xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29 
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40 
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55 
56 #include "cpumap.h"
57 #include "kernel.h"
58 
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62 
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64 	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
65 
66 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
67 	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
68 
69 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
70 EXPORT_SYMBOL(cpu_core_map);
71 EXPORT_SYMBOL(cpu_core_sib_map);
72 EXPORT_SYMBOL(cpu_core_sib_cache_map);
73 
74 static cpumask_t smp_commenced_mask;
75 
76 void smp_info(struct seq_file *m)
77 {
78 	int i;
79 
80 	seq_printf(m, "State:\n");
81 	for_each_online_cpu(i)
82 		seq_printf(m, "CPU%d:\t\tonline\n", i);
83 }
84 
85 void smp_bogo(struct seq_file *m)
86 {
87 	int i;
88 
89 	for_each_online_cpu(i)
90 		seq_printf(m,
91 			   "Cpu%dClkTck\t: %016lx\n",
92 			   i, cpu_data(i).clock_tick);
93 }
94 
95 extern void setup_sparc64_timer(void);
96 
97 static volatile unsigned long callin_flag = 0;
98 
99 void smp_callin(void)
100 {
101 	int cpuid = hard_smp_processor_id();
102 
103 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
104 
105 	if (tlb_type == hypervisor)
106 		sun4v_ktsb_register();
107 
108 	__flush_tlb_all();
109 
110 	setup_sparc64_timer();
111 
112 	if (cheetah_pcache_forced_on)
113 		cheetah_enable_pcache();
114 
115 	callin_flag = 1;
116 	__asm__ __volatile__("membar #Sync\n\t"
117 			     "flush  %%g6" : : : "memory");
118 
119 	/* Clear this or we will die instantly when we
120 	 * schedule back to this idler...
121 	 */
122 	current_thread_info()->new_child = 0;
123 
124 	/* Attach to the address space of init_task. */
125 	atomic_inc(&init_mm.mm_count);
126 	current->active_mm = &init_mm;
127 
128 	/* inform the notifiers about the new cpu */
129 	notify_cpu_starting(cpuid);
130 
131 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
132 		rmb();
133 
134 	set_cpu_online(cpuid, true);
135 
136 	/* idle thread is expected to have preempt disabled */
137 	preempt_disable();
138 
139 	local_irq_enable();
140 
141 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
142 }
143 
144 void cpu_panic(void)
145 {
146 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
147 	panic("SMP bolixed\n");
148 }
149 
150 /* This tick register synchronization scheme is taken entirely from
151  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
152  *
153  * The only change I've made is to rework it so that the master
154  * initiates the synchonization instead of the slave. -DaveM
155  */
156 
157 #define MASTER	0
158 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
159 
160 #define NUM_ROUNDS	64	/* magic value */
161 #define NUM_ITERS	5	/* likewise */
162 
163 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
164 static unsigned long go[SLAVE + 1];
165 
166 #define DEBUG_TICK_SYNC	0
167 
168 static inline long get_delta (long *rt, long *master)
169 {
170 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
171 	unsigned long tcenter, t0, t1, tm;
172 	unsigned long i;
173 
174 	for (i = 0; i < NUM_ITERS; i++) {
175 		t0 = tick_ops->get_tick();
176 		go[MASTER] = 1;
177 		membar_safe("#StoreLoad");
178 		while (!(tm = go[SLAVE]))
179 			rmb();
180 		go[SLAVE] = 0;
181 		wmb();
182 		t1 = tick_ops->get_tick();
183 
184 		if (t1 - t0 < best_t1 - best_t0)
185 			best_t0 = t0, best_t1 = t1, best_tm = tm;
186 	}
187 
188 	*rt = best_t1 - best_t0;
189 	*master = best_tm - best_t0;
190 
191 	/* average best_t0 and best_t1 without overflow: */
192 	tcenter = (best_t0/2 + best_t1/2);
193 	if (best_t0 % 2 + best_t1 % 2 == 2)
194 		tcenter++;
195 	return tcenter - best_tm;
196 }
197 
198 void smp_synchronize_tick_client(void)
199 {
200 	long i, delta, adj, adjust_latency = 0, done = 0;
201 	unsigned long flags, rt, master_time_stamp;
202 #if DEBUG_TICK_SYNC
203 	struct {
204 		long rt;	/* roundtrip time */
205 		long master;	/* master's timestamp */
206 		long diff;	/* difference between midpoint and master's timestamp */
207 		long lat;	/* estimate of itc adjustment latency */
208 	} t[NUM_ROUNDS];
209 #endif
210 
211 	go[MASTER] = 1;
212 
213 	while (go[MASTER])
214 		rmb();
215 
216 	local_irq_save(flags);
217 	{
218 		for (i = 0; i < NUM_ROUNDS; i++) {
219 			delta = get_delta(&rt, &master_time_stamp);
220 			if (delta == 0)
221 				done = 1;	/* let's lock on to this... */
222 
223 			if (!done) {
224 				if (i > 0) {
225 					adjust_latency += -delta;
226 					adj = -delta + adjust_latency/4;
227 				} else
228 					adj = -delta;
229 
230 				tick_ops->add_tick(adj);
