xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision b627b4ed)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/lmb.h>
24 #include <linux/cpu.h>
25 
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32 #include <asm/hvtramp.h>
33 #include <asm/io.h>
34 #include <asm/timer.h>
35 
36 #include <asm/irq.h>
37 #include <asm/irq_regs.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/oplib.h>
41 #include <asm/uaccess.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/sections.h>
45 #include <asm/prom.h>
46 #include <asm/mdesc.h>
47 #include <asm/ldc.h>
48 #include <asm/hypervisor.h>
49 
50 int sparc64_multi_core __read_mostly;
51 
52 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
53 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
54 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
55 
56 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
57 EXPORT_SYMBOL(cpu_core_map);
58 
59 static cpumask_t smp_commenced_mask;
60 
61 void smp_info(struct seq_file *m)
62 {
63 	int i;
64 
65 	seq_printf(m, "State:\n");
66 	for_each_online_cpu(i)
67 		seq_printf(m, "CPU%d:\t\tonline\n", i);
68 }
69 
70 void smp_bogo(struct seq_file *m)
71 {
72 	int i;
73 
74 	for_each_online_cpu(i)
75 		seq_printf(m,
76 			   "Cpu%dClkTck\t: %016lx\n",
77 			   i, cpu_data(i).clock_tick);
78 }
79 
80 extern void setup_sparc64_timer(void);
81 
82 static volatile unsigned long callin_flag = 0;
83 
84 void __cpuinit smp_callin(void)
85 {
86 	int cpuid = hard_smp_processor_id();
87 
88 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
89 
90 	if (tlb_type == hypervisor)
91 		sun4v_ktsb_register();
92 
93 	__flush_tlb_all();
94 
95 	setup_sparc64_timer();
96 
97 	if (cheetah_pcache_forced_on)
98 		cheetah_enable_pcache();
99 
100 	local_irq_enable();
101 
102 	callin_flag = 1;
103 	__asm__ __volatile__("membar #Sync\n\t"
104 			     "flush  %%g6" : : : "memory");
105 
106 	/* Clear this or we will die instantly when we
107 	 * schedule back to this idler...
108 	 */
109 	current_thread_info()->new_child = 0;
110 
111 	/* Attach to the address space of init_task. */
112 	atomic_inc(&init_mm.mm_count);
113 	current->active_mm = &init_mm;
114 
115 	/* inform the notifiers about the new cpu */
116 	notify_cpu_starting(cpuid);
117 
118 	while (!cpu_isset(cpuid, smp_commenced_mask))
119 		rmb();
120 
121 	ipi_call_lock();
122 	cpu_set(cpuid, cpu_online_map);
123 	ipi_call_unlock();
124 
125 	/* idle thread is expected to have preempt disabled */
126 	preempt_disable();
127 }
128 
129 void cpu_panic(void)
130 {
131 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
132 	panic("SMP bolixed\n");
133 }
134 
135 /* This tick register synchronization scheme is taken entirely from
136  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
137  *
138  * The only change I've made is to rework it so that the master
139  * initiates the synchonization instead of the slave. -DaveM
140  */
141 
142 #define MASTER	0
143 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
144 
145 #define NUM_ROUNDS	64	/* magic value */
146 #define NUM_ITERS	5	/* likewise */
147 
148 static DEFINE_SPINLOCK(itc_sync_lock);
149 static unsigned long go[SLAVE + 1];
150 
151 #define DEBUG_TICK_SYNC	0
152 
153 static inline long get_delta (long *rt, long *master)
154 {
155 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
156 	unsigned long tcenter, t0, t1, tm;
157 	unsigned long i;
158 
159 	for (i = 0; i < NUM_ITERS; i++) {
160 		t0 = tick_ops->get_tick();
161 		go[MASTER] = 1;
162 		membar_safe("#StoreLoad");
163 		while (!(tm = go[SLAVE]))
164 			rmb();
165 		go[SLAVE] = 0;
166 		wmb();
167 		t1 = tick_ops->get_tick();
168 
169 		if (t1 - t0 < best_t1 - best_t0)
170 			best_t0 = t0, best_t1 = t1, best_tm = tm;
171 	}
172 
173 	*rt = best_t1 - best_t0;
174 	*master = best_tm - best_t0;
175 
176 	/* average best_t0 and best_t1 without overflow: */
177 	tcenter = (best_t0/2 + best_t1/2);
178 	if (best_t0 % 2 + best_t1 % 2 == 2)
179 		tcenter++;
180 	return tcenter - best_tm;
181 }
182 
183 void smp_synchronize_tick_client(void)
184 {
185 	long i, delta, adj, adjust_latency = 0, done = 0;
186 	unsigned long flags, rt, master_time_stamp, bound;
