 
1263 	if (tlb_type == hypervisor) {
1264 		struct trap_per_cpu *tb = &trap_block[cpu];
1265 
1266 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1267 				tb->cpu_mondo_pa, 0);
1268 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1269 				tb->dev_mondo_pa, 0);
1270 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1271 				tb->resum_mondo_pa, 0);
1272 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1273 				tb->nonresum_mondo_pa, 0);
1274 	}
1275 
1276 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1277 	membar_safe("#Sync");
1278 
1279 	local_irq_disable();
1280 
1281 	__asm__ __volatile__(
1282 		"rdpr	%%pstate, %0\n\t"
1283 		"wrpr	%0, %1, %%pstate"
1284 		: "=r" (pstate)
1285 		: "i" (PSTATE_IE));
1286 
1287 	while (1)
1288 		barrier();
1289 }
1290 
1291 int __cpu_disable(void)
1292 {
1293 	int cpu = smp_processor_id();
1294 	cpuinfo_sparc *c;
1295 	int i;
1296 
1297 	for_each_cpu(i, &cpu_core_map[cpu])
1298 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1299 	cpumask_clear(&cpu_core_map[cpu]);
1300 
1301 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1302 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1303 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1304 
1305 	c = &cpu_data(cpu);
1306 
1307 	c->core_id = 0;
1308 	c->proc_id = -1;
1309 
1310 	smp_wmb();
1311 
1312 	/* Make sure no interrupts point to this cpu.  */
1313 	fixup_irqs();
1314 
1315 	local_irq_enable();
1316 	mdelay(1);
1317 	local_irq_disable();
1318 
1319 	set_cpu_online(cpu, false);
1320 
1321 	cpu_map_rebuild();
1322 
1323 	return 0;
1324 }
1325 
1326 void __cpu_die(unsigned int cpu)
1327 {
1328 	int i;
1329 
1330 	for (i = 0; i < 100; i++) {
1331 		smp_rmb();
1332 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1333 			break;
1334 		msleep(100);
1335 	}
1336 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1337 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1338 	} else {
1339 #if defined(CONFIG_SUN_LDOMS)
1340 		unsigned long hv_err;
1341 		int limit = 100;
1342 
1343 		do {
1344 			hv_err = sun4v_cpu_stop(cpu);
1345 			if (hv_err == HV_EOK) {
1346 				set_cpu_present(cpu, false);
1347 				break;
1348 			}
1349 		} while (--limit > 0);
1350 		if (limit <= 0) {
1351 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1352 			       hv_err);
1353 		}
1354 #endif
1355 	}
1356 }
1357 #endif
1358 
1359 void __init smp_cpus_done(unsigned int max_cpus)
1360 {
1361 	pcr_arch_init();
1362 }
1363 
1364 void smp_send_reschedule(int cpu)
1365 {
1366 	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1367 		      cpumask_of(cpu));
1368 }
1369 
1370 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1371 {
1372 	clear_softint(1 << irq);
1373 	scheduler_ipi();
1374 }
1375 
1376 /* This is a nop because we capture all other cpus
1377  * anyways when making the PROM active.
1378  */
1379 void smp_send_stop(void)
1380 {
1381 }
1382 
1383 /**
1384  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1385  * @cpu: cpu to allocate for
1386  * @size: size allocation in bytes
1387  * @align: alignment
1388  *
1389  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1390  * does the right thing for NUMA regardless of the current
1391  * configuration.
1392  *
1393  * RETURNS:
1394  * Pointer to the allocated area on success, NULL on failure.
1395  */
1396 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1397 					size_t align)
1398 {
1399 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1400 #ifdef CONFIG_NEED_MULTIPLE_NODES
1401 	int node = cpu_to_node(cpu);
1402 	void *ptr;
1403 
1404 	if (!node_online(node) || !NODE_DATA(node)) {
1405 		ptr = __alloc_bootmem(size, align, goal);
1406 		pr_info("cpu %d has no node %d or node-local memory\n",
1407 			cpu, node);
1408 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1409 			 cpu, size, __pa(ptr));
1410 	} else {
1411 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1412 					   size, align, goal);
1413 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1414 			 "%016lx\n", cpu, size, node, __pa(ptr));
1415 	}
1416 	return ptr;
1417 #else
1418 	return __alloc_bootmem(size, align, goal);
1419 #endif
1420 }
1421 
1422 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1423 {
1424 	free_bootmem(__pa(ptr), size);
1425 }
1426 
1427 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1428 {
1429 	if (cpu_to_node(from) == cpu_to_node(to))
1430 		return LOCAL_DISTANCE;
1431 	else
1432 		return REMOTE_DISTANCE;
1433 }
1434 
1435 static void __init pcpu_populate_pte(unsigned long addr)
1436 {
1437 	pgd_t *pgd = pgd_offset_k(addr);
1438 	pud_t *pud;
1439 	pmd_t *pmd;
1440 
1441 	pud = pud_offset(pgd, addr);
1442 	if (pud_none(*pud)) {
1443 		pmd_t *new;
1444 
1445 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1446 		pud_populate(&init_mm, pud, new);
1447 	}
1448 
1449 	pmd = pmd_offset(pud, addr);
1450 	if (!pmd_present(*pmd)) {
1451 		pte_t *new;
1452 
1453 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1454 		pmd_populate_kernel(&init_mm, pmd, new);
1455 	}
1456 }
1457 
1458 void __init setup_per_cpu_areas(void)
1459 {
1460 	unsigned long delta;
1461 	unsigned int cpu;
1462 	int rc = -EINVAL;
1463 
1464 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1465 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1466 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1467 					    pcpu_cpu_distance,
1468 					    pcpu_alloc_bootmem,
1469 					    pcpu_free_bootmem);
1470 		if (rc)
1471 			pr_warning("PERCPU: %s allocator failed (%d), "
1472 				   "falling back to page size\n",
1473 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1474 	}
1475 	if (rc < 0)
1476 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1477 					   pcpu_alloc_bootmem,
1478 					   pcpu_free_bootmem,
1479 					   pcpu_populate_pte);
1480 	if (rc < 0)
1481 		panic("cannot initialize percpu area (err=%d)", rc);
1482 
1483 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1484 	for_each_possible_cpu(cpu)
1485 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1486 
1487 	/* Setup %g5 for the boot cpu.  */
1488 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1489 
1490 	of_fill_in_cpu_data();
1491 	if (tlb_type == hypervisor)
1492 		mdesc_fill_in_cpu_data(cpu_all_mask);
1493 }
1494