231 			}
232 #if DEBUG_TICK_SYNC
233 			t[i].rt = rt;
234 			t[i].master = master_time_stamp;
235 			t[i].diff = delta;
236 			t[i].lat = adjust_latency/4;
237 #endif
238 		}
239 	}
240 	local_irq_restore(flags);
241 
242 #if DEBUG_TICK_SYNC
243 	for (i = 0; i < NUM_ROUNDS; i++)
244 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
245 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
246 #endif
247 
248 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
249 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
250 	       smp_processor_id(), delta, rt);
251 }
252 
253 static void smp_start_sync_tick_client(int cpu);
254 
255 static void smp_synchronize_one_tick(int cpu)
256 {
257 	unsigned long flags, i;
258 
259 	go[MASTER] = 0;
260 
261 	smp_start_sync_tick_client(cpu);
262 
263 	/* wait for client to be ready */
264 	while (!go[MASTER])
265 		rmb();
266 
267 	/* now let the client proceed into his loop */
268 	go[MASTER] = 0;
269 	membar_safe("#StoreLoad");
270 
271 	raw_spin_lock_irqsave(&itc_sync_lock, flags);
272 	{
273 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
274 			while (!go[MASTER])
275 				rmb();
276 			go[MASTER] = 0;
277 			wmb();
278 			go[SLAVE] = tick_ops->get_tick();
279 			membar_safe("#StoreLoad");
280 		}
281 	}
282 	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
283 }
284 
285 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
286 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
287 				void **descrp)
288 {
289 	extern unsigned long sparc64_ttable_tl0;
290 	extern unsigned long kern_locked_tte_data;
291 	struct hvtramp_descr *hdesc;
292 	unsigned long trampoline_ra;
293 	struct trap_per_cpu *tb;
294 	u64 tte_vaddr, tte_data;
295 	unsigned long hv_err;
296 	int i;
297 
298 	hdesc = kzalloc(sizeof(*hdesc) +
299 			(sizeof(struct hvtramp_mapping) *
300 			 num_kernel_image_mappings - 1),
301 			GFP_KERNEL);
302 	if (!hdesc) {
303 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
304 		       "hvtramp_descr.\n");
305 		return;
306 	}
307 	*descrp = hdesc;
308 
309 	hdesc->cpu = cpu;
310 	hdesc->num_mappings = num_kernel_image_mappings;
311 
312 	tb = &trap_block[cpu];
313 
314 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316 
317 	hdesc->thread_reg = thread_reg;
318 
319 	tte_vaddr = (unsigned long) KERNBASE;
320 	tte_data = kern_locked_tte_data;
321 
322 	for (i = 0; i < hdesc->num_mappings; i++) {
323 		hdesc->maps[i].vaddr = tte_vaddr;
324 		hdesc->maps[i].tte   = tte_data;
325 		tte_vaddr += 0x400000;
326 		tte_data  += 0x400000;
327 	}
328 
329 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330 
331 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
333 				 __pa(hdesc));
334 	if (hv_err)
335 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336 		       "gives error %lu\n", hv_err);
337 }
338 #endif
339 
340 extern unsigned long sparc64_cpu_startup;
341 
342 /* The OBP cpu startup callback truncates the 3rd arg cookie to
343  * 32-bits (I think) so to be safe we have it read the pointer
344  * contained here so we work on >4GB machines. -DaveM
345  */
346 static struct thread_info *cpu_new_thread = NULL;
347 
348 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
349 {
350 	unsigned long entry =
351 		(unsigned long)(&sparc64_cpu_startup);
352 	unsigned long cookie =
353 		(unsigned long)(&cpu_new_thread);
354 	void *descr = NULL;
355 	int timeout, ret;
356 
357 	callin_flag = 0;
358 	cpu_new_thread = task_thread_info(idle);
359 
360 	if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362 		if (ldom_domaining_enabled)
363 			ldom_startcpu_cpuid(cpu,
364 					    (unsigned long) cpu_new_thread,
365 					    &descr);
366 		else
367 #endif
368 			prom_startcpu_cpuid(cpu, entry, cookie);
369 	} else {
370 		struct device_node *dp = of_find_node_by_cpuid(cpu);
371 
372 		prom_startcpu(dp->phandle, entry, cookie);
373 	}
374 
375 	for (timeout = 0; timeout < 50000; timeout++) {
376 		if (callin_flag)
377 			break;
378 		udelay(100);
379 	}
380 
381 	if (callin_flag) {
382 		ret = 0;
383 	} else {
384 		printk("Processor %d is stuck.\n", cpu);
385 		ret = -ENODEV;
386 	}
387 	cpu_new_thread = NULL;
388 
389 	kfree(descr);
390 
391 	return ret;
392 }
393 
394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395 {
396 	u64 result, target;
397 	int stuck, tmp;
398 
399 	if (this_is_starfire) {
400 		/* map to real upaid */
401 		cpu = (((cpu & 0x3c) << 1) |
402 			((cpu & 0x40) >> 4) |
403 			(cpu & 0x3));
404 	}
405 
406 	target = (cpu << 14) | 0x70;
407 again:
408 	/* Ok, this is the real Spitfire Errata #54.
409 	 * One must read back from a UDB internal register
410 	 * after writes to the UDB interrupt dispatch, but
411 	 * before the membar Sync for that write.