187 #if DEBUG_TICK_SYNC
188 	struct {
189 		long rt;	/* roundtrip time */
190 		long master;	/* master's timestamp */
191 		long diff;	/* difference between midpoint and master's timestamp */
192 		long lat;	/* estimate of itc adjustment latency */
193 	} t[NUM_ROUNDS];
194 #endif
195 
196 	go[MASTER] = 1;
197 
198 	while (go[MASTER])
199 		rmb();
200 
201 	local_irq_save(flags);
202 	{
203 		for (i = 0; i < NUM_ROUNDS; i++) {
204 			delta = get_delta(&rt, &master_time_stamp);
205 			if (delta == 0) {
206 				done = 1;	/* let's lock on to this... */
207 				bound = rt;
208 			}
209 
210 			if (!done) {
211 				if (i > 0) {
212 					adjust_latency += -delta;
213 					adj = -delta + adjust_latency/4;
214 				} else
215 					adj = -delta;
216 
217 				tick_ops->add_tick(adj);
218 			}
219 #if DEBUG_TICK_SYNC
220 			t[i].rt = rt;
221 			t[i].master = master_time_stamp;
222 			t[i].diff = delta;
223 			t[i].lat = adjust_latency/4;
224 #endif
225 		}
226 	}
227 	local_irq_restore(flags);
228 
229 #if DEBUG_TICK_SYNC
230 	for (i = 0; i < NUM_ROUNDS; i++)
231 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
232 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
233 #endif
234 
235 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
236 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
237 	       smp_processor_id(), delta, rt);
238 }
239 
240 static void smp_start_sync_tick_client(int cpu);
241 
242 static void smp_synchronize_one_tick(int cpu)
243 {
244 	unsigned long flags, i;
245 
246 	go[MASTER] = 0;
247 
248 	smp_start_sync_tick_client(cpu);
249 
250 	/* wait for client to be ready */
251 	while (!go[MASTER])
252 		rmb();
253 
254 	/* now let the client proceed into his loop */
255 	go[MASTER] = 0;
256 	membar_safe("#StoreLoad");
257 
258 	spin_lock_irqsave(&itc_sync_lock, flags);
259 	{
260 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
261 			while (!go[MASTER])
262 				rmb();
263 			go[MASTER] = 0;
264 			wmb();
265 			go[SLAVE] = tick_ops->get_tick();
266 			membar_safe("#StoreLoad");
267 		}
268 	}
269 	spin_unlock_irqrestore(&itc_sync_lock, flags);
270 }
271 
272 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
273 /* XXX Put this in some common place. XXX */
274 static unsigned long kimage_addr_to_ra(void *p)
275 {
276 	unsigned long val = (unsigned long) p;
277 
278 	return kern_base + (val - KERNBASE);
279 }
280 
281 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
282 {
283 	extern unsigned long sparc64_ttable_tl0;
284 	extern unsigned long kern_locked_tte_data;
285 	struct hvtramp_descr *hdesc;
286 	unsigned long trampoline_ra;
287 	struct trap_per_cpu *tb;
288 	u64 tte_vaddr, tte_data;
289 	unsigned long hv_err;
290 	int i;
291 
292 	hdesc = kzalloc(sizeof(*hdesc) +
293 			(sizeof(struct hvtramp_mapping) *
294 			 num_kernel_image_mappings - 1),
295 			GFP_KERNEL);
296 	if (!hdesc) {
297 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
298 		       "hvtramp_descr.\n");
299 		return;
300 	}
301 
302 	hdesc->cpu = cpu;
303 	hdesc->num_mappings = num_kernel_image_mappings;
304 
305 	tb = &trap_block[cpu];
306 	tb->hdesc = hdesc;
307 
308 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
309 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
310 
311 	hdesc->thread_reg = thread_reg;
312 
313 	tte_vaddr = (unsigned long) KERNBASE;
314 	tte_data = kern_locked_tte_data;
315 
316 	for (i = 0; i < hdesc->num_mappings; i++) {
317 		hdesc->maps[i].vaddr = tte_vaddr;
318 		hdesc->maps[i].tte   = tte_data;
319 		tte_vaddr += 0x400000;
320 		tte_data  += 0x400000;
321 	}
322 
323 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
324 
325 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
326 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
327 				 __pa(hdesc));
328 	if (hv_err)
329 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
330 		       "gives error %lu\n", hv_err);
331 }
332 #endif
333 
334 extern unsigned long sparc64_cpu_startup;
335 
336 /* The OBP cpu startup callback truncates the 3rd arg cookie to
337  * 32-bits (I think) so to be safe we have it read the pointer
338  * contained here so we work on >4GB machines. -DaveM
339  */
340 static struct thread_info *cpu_new_thread = NULL;
341 
342 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
343 {
344 	struct trap_per_cpu *tb = &trap_block[cpu];
345 	unsigned long entry =
346 		(unsigned long)(&sparc64_cpu_startup);
347 	unsigned long cookie =
348 		(unsigned long)(&cpu_new_thread);
349 	struct task_struct *p;
350 	int timeout, ret;
351 
352 	p = fork_idle(cpu);
353 	if (IS_ERR(p))
354 		return PTR_ERR(p);
355 	callin_flag = 0;
356 	cpu_new_thread = task_thread_info(p);
357 
358 	if (tlb_type == hypervisor) {
359 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
360 		if (ldom_domaining_enabled)
361 			ldom_startcpu_cpuid(cpu,
362 					    (unsigned long) cpu_new_thread);
363 		else
364 #endif
365 			prom_startcpu_cpuid(cpu, entry, cookie);
366 	} else {
367 		struct device_node *dp = of_find_node_by_cpuid(cpu);
368 
369 		prom_startcpu(dp->node, entry, cookie);
370 	}
371 
372 	for (timeout = 0; timeout < 50000; timeout++) {
373 		if (callin_flag)
374 			break;
375 		udelay(100);
376 	}
377 
378 	if (callin_flag) {
379 		ret = 0;
380 	} else {
381 		printk("Processor %d is stuck.\n", cpu);
382 		ret = -ENODEV;
383 	}
384 	cpu_new_thread = NULL;
385 
386 	if (tb->hdesc) {
387 		kfree(tb->hdesc);
388 		tb->hdesc = NULL;
389 	}
390 
391 	return ret;
392 }
393 
394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395 {
396 	u64 result, target;
397 	int stuck, tmp;
398 
399 	if (this_is_starfire) {
400 		/* map to real upaid */
401 		cpu = (((cpu & 0x3c) << 1) |
402 			((cpu & 0x40) >> 4) |
403 			(cpu & 0x3));
404 	}
405 
406 	target = (cpu << 14) | 0x70;
407 again:
408 	/* Ok, this is the real Spitfire Errata #54.
409 	 * One must read back from a UDB internal register
410 	 * after writes to the UDB interrupt dispatch, but
411 	 * before the membar Sync for that write.
412 	 * So we use the high UDB control register (ASI 0x7f,
413 	 * ADDR 0x20) for the dummy read. -DaveM
414 	 */
415 	tmp = 0x40;
416 	__asm__ __volatile__(
417 	"wrpr	%1, %2, %%pstate\n\t"
418 	"stxa	%4, [%0] %3\n\t"
419 	"stxa	%5, [%0+%8] %3\n\t"
420 	"add	%0, %8, %0\n\t"
421 	"stxa	%6, [%0+%8] %3\n\t"
422 	"membar	#Sync\n\t"
423 	"stxa	%%g0, [%7] %3\n\t"
424 	"membar	#Sync\n\t"
425 	"mov	0x20, %%g1\n\t"
426 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
427 	"membar	#Sync"
428 	: "=r" (tmp)
429 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
431 	  "r" (0x10), "0" (tmp)
432         : "g1");
433 
434 	/* NOTE: PSTATE_IE is still clear. */
435 	stuck = 100000;
436 	do {
437 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
438 			: "=r" (result)
439 			: "i" (ASI_INTR_DISPATCH_STAT));
440 		if (result == 0) {
441 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 					     : : "r" (pstate));
443 			return;
444 		}
445 		stuck -= 1;
446 		if (stuck == 0)
447 			break;
448 	} while (result & 0x1);
449 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450 			     : : "r" (pstate));
451 	if (stuck == 0) {
452 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453 		       smp_processor_id(), result);
454 	} else {
455 		udelay(2);
456 		goto again;
457 	}
458 }
459 
460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461 {
462 	u64 *mondo, data0, data1, data2;
463 	u16 *cpu_list;
464 	u64 pstate;
465 	int i;
466 
467 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 	cpu_list = __va(tb->cpu_list_pa);
469 	mondo = __va(tb->cpu_mondo_block_pa);
470 	data0 = mondo[0];
471 	data1 = mondo[1];
472 	data2 = mondo[2];
473 	for (i = 0; i < cnt; i++)
474 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475 }
476 
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478  * packet, but we have no use for that.  However we do take advantage of
479  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480  */
481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482 {
483 	int nack_busy_id, is_jbus, need_more;
484 	u64 *mondo, pstate, ver, busy_mask;
485 	u16 *cpu_list;
486 
487 	cpu_list = __va(tb->cpu_list_pa);
488 	mondo = __va(tb->cpu_mondo_block_pa);
489 
490 	/* Unfortunately, someone at Sun had the brilliant idea to make the
491 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
492 	 * derivative processor.