412 	 * So we use the high UDB control register (ASI 0x7f,
413 	 * ADDR 0x20) for the dummy read. -DaveM
414 	 */
415 	tmp = 0x40;
416 	__asm__ __volatile__(
417 	"wrpr	%1, %2, %%pstate\n\t"
418 	"stxa	%4, [%0] %3\n\t"
419 	"stxa	%5, [%0+%8] %3\n\t"
420 	"add	%0, %8, %0\n\t"
421 	"stxa	%6, [%0+%8] %3\n\t"
422 	"membar	#Sync\n\t"
423 	"stxa	%%g0, [%7] %3\n\t"
424 	"membar	#Sync\n\t"
425 	"mov	0x20, %%g1\n\t"
426 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
427 	"membar	#Sync"
428 	: "=r" (tmp)
429 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
431 	  "r" (0x10), "0" (tmp)
432         : "g1");
433 
434 	/* NOTE: PSTATE_IE is still clear. */
435 	stuck = 100000;
436 	do {
437 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
438 			: "=r" (result)
439 			: "i" (ASI_INTR_DISPATCH_STAT));
440 		if (result == 0) {
441 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 					     : : "r" (pstate));
443 			return;
444 		}
445 		stuck -= 1;
446 		if (stuck == 0)
447 			break;
448 	} while (result & 0x1);
449 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450 			     : : "r" (pstate));
451 	if (stuck == 0) {
452 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453 		       smp_processor_id(), result);
454 	} else {
455 		udelay(2);
456 		goto again;
457 	}
458 }
459 
460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461 {
462 	u64 *mondo, data0, data1, data2;
463 	u16 *cpu_list;
464 	u64 pstate;
465 	int i;
466 
467 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 	cpu_list = __va(tb->cpu_list_pa);
469 	mondo = __va(tb->cpu_mondo_block_pa);
470 	data0 = mondo[0];
471 	data1 = mondo[1];
472 	data2 = mondo[2];
473 	for (i = 0; i < cnt; i++)
474 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475 }
476 
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478  * packet, but we have no use for that.  However we do take advantage of
479  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480  */
481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482 {
483 	int nack_busy_id, is_jbus, need_more;
484 	u64 *mondo, pstate, ver, busy_mask;
485 	u16 *cpu_list;
486 
487 	cpu_list = __va(tb->cpu_list_pa);
488 	mondo = __va(tb->cpu_mondo_block_pa);
489 
490 	/* Unfortunately, someone at Sun had the brilliant idea to make the
491 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
492 	 * derivative processor.
493 	 */
494 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
495 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496 		   (ver >> 32) == __SERRANO_ID);
497 
498 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499 
500 retry:
501 	need_more = 0;
502 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503 			     : : "r" (pstate), "i" (PSTATE_IE));
504 
505 	/* Setup the dispatch data registers. */
506 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
507 			     "stxa	%1, [%4] %6\n\t"
508 			     "stxa	%2, [%5] %6\n\t"
509 			     "membar	#Sync\n\t"
510 			     : /* no outputs */
511 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512 			       "r" (0x40), "r" (0x50), "r" (0x60),
513 			       "i" (ASI_INTR_W));
514 
515 	nack_busy_id = 0;
516 	busy_mask = 0;
517 	{
518 		int i;
519 
520 		for (i = 0; i < cnt; i++) {
521 			u64 target, nr;
522 
523 			nr = cpu_list[i];
524 			if (nr == 0xffff)
525 				continue;
526 
527 			target = (nr << 14) | 0x70;
528 			if (is_jbus) {
529 				busy_mask |= (0x1UL << (nr * 2));
530 			} else {
531 				target |= (nack_busy_id << 24);
532 				busy_mask |= (0x1UL <<
533 					      (nack_busy_id * 2));
534 			}
535 			__asm__ __volatile__(
536 				"stxa	%%g0, [%0] %1\n\t"
537 				"membar	#Sync\n\t"
538 				: /* no outputs */
539 				: "r" (target), "i" (ASI_INTR_W));
540 			nack_busy_id++;
541 			if (nack_busy_id == 32) {
542 				need_more = 1;
543 				break;
544 			}
545 		}
546 	}
547 
548 	/* Now, poll for completion. */
549 	{
550 		u64 dispatch_stat, nack_mask;
551 		long stuck;
552 
553 		stuck = 100000 * nack_busy_id;
554 		nack_mask = busy_mask << 1;
555 		do {
556 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
557 					     : "=r" (dispatch_stat)
558 					     : "i" (ASI_INTR_DISPATCH_STAT));
559 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
560 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561 						     : : "r" (pstate));
562 				if (unlikely(need_more)) {
563 					int i, this_cnt = 0;
564 					for (i = 0; i < cnt; i++) {
565 						if (cpu_list[i] == 0xffff)
566 							continue;
567 						cpu_list[i] = 0xffff;
568 						this_cnt++;
569 						if (this_cnt == 32)
570 							break;
571 					}
572 					goto retry;
573 				}
574 				return;
575 			}
576 			if (!--stuck)
577 				break;
578 		} while (dispatch_stat & busy_mask);
579 
580 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581 				     : : "r" (pstate));
582 
583 		if (dispatch_stat & busy_mask) {
584 			/* Busy bits will not clear, continue instead
585 			 * of freezing up on this cpu.
586 			 */
587 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588 			       smp_processor_id(), dispatch_stat);
589 		} else {
590 			int i, this_busy_nack = 0;
591 
592 			/* Delay some random time with interrupts enabled
593 			 * to prevent deadlock.
594 			 */
595 			udelay(2 * nack_busy_id);
596 
597 			/* Clear out the mask bits for cpus which did not
598 			 * NACK us.
599 			 */
600 			for (i = 0; i < cnt; i++) {
601 				u64 check_mask, nr;
602 
603 				nr = cpu_list[i];
604 				if (nr == 0xffff)
605 					continue;
606 
607 				if (is_jbus)
608 					check_mask = (0x2UL << (2*nr));
609 				else
610 					check_mask = (0x2UL <<
611 						      this_busy_nack);
612 				if ((dispatch_stat & check_mask) == 0)
613 					cpu_list[i] = 0xffff;
614 				this_busy_nack += 2;
615 				if (this_busy_nack == 64)
616 					break;
617 			}
618 
619 			goto retry;
620 		}
621 	}
622 }
623 
624 /* Multi-cpu list version.  */
625 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
626 {
627 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
628 	unsigned long status;
629 	u16 *cpu_list;
630 
631 	this_cpu = smp_processor_id();
632 
633 	cpu_list = __va(tb->cpu_list_pa);
634 
635 	saw_cpu_error = 0;
636 	retries = 0;
637 	prev_sent = 0;
638 	do {
639 		int forward_progress, n_sent;
640 
641 		status = sun4v_cpu_mondo_send(cnt,
642 					      tb->cpu_list_pa,
643 					      tb->cpu_mondo_block_pa);
644 
645 		/* HV_EOK means all cpus received the xcall, we're done.  */
646 		if (likely(status == HV_EOK))
647 			break;
648 
649 		/* First, see if we made any forward progress.