493 	 */
494 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
495 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496 		   (ver >> 32) == __SERRANO_ID);
497 
498 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499 
500 retry:
501 	need_more = 0;
502 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503 			     : : "r" (pstate), "i" (PSTATE_IE));
504 
505 	/* Setup the dispatch data registers. */
506 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
507 			     "stxa	%1, [%4] %6\n\t"
508 			     "stxa	%2, [%5] %6\n\t"
509 			     "membar	#Sync\n\t"
510 			     : /* no outputs */
511 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512 			       "r" (0x40), "r" (0x50), "r" (0x60),
513 			       "i" (ASI_INTR_W));
514 
515 	nack_busy_id = 0;
516 	busy_mask = 0;
517 	{
518 		int i;
519 
520 		for (i = 0; i < cnt; i++) {
521 			u64 target, nr;
522 
523 			nr = cpu_list[i];
524 			if (nr == 0xffff)
525 				continue;
526 
527 			target = (nr << 14) | 0x70;
528 			if (is_jbus) {
529 				busy_mask |= (0x1UL << (nr * 2));
530 			} else {
531 				target |= (nack_busy_id << 24);
532 				busy_mask |= (0x1UL <<
533 					      (nack_busy_id * 2));
534 			}
535 			__asm__ __volatile__(
536 				"stxa	%%g0, [%0] %1\n\t"
537 				"membar	#Sync\n\t"
538 				: /* no outputs */
539 				: "r" (target), "i" (ASI_INTR_W));
540 			nack_busy_id++;
541 			if (nack_busy_id == 32) {
542 				need_more = 1;
543 				break;
544 			}
545 		}
546 	}
547 
548 	/* Now, poll for completion. */
549 	{
550 		u64 dispatch_stat, nack_mask;
551 		long stuck;
552 
553 		stuck = 100000 * nack_busy_id;
554 		nack_mask = busy_mask << 1;
555 		do {
556 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
557 					     : "=r" (dispatch_stat)
558 					     : "i" (ASI_INTR_DISPATCH_STAT));
559 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
560 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561 						     : : "r" (pstate));
562 				if (unlikely(need_more)) {
563 					int i, this_cnt = 0;
564 					for (i = 0; i < cnt; i++) {
565 						if (cpu_list[i] == 0xffff)
566 							continue;
567 						cpu_list[i] = 0xffff;
568 						this_cnt++;
569 						if (this_cnt == 32)
570 							break;
571 					}
572 					goto retry;
573 				}
574 				return;
575 			}
576 			if (!--stuck)
577 				break;
578 		} while (dispatch_stat & busy_mask);
579 
580 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581 				     : : "r" (pstate));
582 
583 		if (dispatch_stat & busy_mask) {
584 			/* Busy bits will not clear, continue instead
585 			 * of freezing up on this cpu.
586 			 */
587 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588 			       smp_processor_id(), dispatch_stat);
589 		} else {
590 			int i, this_busy_nack = 0;
591 
592 			/* Delay some random time with interrupts enabled
593 			 * to prevent deadlock.
594 			 */
595 			udelay(2 * nack_busy_id);
596 
597 			/* Clear out the mask bits for cpus which did not
598 			 * NACK us.
599 			 */
600 			for (i = 0; i < cnt; i++) {
601 				u64 check_mask, nr;
602 
603 				nr = cpu_list[i];
604 				if (nr == 0xffff)
605 					continue;
606 
607 				if (is_jbus)
608 					check_mask = (0x2UL << (2*nr));
609 				else
610 					check_mask = (0x2UL <<
611 						      this_busy_nack);
612 				if ((dispatch_stat & check_mask) == 0)
613 					cpu_list[i] = 0xffff;
614 				this_busy_nack += 2;
615 				if (this_busy_nack == 64)
616 					break;
617 			}
618 
619 			goto retry;
620 		}
621 	}
622 }
623 
624 /* Multi-cpu list version.  */
625 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
626 {
627 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
628 	unsigned long status;
629 	u16 *cpu_list;
630 
631 	this_cpu = smp_processor_id();
632 
633 	cpu_list = __va(tb->cpu_list_pa);
634 
635 	saw_cpu_error = 0;
636 	retries = 0;
637 	prev_sent = 0;
638 	do {
639 		int forward_progress, n_sent;
640 
641 		status = sun4v_cpu_mondo_send(cnt,
642 					      tb->cpu_list_pa,
643 					      tb->cpu_mondo_block_pa);
644 
645 		/* HV_EOK means all cpus received the xcall, we're done.  */
646 		if (likely(status == HV_EOK))
647 			break;
648 
649 		/* First, see if we made any forward progress.
650 		 *
651 		 * The hypervisor indicates successful sends by setting
652 		 * cpu list entries to the value 0xffff.
653 		 */
654 		n_sent = 0;
655 		for (i = 0; i < cnt; i++) {
656 			if (likely(cpu_list[i] == 0xffff))
657 				n_sent++;
658 		}
659 
660 		forward_progress = 0;
661 		if (n_sent > prev_sent)
662 			forward_progress = 1;
663 
664 		prev_sent = n_sent;
665 
666 		/* If we get a HV_ECPUERROR, then one or more of the cpus
667 		 * in the list are in error state.  Use the cpu_state()
668 		 * hypervisor call to find out which cpus are in error state.
669 		 */
670 		if (unlikely(status == HV_ECPUERROR)) {
671 			for (i = 0; i < cnt; i++) {
672 				long err;
673 				u16 cpu;
674 
675 				cpu = cpu_list[i];
676 				if (cpu == 0xffff)
677 					continue;
678 
679 				err = sun4v_cpu_state(cpu);
680 				if (err == HV_CPU_STATE_ERROR) {
681 					saw_cpu_error = (cpu + 1);
682 					cpu_list[i] = 0xffff;
683 				}
684 			}
685 		} else if (unlikely(status != HV_EWOULDBLOCK))
686 			goto fatal_mondo_error;
687 
688 		/* Don't bother rewriting the CPU list, just leave the
689 		 * 0xffff and non-0xffff entries in there and the
690 		 * hypervisor will do the right thing.
691 		 *
692 		 * Only advance timeout state if we didn't make any
693 		 * forward progress.
694 		 */
695 		if (unlikely(!forward_progress)) {
696 			if (unlikely(++retries > 10000))
697 				goto fatal_mondo_timeout;
698 
699 			/* Delay a little bit to let other cpus catch up
700 			 * on their cpu mondo queue work.
701 			 */
702 			udelay(2 * cnt);
703 		}
704 	} while (1);
705 
706 	if (unlikely(saw_cpu_error))
707 		goto fatal_mondo_cpu_error;
708 
709 	return;
710 
711 fatal_mondo_cpu_error:
712 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
713 	       "(including %d) were in error state\n",
714 	       this_cpu, saw_cpu_error - 1);
715 	return;
716 
717 fatal_mondo_timeout:
718 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
719 	       " progress after %d retries.\n",
720 	       this_cpu, retries);
721 	goto dump_cpu_list_and_out;
722 
723 fatal_mondo_error:
724 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
725 	       this_cpu, status);
726 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
727 	       "mondo_block_pa(%lx)\n",
728 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
729 
730 dump_cpu_list_and_out:
731 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
732 	for (i = 0; i < cnt; i++)
733 		printk("%u ", cpu_list[i]);
734 	printk("]\n");
735 }
736 
737 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
738 
739 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
740 {
741 	struct trap_per_cpu *tb;
742 	int this_cpu, i, cnt;
743 	unsigned long flags;
744 	u16 *cpu_list;
745 	u64 *mondo;
746 
747 	/* We have to do this whole thing with interrupts fully disabled.
748 	 * Otherwise if we send an xcall from interrupt context it will
749 	 * corrupt both our mondo block and cpu list state.
750 	 *
751 	 * One consequence of this is that we cannot use timeout mechanisms
752 	 * that depend upon interrupts being delivered locally.  So, for
753 	 * example, we cannot sample jiffies and expect it to advance.
754 	 *
755 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
756 	 */
757 	local_irq_save(flags);
758 
759 	this_cpu = smp_processor_id();
760 	tb = &trap_block[this_cpu];
761 
762 	mondo = __va(tb->cpu_mondo_block_pa);
763 	mondo[0] = data0;
764 	mondo[1] = data1;
765 	mondo[2] = data2;
766 	wmb();
767 
768 	cpu_list = __va(tb->cpu_list_pa);
769 
770 	/* Setup the initial cpu list.  */
771 	cnt = 0;
772 	for_each_cpu(i, mask) {
773 		if (i == this_cpu || !cpu_online(i))
774 			continue;
775 		cpu_list[cnt++] = i;
776 	}
777 
778 	if (cnt)
779 		xcall_deliver_impl(tb, cnt);
780 
781 	local_irq_restore(flags);
782 }
783 
784 /* Send cross call to all processors mentioned in MASK_P
785  * except self.  Really, there are only two cases currently,
786  * "&cpu_online_map" and "&mm->cpu_vm_mask".
787  */
788 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
789 {
790 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
791 
792 	xcall_deliver(data0, data1, data2, mask);
793 }
794 
795 /* Send cross call to all processors except self. */
796 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
797 {
798 	smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
799 }
800 
801 extern unsigned long xcall_sync_tick;
802 
803 static void smp_start_sync_tick_client(int cpu)
804 {
805 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
806 		      &cpumask_of_cpu(cpu));
807 }
808 
809 extern unsigned long xcall_call_function;
810 
811 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
812 {
813 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
814 }
815 
816 extern unsigned long xcall_call_function_single;
817 
818 void arch_send_call_function_single_ipi(int cpu)
819 {
820 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
821 		      &cpumask_of_cpu(cpu));
822 }
823 
824 void smp_call_function_client(int irq, struct pt_regs *regs)
825 {
826 	clear_softint(1 << irq);
827 	generic_smp_call_function_interrupt();
828 }
829 
830 void smp_call_function_single_client(int irq, struct pt_regs *regs)
831 {
832 	clear_softint(1 << irq);
833 	generic_smp_call_function_single_interrupt();
834 }
835 
836 static void tsb_sync(void *info)
837 {
838 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
839 	struct mm_struct *mm = info;
840 
841 	/* It is not valid to test "currrent->active_mm == mm" here.