650 		 *
651 		 * The hypervisor indicates successful sends by setting
652 		 * cpu list entries to the value 0xffff.
653 		 */
654 		n_sent = 0;
655 		for (i = 0; i < cnt; i++) {
656 			if (likely(cpu_list[i] == 0xffff))
657 				n_sent++;
658 		}
659 
660 		forward_progress = 0;
661 		if (n_sent > prev_sent)
662 			forward_progress = 1;
663 
664 		prev_sent = n_sent;
665 
666 		/* If we get a HV_ECPUERROR, then one or more of the cpus
667 		 * in the list are in error state.  Use the cpu_state()
668 		 * hypervisor call to find out which cpus are in error state.
669 		 */
670 		if (unlikely(status == HV_ECPUERROR)) {
671 			for (i = 0; i < cnt; i++) {
672 				long err;
673 				u16 cpu;
674 
675 				cpu = cpu_list[i];
676 				if (cpu == 0xffff)
677 					continue;
678 
679 				err = sun4v_cpu_state(cpu);
680 				if (err == HV_CPU_STATE_ERROR) {
681 					saw_cpu_error = (cpu + 1);
682 					cpu_list[i] = 0xffff;
683 				}
684 			}
685 		} else if (unlikely(status != HV_EWOULDBLOCK))
686 			goto fatal_mondo_error;
687 
688 		/* Don't bother rewriting the CPU list, just leave the
689 		 * 0xffff and non-0xffff entries in there and the
690 		 * hypervisor will do the right thing.
691 		 *
692 		 * Only advance timeout state if we didn't make any
693 		 * forward progress.
694 		 */
695 		if (unlikely(!forward_progress)) {
696 			if (unlikely(++retries > 10000))
697 				goto fatal_mondo_timeout;
698 
699 			/* Delay a little bit to let other cpus catch up
700 			 * on their cpu mondo queue work.
701 			 */
702 			udelay(2 * cnt);
703 		}
704 	} while (1);
705 
706 	if (unlikely(saw_cpu_error))
707 		goto fatal_mondo_cpu_error;
708 
709 	return;
710 
711 fatal_mondo_cpu_error:
712 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
713 	       "(including %d) were in error state\n",
714 	       this_cpu, saw_cpu_error - 1);
715 	return;
716 
717 fatal_mondo_timeout:
718 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
719 	       " progress after %d retries.\n",
720 	       this_cpu, retries);
721 	goto dump_cpu_list_and_out;
722 
723 fatal_mondo_error:
724 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
725 	       this_cpu, status);
726 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
727 	       "mondo_block_pa(%lx)\n",
728 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
729 
730 dump_cpu_list_and_out:
731 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
732 	for (i = 0; i < cnt; i++)
733 		printk("%u ", cpu_list[i]);
734 	printk("]\n");
735 }
736 
737 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
738 
739 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
740 {
741 	struct trap_per_cpu *tb;
742 	int this_cpu, i, cnt;
743 	unsigned long flags;
744 	u16 *cpu_list;
745 	u64 *mondo;
746 
747 	/* We have to do this whole thing with interrupts fully disabled.
748 	 * Otherwise if we send an xcall from interrupt context it will
749 	 * corrupt both our mondo block and cpu list state.
750 	 *
751 	 * One consequence of this is that we cannot use timeout mechanisms
752 	 * that depend upon interrupts being delivered locally.  So, for
753 	 * example, we cannot sample jiffies and expect it to advance.
754 	 *
755 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
756 	 */
757 	local_irq_save(flags);
758 
759 	this_cpu = smp_processor_id();
760 	tb = &trap_block[this_cpu];
761 
762 	mondo = __va(tb->cpu_mondo_block_pa);
763 	mondo[0] = data0;
764 	mondo[1] = data1;
765 	mondo[2] = data2;
766 	wmb();
767 
768 	cpu_list = __va(tb->cpu_list_pa);
769 
770 	/* Setup the initial cpu list.  */
771 	cnt = 0;
772 	for_each_cpu(i, mask) {
773 		if (i == this_cpu || !cpu_online(i))
774 			continue;
775 		cpu_list[cnt++] = i;
776 	}
777 
778 	if (cnt)
779 		xcall_deliver_impl(tb, cnt);
780 
781 	local_irq_restore(flags);
782 }
783 
784 /* Send cross call to all processors mentioned in MASK_P
785  * except self.  Really, there are only two cases currently,
786  * "cpu_online_mask" and "mm_cpumask(mm)".
787  */
788 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
789 {
790 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
791 
792 	xcall_deliver(data0, data1, data2, mask);
793 }
794 
795 /* Send cross call to all processors except self. */
796 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
797 {
798 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
799 }
800 
801 extern unsigned long xcall_sync_tick;
802 
803 static void smp_start_sync_tick_client(int cpu)
804 {
805 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
806 		      cpumask_of(cpu));
807 }
808 
809 extern unsigned long xcall_call_function;
810 
811 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
812 {
813 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
814 }
815 
816 extern unsigned long xcall_call_function_single;
817 
818 void arch_send_call_function_single_ipi(int cpu)
819 {
820 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
821 		      cpumask_of(cpu));
822 }
823 
824 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
825 {
826 	clear_softint(1 << irq);
827 	irq_enter();
828 	generic_smp_call_function_interrupt();
829 	irq_exit();
830 }
831 
832 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
833 {
834 	clear_softint(1 << irq);
835 	irq_enter();
836 	generic_smp_call_function_single_interrupt();
837 	irq_exit();
838 }
839 
840 static void tsb_sync(void *info)
841 {
842 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
843 	struct mm_struct *mm = info;
844 
845 	/* It is not valid to test "current->active_mm == mm" here.