842 	 *
843 	 * The value of "current" is not changed atomically with
844 	 * switch_mm().  But that's OK, we just need to check the
845 	 * current cpu's trap block PGD physical address.
846 	 */
847 	if (tp->pgd_paddr == __pa(mm->pgd))
848 		tsb_context_switch(mm);
849 }
850 
851 void smp_tsb_sync(struct mm_struct *mm)
852 {
853 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
854 }
855 
856 extern unsigned long xcall_flush_tlb_mm;
857 extern unsigned long xcall_flush_tlb_pending;
858 extern unsigned long xcall_flush_tlb_kernel_range;
859 extern unsigned long xcall_fetch_glob_regs;
860 extern unsigned long xcall_receive_signal;
861 extern unsigned long xcall_new_mmu_context_version;
862 #ifdef CONFIG_KGDB
863 extern unsigned long xcall_kgdb_capture;
864 #endif
865 
866 #ifdef DCACHE_ALIASING_POSSIBLE
867 extern unsigned long xcall_flush_dcache_page_cheetah;
868 #endif
869 extern unsigned long xcall_flush_dcache_page_spitfire;
870 
871 #ifdef CONFIG_DEBUG_DCFLUSH
872 extern atomic_t dcpage_flushes;
873 extern atomic_t dcpage_flushes_xcall;
874 #endif
875 
876 static inline void __local_flush_dcache_page(struct page *page)
877 {
878 #ifdef DCACHE_ALIASING_POSSIBLE
879 	__flush_dcache_page(page_address(page),
880 			    ((tlb_type == spitfire) &&
881 			     page_mapping(page) != NULL));
882 #else
883 	if (page_mapping(page) != NULL &&
884 	    tlb_type == spitfire)
885 		__flush_icache_page(__pa(page_address(page)));
886 #endif
887 }
888 
889 void smp_flush_dcache_page_impl(struct page *page, int cpu)
890 {
891 	int this_cpu;
892 
893 	if (tlb_type == hypervisor)
894 		return;
895 
896 #ifdef CONFIG_DEBUG_DCFLUSH
897 	atomic_inc(&dcpage_flushes);
898 #endif
899 
900 	this_cpu = get_cpu();
901 
902 	if (cpu == this_cpu) {
903 		__local_flush_dcache_page(page);
904 	} else if (cpu_online(cpu)) {
905 		void *pg_addr = page_address(page);
906 		u64 data0 = 0;
907 
908 		if (tlb_type == spitfire) {
909 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
910 			if (page_mapping(page) != NULL)
911 				data0 |= ((u64)1 << 32);
912 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
913 #ifdef DCACHE_ALIASING_POSSIBLE
914 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
915 #endif
916 		}
917 		if (data0) {
918 			xcall_deliver(data0, __pa(pg_addr),
919 				      (u64) pg_addr, &cpumask_of_cpu(cpu));
920 #ifdef CONFIG_DEBUG_DCFLUSH
921 			atomic_inc(&dcpage_flushes_xcall);
922 #endif
923 		}
924 	}
925 
926 	put_cpu();
927 }
928 
929 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
930 {
931 	void *pg_addr;
932 	int this_cpu;
933 	u64 data0;
934 
935 	if (tlb_type == hypervisor)
936 		return;
937 
938 	this_cpu = get_cpu();
939 
940 #ifdef CONFIG_DEBUG_DCFLUSH
941 	atomic_inc(&dcpage_flushes);
942 #endif
943 	data0 = 0;
944 	pg_addr = page_address(page);
945 	if (tlb_type == spitfire) {
946 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947 		if (page_mapping(page) != NULL)
948 			data0 |= ((u64)1 << 32);
949 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
952 #endif
953 	}
954 	if (data0) {
955 		xcall_deliver(data0, __pa(pg_addr),
956 			      (u64) pg_addr, &cpu_online_map);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958 		atomic_inc(&dcpage_flushes_xcall);
959 #endif
960 	}
961 	__local_flush_dcache_page(page);
962 
963 	put_cpu();
964 }
965 
966 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
967 {
968 	struct mm_struct *mm;
969 	unsigned long flags;
970 
971 	clear_softint(1 << irq);
972 
973 	/* See if we need to allocate a new TLB context because
974 	 * the version of the one we are using is now out of date.
975 	 */
976 	mm = current->active_mm;
977 	if (unlikely(!mm || (mm == &init_mm)))
978 		return;
979 
980 	spin_lock_irqsave(&mm->context.lock, flags);
981 
982 	if (unlikely(!CTX_VALID(mm->context)))
983 		get_new_mmu_context(mm);
984 
985 	spin_unlock_irqrestore(&mm->context.lock, flags);
986 
987 	load_secondary_context(mm);
988 	__flush_tlb_mm(CTX_HWBITS(mm->context),
989 		       SECONDARY_CONTEXT);
990 }
991 
992 void smp_new_mmu_context_version(void)
993 {
994 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
995 }
996 
997 #ifdef CONFIG_KGDB
998 void kgdb_roundup_cpus(unsigned long flags)
999 {
1000 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001 }
1002 #endif
1003 
1004 void smp_fetch_global_regs(void)
1005 {
1006 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007 }
1008 
1009 /* We know that the window frames of the user have been flushed
1010  * to the stack before we get here because all callers of us
1011  * are flush_tlb_*() routines, and these run after flush_cache_*()
1012  * which performs the flushw.
1013  *
1014  * The SMP TLB coherency scheme we use works as follows:
1015  *
1016  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1017  *    space has (potentially) executed on, this is the heuristic
1018  *    we use to avoid doing cross calls.
1019  *
1020  *    Also, for flushing from kswapd and also for clones, we
1021  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1022  *
1023  * 2) TLB context numbers are shared globally across all processors
1024  *    in the system, this allows us to play several games to avoid
1025  *    cross calls.
1026  *
1027  *    One invariant is that when a cpu switches to a process, and
1028  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1029  *    current cpu's bit set, that tlb context is flushed locally.
1030  *
1031  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1032  *    cross calls when we want to flush the currently running process's
1033  *    tlb state.  This is done by clearing all cpu bits except the current
1034  *    processor's in current->mm->cpu_vm_mask and performing the
1035  *    flush locally only.  This will force any subsequent cpus which run
1036  *    this task to flush the context from the local tlb if the process
1037  *    migrates to another cpu (again).
1038  *
1039  * 3) For shared address spaces (threads) and swapping we bite the
1040  *    bullet for most cases and perform the cross call (but only to
1041  *    the cpus listed in cpu_vm_mask).
1042  *
1043  *    The performance gain from "optimizing" away the cross call for threads is
1044  *    questionable (in theory the big win for threads is the massive sharing of
1045  *    address space state across processors).
1046  */
1047 
1048 /* This currently is only used by the hugetlb arch pre-fault
1049  * hook on UltraSPARC-III+ and later when changing the pagesize
1050  * bits of the context register for an address space.
1051  */
1052 void smp_flush_tlb_mm(struct mm_struct *mm)
1053 {
1054 	u32 ctx = CTX_HWBITS(mm->context);
1055 	int cpu = get_cpu();
1056 
1057 	if (atomic_read(&mm->mm_users) == 1) {
1058 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1059 		goto local_flush_and_out;
1060 	}
1061 
1062 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1063 			      ctx, 0, 0,
1064 			      mm_cpumask(mm));
1065 
1066 local_flush_and_out:
1067 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1068 
1069 	put_cpu();
1070 }
1071 
1072 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1073 {
1074 	u32 ctx = CTX_HWBITS(mm->context);
1075 	int cpu = get_cpu();
1076 
1077 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1078 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1079 	else
1080 		smp_cross_call_masked(&xcall_flush_tlb_pending,
1081 				      ctx, nr, (unsigned long) vaddrs,
1082 				      mm_cpumask(mm));
1083 
1084 	__flush_tlb_pending(ctx, nr, vaddrs);
1085 
1086 	put_cpu();
1087 }
1088 
1089 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1090 {
1091 	start &= PAGE_MASK;
1092 	end    = PAGE_ALIGN(end);
1093 	if (start != end) {
1094 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1095 			       0, start, end);
1096 
1097 		__flush_tlb_kernel_range(start, end);
1098 	}
1099 }
1100 
1101 /* CPU capture. */
1102 /* #define CAPTURE_DEBUG */
1103 extern unsigned long xcall_capture;
1104 
1105 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1106 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1107 static unsigned long penguins_are_doing_time;
1108 
1109 void smp_capture(void)
1110 {
1111 	int result = atomic_add_ret(1, &smp_capture_depth);
1112 
1113 	if (result == 1) {
1114 		int ncpus = num_online_cpus();
1115 
1116 #ifdef CAPTURE_DEBUG
1117 		printk("CPU[%d]: Sending penguins to jail...",
1118 		       smp_processor_id());
1119 #endif
1120 		penguins_are_doing_time = 1;
1121 		atomic_inc(&smp_capture_registry);
1122 		smp_cross_call(&xcall_capture, 0, 0, 0);
1123 		while (atomic_read(&smp_capture_registry) != ncpus)
1124 			rmb();
1125 #ifdef CAPTURE_DEBUG
1126 		printk("done\n");
1127 #endif
1128 	}
1129 }
1130 
1131 void smp_release(void)
1132 {
1133 	if (atomic_dec_and_test(&smp_capture_depth)) {
1134 #ifdef CAPTURE_DEBUG
1135 		printk("CPU[%d]: Giving pardon to "
1136 		       "imprisoned penguins\n",
1137 		       smp_processor_id());
1138 #endif
1139 		penguins_are_doing_time = 0;
1140 		membar_safe("#StoreLoad");
1141 		atomic_dec(&smp_capture_registry);
1142 	}
1143 }
1144 
1145 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1146  * set, so they can service tlb flush xcalls...