846 	 *
847 	 * The value of "current" is not changed atomically with
848 	 * switch_mm().  But that's OK, we just need to check the
849 	 * current cpu's trap block PGD physical address.
850 	 */
851 	if (tp->pgd_paddr == __pa(mm->pgd))
852 		tsb_context_switch(mm);
853 }
854 
855 void smp_tsb_sync(struct mm_struct *mm)
856 {
857 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
858 }
859 
860 extern unsigned long xcall_flush_tlb_mm;
861 extern unsigned long xcall_flush_tlb_page;
862 extern unsigned long xcall_flush_tlb_kernel_range;
863 extern unsigned long xcall_fetch_glob_regs;
864 extern unsigned long xcall_fetch_glob_pmu;
865 extern unsigned long xcall_fetch_glob_pmu_n4;
866 extern unsigned long xcall_receive_signal;
867 extern unsigned long xcall_new_mmu_context_version;
868 #ifdef CONFIG_KGDB
869 extern unsigned long xcall_kgdb_capture;
870 #endif
871 
872 #ifdef DCACHE_ALIASING_POSSIBLE
873 extern unsigned long xcall_flush_dcache_page_cheetah;
874 #endif
875 extern unsigned long xcall_flush_dcache_page_spitfire;
876 
877 static inline void __local_flush_dcache_page(struct page *page)
878 {
879 #ifdef DCACHE_ALIASING_POSSIBLE
880 	__flush_dcache_page(page_address(page),
881 			    ((tlb_type == spitfire) &&
882 			     page_mapping(page) != NULL));
883 #else
884 	if (page_mapping(page) != NULL &&
885 	    tlb_type == spitfire)
886 		__flush_icache_page(__pa(page_address(page)));
887 #endif
888 }
889 
890 void smp_flush_dcache_page_impl(struct page *page, int cpu)
891 {
892 	int this_cpu;
893 
894 	if (tlb_type == hypervisor)
895 		return;
896 
897 #ifdef CONFIG_DEBUG_DCFLUSH
898 	atomic_inc(&dcpage_flushes);
899 #endif
900 
901 	this_cpu = get_cpu();
902 
903 	if (cpu == this_cpu) {
904 		__local_flush_dcache_page(page);
905 	} else if (cpu_online(cpu)) {
906 		void *pg_addr = page_address(page);
907 		u64 data0 = 0;
908 
909 		if (tlb_type == spitfire) {
910 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
911 			if (page_mapping(page) != NULL)
912 				data0 |= ((u64)1 << 32);
913 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
914 #ifdef DCACHE_ALIASING_POSSIBLE
915 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
916 #endif
917 		}
918 		if (data0) {
919 			xcall_deliver(data0, __pa(pg_addr),
920 				      (u64) pg_addr, cpumask_of(cpu));
921 #ifdef CONFIG_DEBUG_DCFLUSH
922 			atomic_inc(&dcpage_flushes_xcall);
923 #endif
924 		}
925 	}
926 
927 	put_cpu();
928 }
929 
930 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
931 {
932 	void *pg_addr;
933 	u64 data0;
934 
935 	if (tlb_type == hypervisor)
936 		return;
937 
938 	preempt_disable();
939 
940 #ifdef CONFIG_DEBUG_DCFLUSH
941 	atomic_inc(&dcpage_flushes);
942 #endif
943 	data0 = 0;
944 	pg_addr = page_address(page);
945 	if (tlb_type == spitfire) {
946 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947 		if (page_mapping(page) != NULL)
948 			data0 |= ((u64)1 << 32);
949 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
952 #endif
953 	}
954 	if (data0) {
955 		xcall_deliver(data0, __pa(pg_addr),
956 			      (u64) pg_addr, cpu_online_mask);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958 		atomic_inc(&dcpage_flushes_xcall);
959 #endif
960 	}
961 	__local_flush_dcache_page(page);
962 
963 	preempt_enable();
964 }
965 
966 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
967 {
968 	struct mm_struct *mm;
969 	unsigned long flags;
970 
971 	clear_softint(1 << irq);
972 
973 	/* See if we need to allocate a new TLB context because
974 	 * the version of the one we are using is now out of date.
975 	 */
976 	mm = current->active_mm;
977 	if (unlikely(!mm || (mm == &init_mm)))
978 		return;
979 
980 	spin_lock_irqsave(&mm->context.lock, flags);
981 
982 	if (unlikely(!CTX_VALID(mm->context)))
983 		get_new_mmu_context(mm);
984 
985 	spin_unlock_irqrestore(&mm->context.lock, flags);
986 
987 	load_secondary_context(mm);
988 	__flush_tlb_mm(CTX_HWBITS(mm->context),
989 		       SECONDARY_CONTEXT);
990 }
991 
992 void smp_new_mmu_context_version(void)
993 {
994 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
995 }
996 
997 #ifdef CONFIG_KGDB
998 void kgdb_roundup_cpus(unsigned long flags)
999 {
1000 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001 }
1002 #endif
1003 
1004 void smp_fetch_global_regs(void)
1005 {
1006 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007 }
1008 
1009 void smp_fetch_global_pmu(void)
1010 {
1011 	if (tlb_type == hypervisor &&
1012 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014 	else
1015 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1016 }
1017 
1018 /* We know that the window frames of the user have been flushed
1019  * to the stack before we get here because all callers of us
1020  * are flush_tlb_*() routines, and these run after flush_cache_*()
1021  * which performs the flushw.
1022  *
1023  * The SMP TLB coherency scheme we use works as follows:
1024  *
1025  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026  *    space has (potentially) executed on, this is the heuristic
1027  *    we use to avoid doing cross calls.
1028  *
1029  *    Also, for flushing from kswapd and also for clones, we
1030  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1031  *
1032  * 2) TLB context numbers are shared globally across all processors
1033  *    in the system, this allows us to play several games to avoid
1034  *    cross calls.
1035  *
1036  *    One invariant is that when a cpu switches to a process, and
1037  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1038  *    current cpu's bit set, that tlb context is flushed locally.
1039  *
1040  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1041  *    cross calls when we want to flush the currently running process's
1042  *    tlb state.  This is done by clearing all cpu bits except the current
1043  *    processor's in current->mm->cpu_vm_mask and performing the
1044  *    flush locally only.  This will force any subsequent cpus which run
1045  *    this task to flush the context from the local tlb if the process
1046  *    migrates to another cpu (again).
1047  *
1048  * 3) For shared address spaces (threads) and swapping we bite the
1049  *    bullet for most cases and perform the cross call (but only to
1050  *    the cpus listed in cpu_vm_mask).
1051  *
1052  *    The performance gain from "optimizing" away the cross call for threads is
1053  *    questionable (in theory the big win for threads is the massive sharing of
1054  *    address space state across processors).
1055  */
1056 
1057 /* This currently is only used by the hugetlb arch pre-fault
1058  * hook on UltraSPARC-III+ and later when changing the pagesize
1059  * bits of the context register for an address space.
1060  */
1061 void smp_flush_tlb_mm(struct mm_struct *mm)
1062 {
1063 	u32 ctx = CTX_HWBITS(mm->context);
1064 	int cpu = get_cpu();
1065 
1066 	if (atomic_read(&mm->mm_users) == 1) {
1067 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068 		goto local_flush_and_out;
1069 	}
1070 
1071 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1072 			      ctx, 0, 0,
1073 			      mm_cpumask(mm));
1074 
1075 local_flush_and_out:
1076 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1077 
1078 	put_cpu();
1079 }
1080 
1081 struct tlb_pending_info {
1082 	unsigned long ctx;
1083 	unsigned long nr;
1084 	unsigned long *vaddrs;
1085 };
1086 
1087 static void tlb_pending_func(void *info)
1088 {
1089 	struct tlb_pending_info *t = info;
1090 
1091 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1092 }
1093 
1094 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095 {
1096 	u32 ctx = CTX_HWBITS(mm->context);
1097 	struct tlb_pending_info info;
1098 	int cpu = get_cpu();
1099 
1100 	info.ctx = ctx;
1101 	info.nr = nr;
1102 	info.vaddrs = vaddrs;
1103 
1104 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1106 	else
1107 		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108 				       &info, 1);
1109 
1110 	__flush_tlb_pending(ctx, nr, vaddrs);
1111 
1112 	put_cpu();
1113 }
1114 
1115 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116 {
1117 	unsigned long context = CTX_HWBITS(mm->context);
1118 	int cpu = get_cpu();
1119 
1120 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122 	else
1123 		smp_cross_call_masked(&xcall_flush_tlb_page,
1124 				      context, vaddr, 0,
1125 				      mm_cpumask(mm));
1126 	__flush_tlb_page(context, vaddr);
1127 
1128 	put_cpu();
1129 }
1130 
1131 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132 {
1133 	start &= PAGE_MASK;
1134 	end    = PAGE_ALIGN(end);
1135 	if (start != end) {
1136 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1137 			       0, start, end);
1138 
1139 		__flush_tlb_kernel_range(start, end);
1140 	}
1141 }
1142 
1143 /* CPU capture. */
1144 /* #define CAPTURE_DEBUG */
1145 extern unsigned long xcall_capture;
1146 
1147 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149 static unsigned long penguins_are_doing_time;
1150 
1151 void smp_capture(void)
1152 {
1153 	int result = atomic_add_return(1, &smp_capture_depth);
1154 
1155 	if (result == 1) {
1156 		int ncpus = num_online_cpus();
1157 
1158 #ifdef CAPTURE_DEBUG
1159 		printk("CPU[%d]: Sending penguins to jail...",
1160 		       smp_processor_id());
1161 #endif
1162 		penguins_are_doing_time = 1;
1163 		atomic_inc(&smp_capture_registry);
1164 		smp_cross_call(&xcall_capture, 0, 0, 0);
1165 		while (atomic_read(&smp_capture_registry) != ncpus)
1166 			rmb();
1167 #ifdef CAPTURE_DEBUG
1168 		printk("done\n");
1169 #endif
1170 	}
1171 }
1172 
1173 void smp_release(void)
1174 {
1175 	if (atomic_dec_and_test(&smp_capture_depth)) {
1176 #ifdef CAPTURE_DEBUG
1177 		printk("CPU[%d]: Giving pardon to "
1178 		       "imprisoned penguins\n",
1179 		       smp_processor_id());
1180 #endif
1181 		penguins_are_doing_time = 0;
1182 		membar_safe("#StoreLoad");
1183 		atomic_dec(&smp_capture_registry);
1184 	}
1185 }
1186 
1187 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188  * set, so they can service tlb flush xcalls...
1189  */
1190 extern void prom_world(int);
1191 
1192 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1193 {
1194 	clear_softint(1 << irq);
1195 
1196 	preempt_disable();
1197 
1198 	__asm__ __volatile__("flushw");
1199 	prom_world(1);
1200 	atomic_inc(&smp_capture_registry);
1201 	membar_safe("#StoreLoad");
1202 	while (penguins_are_doing_time)
1203 		rmb();
1204 	atomic_dec(&smp_capture_registry);
1205 	prom_world(0);
1206 
1207 	preempt_enable();
1208 }
1209 
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 int setup_profiling_timer(unsigned int multiplier)
1212 {
1213 	return -EINVAL;
1214 }
1215 
1216 void __init smp_prepare_cpus(unsigned int max_cpus)
1217 {
1218 }
1219 
1220 void smp_prepare_boot_cpu(void)
1221 {
1222 }
1223 
1224 void __init smp_setup_processor_id(void)
1225 {
1226 	if (tlb_type == spitfire)
1227 		xcall_deliver_impl = spitfire_xcall_deliver;
1228 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229 		xcall_deliver_impl = cheetah_xcall_deliver;
1230 	else
1231 		xcall_deliver_impl = hypervisor_xcall_deliver;
1232 }
1233 
1234 void __init smp_fill_in_cpu_possible_map(void)
1235 {
1236 	int possible_cpus = num_possible_cpus();
1237 	int i;
1238 
1239 	if (possible_cpus > nr_cpu_ids)
1240 		possible_cpus = nr_cpu_ids;
1241 
1242 	for (i = 0; i < possible_cpus; i++)
1243 		set_cpu_possible(i, true);
1244 	for (; i < NR_CPUS; i++)
1245 		set_cpu_possible(i, false);
1246 }
1247 
1248 void smp_fill_in_sib_core_maps(void)
1249 {
1250 	unsigned int i;
1251 
1252 	for_each_present_cpu(i) {
1253 		unsigned int j;
1254 
1255 		cpumask_clear(&cpu_core_map[i]);
1256 		if (cpu_data(i).core_id == 0) {
1257 			cpumask_set_cpu(i, &cpu_core_map[i]);
1258 			continue;
1259 		}
1260 
1261 		for_each_present_cpu(j) {
1262 			if (cpu_data(i).core_id ==
1263 			    cpu_data(j).core_id)
1264 				cpumask_set_cpu(j, &cpu_core_map[i]);
1265 		}
1266 	}
1267 
1268 	for_each_present_cpu(i)  {
1269 		unsigned int j;
1270 
1271 		for_each_present_cpu(j)  {
1272 			if (cpu_data(i).max_cache_id ==
1273 			    cpu_data(j).max_cache_id)
1274 				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1275 
1276 			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1277 				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1278 		}
1279 	}
1280 
1281 	for_each_present_cpu(i) {
1282 		unsigned int j;
1283 
1284 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1285 		if (cpu_data(i).proc_id == -1) {
1286 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1287 			continue;
1288 		}
1289 
1290 		for_each_present_cpu(j) {
1291 			if (cpu_data(i).proc_id ==
1292 			    cpu_data(j).proc_id)
1293 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1294 		}
1295 	}
1296 }
1297 
1298 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1299 {
1300 	int ret = smp_boot_one_cpu(cpu, tidle);
1301 
1302 	if (!ret) {
1303 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1304 		while (!cpu_online(cpu))
1305 			mb();
1306 		if (!cpu_online(cpu)) {
1307 			ret = -ENODEV;
1308 		} else {
1309 			/* On SUN4V, writes to %tick and %stick are
1310 			 * not allowed.
1311 			 */
1312 			if (tlb_type != hypervisor)
1313 				smp_synchronize_one_tick(cpu);
1314 		}
1315 	}
1316 	return ret;
1317 }
1318 
1319 #ifdef CONFIG_HOTPLUG_CPU
1320 void cpu_play_dead(void)
1321 {
1322 	int cpu = smp_processor_id();
1323 	unsigned long pstate;
1324 
1325 	idle_task_exit();
1326 
1327 	if (tlb_type == hypervisor) {
1328 		struct trap_per_cpu *tb = &trap_block[cpu];
1329 
1330 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1331 				tb->cpu_mondo_pa, 0);
1332 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1333 				tb->dev_mondo_pa, 0);
1334 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1335 				tb->resum_mondo_pa, 0);
1336 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1337 				tb->nonresum_mondo_pa, 0);
1338 	}
1339 
1340 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1341 	membar_safe("#Sync");
1342 
1343 	local_irq_disable();
1344 
1345 	__asm__ __volatile__(
1346 		"rdpr	%%pstate, %0\n\t"
1347 		"wrpr	%0, %1, %%pstate"
1348 		: "=r" (pstate)
1349 		: "i" (PSTATE_IE));
1350 
1351 	while (1)
1352 		barrier();
1353 }
1354 
1355 int __cpu_disable(void)
1356 {
1357 	int cpu = smp_processor_id();
1358 	cpuinfo_sparc *c;
1359 	int i;
1360 
1361 	for_each_cpu(i, &cpu_core_map[cpu])
1362 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1363 	cpumask_clear(&cpu_core_map[cpu]);
1364 
1365 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1366 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1367 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1368 
1369 	c = &cpu_data(cpu);
1370 
1371 	c->core_id = 0;
1372 	c->proc_id = -1;
1373 
1374 	smp_wmb();
1375 
1376 	/* Make sure no interrupts point to this cpu.  */
1377 	fixup_irqs();
1378 
1379 	local_irq_enable();
1380 	mdelay(1);
1381 	local_irq_disable();
1382 
1383 	set_cpu_online(cpu, false);
1384 
1385 	cpu_map_rebuild();
1386 
1387 	return 0;
1388 }
1389 
1390 void __cpu_die(unsigned int cpu)
1391 {
1392 	int i;
1393 
1394 	for (i = 0; i < 100; i++) {
1395 		smp_rmb();
1396 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1397 			break;
1398 		msleep(100);
1399 	}
1400 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1401 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1402 	} else {
1403 #if defined(CONFIG_SUN_LDOMS)
1404 		unsigned long hv_err;
1405 		int limit = 100;
1406 
1407 		do {
1408 			hv_err = sun4v_cpu_stop(cpu);
1409 			if (hv_err == HV_EOK) {
1410 				set_cpu_present(cpu, false);
1411 				break;
1412 			}
1413 		} while (--limit > 0);
1414 		if (limit <= 0) {
1415 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1416 			       hv_err);
1417 		}
1418 #endif
1419 	}
1420 }
1421 #endif
1422 
1423 void __init smp_cpus_done(unsigned int max_cpus)
1424 {
1425 }
1426 
1427 void smp_send_reschedule(int cpu)
1428 {
1429 	if (cpu == smp_processor_id()) {
1430 		WARN_ON_ONCE(preemptible());
1431 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1432 	} else {
1433 		xcall_deliver((u64) &xcall_receive_signal,
1434 			      0, 0, cpumask_of(cpu));
1435 	}
1436 }
1437 
1438 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1439 {
1440 	clear_softint(1 << irq);
1441 	scheduler_ipi();
1442 }
1443 
1444 static void stop_this_cpu(void *dummy)
1445 {
1446 	prom_stopself();
1447 }
1448 
1449 void smp_send_stop(void)
1450 {
1451 	int cpu;
1452 
1453 	if (tlb_type == hypervisor) {
1454 		for_each_online_cpu(cpu) {
1455 			if (cpu == smp_processor_id())
1456 				continue;
1457 #ifdef CONFIG_SUN_LDOMS
1458 			if (ldom_domaining_enabled) {
1459 				unsigned long hv_err;
1460 				hv_err = sun4v_cpu_stop(cpu);
1461 				if (hv_err)
1462 					printk(KERN_ERR "sun4v_cpu_stop() "
1463 					       "failed err=%lu\n", hv_err);
1464 			} else
1465 #endif
1466 				prom_stopcpu_cpuid(cpu);
1467 		}
1468 	} else
1469 		smp_call_function(stop_this_cpu, NULL, 0);
1470 }
1471 
1472 /**
1473  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1474  * @cpu: cpu to allocate for
1475  * @size: size allocation in bytes
1476  * @align: alignment
1477  *
1478  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1479  * does the right thing for NUMA regardless of the current
1480  * configuration.
1481  *
1482  * RETURNS:
1483  * Pointer to the allocated area on success, NULL on failure.
1484  */
1485 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1486 					size_t align)
1487 {
1488 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1489 #ifdef CONFIG_NEED_MULTIPLE_NODES
1490 	int node = cpu_to_node(cpu);
1491 	void *ptr;
1492 
1493 	if (!node_online(node) || !NODE_DATA(node)) {
1494 		ptr = __alloc_bootmem(size, align, goal);
1495 		pr_info("cpu %d has no node %d or node-local memory\n",
1496 			cpu, node);
1497 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1498 			 cpu, size, __pa(ptr));
1499 	} else {
1500 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1501 					   size, align, goal);
1502 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1503 			 "%016lx\n", cpu, size, node, __pa(ptr));
1504 	}
1505 	return ptr;
1506 #else
1507 	return __alloc_bootmem(size, align, goal);
1508 #endif
1509 }
1510 
1511 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1512 {
1513 	free_bootmem(__pa(ptr), size);
1514 }
1515 
1516 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1517 {
1518 	if (cpu_to_node(from) == cpu_to_node(to))
1519 		return LOCAL_DISTANCE;
1520 	else
1521 		return REMOTE_DISTANCE;
1522 }
1523 
1524 static void __init pcpu_populate_pte(unsigned long addr)
1525 {
1526 	pgd_t *pgd = pgd_offset_k(addr);
1527 	pud_t *pud;
1528 	pmd_t *pmd;
1529 
1530 	if (pgd_none(*pgd)) {
1531 		pud_t *new;
1532 
1533 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1534 		pgd_populate(&init_mm, pgd, new);
1535 	}
1536 
1537 	pud = pud_offset(pgd, addr);
1538 	if (pud_none(*pud)) {
1539 		pmd_t *new;
1540 
1541 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1542 		pud_populate(&init_mm, pud, new);
1543 	}
1544 
1545 	pmd = pmd_offset(pud, addr);
1546 	if (!pmd_present(*pmd)) {
1547 		pte_t *new;
1548 
1549 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1550 		pmd_populate_kernel(&init_mm, pmd, new);
1551 	}
1552 }
1553 
1554 void __init setup_per_cpu_areas(void)
1555 {
1556 	unsigned long delta;
1557 	unsigned int cpu;
1558 	int rc = -EINVAL;
1559 
1560 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1561 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1562 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1563 					    pcpu_cpu_distance,
1564 					    pcpu_alloc_bootmem,
1565 					    pcpu_free_bootmem);
1566 		if (rc)
1567 			pr_warning("PERCPU: %s allocator failed (%d), "
1568 				   "falling back to page size\n",
1569 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1570 	}
1571 	if (rc < 0)
1572 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1573 					   pcpu_alloc_bootmem,
1574 					   pcpu_free_bootmem,
1575 					   pcpu_populate_pte);
1576 	if (rc < 0)
1577 		panic("cannot initialize percpu area (err=%d)", rc);
1578 
1579 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1580 	for_each_possible_cpu(cpu)
1581 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1582 
1583 	/* Setup %g5 for the boot cpu.  */
1584 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1585 
1586 	of_fill_in_cpu_data();
1587 	if (tlb_type == hypervisor)
1588 		mdesc_fill_in_cpu_data(cpu_all_mask);
1589 }
1590