1147  */
1148 extern void prom_world(int);
1149 
1150 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1151 {
1152 	clear_softint(1 << irq);
1153 
1154 	preempt_disable();
1155 
1156 	__asm__ __volatile__("flushw");
1157 	prom_world(1);
1158 	atomic_inc(&smp_capture_registry);
1159 	membar_safe("#StoreLoad");
1160 	while (penguins_are_doing_time)
1161 		rmb();
1162 	atomic_dec(&smp_capture_registry);
1163 	prom_world(0);
1164 
1165 	preempt_enable();
1166 }
1167 
1168 /* /proc/profile writes can call this, don't __init it please. */
1169 int setup_profiling_timer(unsigned int multiplier)
1170 {
1171 	return -EINVAL;
1172 }
1173 
1174 void __init smp_prepare_cpus(unsigned int max_cpus)
1175 {
1176 }
1177 
1178 void __devinit smp_prepare_boot_cpu(void)
1179 {
1180 }
1181 
1182 void __init smp_setup_processor_id(void)
1183 {
1184 	if (tlb_type == spitfire)
1185 		xcall_deliver_impl = spitfire_xcall_deliver;
1186 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1187 		xcall_deliver_impl = cheetah_xcall_deliver;
1188 	else
1189 		xcall_deliver_impl = hypervisor_xcall_deliver;
1190 }
1191 
1192 void __devinit smp_fill_in_sib_core_maps(void)
1193 {
1194 	unsigned int i;
1195 
1196 	for_each_present_cpu(i) {
1197 		unsigned int j;
1198 
1199 		cpus_clear(cpu_core_map[i]);
1200 		if (cpu_data(i).core_id == 0) {
1201 			cpu_set(i, cpu_core_map[i]);
1202 			continue;
1203 		}
1204 
1205 		for_each_present_cpu(j) {
1206 			if (cpu_data(i).core_id ==
1207 			    cpu_data(j).core_id)
1208 				cpu_set(j, cpu_core_map[i]);
1209 		}
1210 	}
1211 
1212 	for_each_present_cpu(i) {
1213 		unsigned int j;
1214 
1215 		cpus_clear(per_cpu(cpu_sibling_map, i));
1216 		if (cpu_data(i).proc_id == -1) {
1217 			cpu_set(i, per_cpu(cpu_sibling_map, i));
1218 			continue;
1219 		}
1220 
1221 		for_each_present_cpu(j) {
1222 			if (cpu_data(i).proc_id ==
1223 			    cpu_data(j).proc_id)
1224 				cpu_set(j, per_cpu(cpu_sibling_map, i));
1225 		}
1226 	}
1227 }
1228 
1229 int __cpuinit __cpu_up(unsigned int cpu)
1230 {
1231 	int ret = smp_boot_one_cpu(cpu);
1232 
1233 	if (!ret) {
1234 		cpu_set(cpu, smp_commenced_mask);
1235 		while (!cpu_isset(cpu, cpu_online_map))
1236 			mb();
1237 		if (!cpu_isset(cpu, cpu_online_map)) {
1238 			ret = -ENODEV;
1239 		} else {
1240 			/* On SUN4V, writes to %tick and %stick are
1241 			 * not allowed.
1242 			 */
1243 			if (tlb_type != hypervisor)
1244 				smp_synchronize_one_tick(cpu);
1245 		}
1246 	}
1247 	return ret;
1248 }
1249 
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 void cpu_play_dead(void)
1252 {
1253 	int cpu = smp_processor_id();
1254 	unsigned long pstate;
1255 
1256 	idle_task_exit();
1257 
1258 	if (tlb_type == hypervisor) {
1259 		struct trap_per_cpu *tb = &trap_block[cpu];
1260 
1261 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1262 				tb->cpu_mondo_pa, 0);
1263 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1264 				tb->dev_mondo_pa, 0);
1265 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1266 				tb->resum_mondo_pa, 0);
1267 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1268 				tb->nonresum_mondo_pa, 0);
1269 	}
1270 
1271 	cpu_clear(cpu, smp_commenced_mask);
1272 	membar_safe("#Sync");
1273 
1274 	local_irq_disable();
1275 
1276 	__asm__ __volatile__(
1277 		"rdpr	%%pstate, %0\n\t"
1278 		"wrpr	%0, %1, %%pstate"
1279 		: "=r" (pstate)
1280 		: "i" (PSTATE_IE));
1281 
1282 	while (1)
1283 		barrier();
1284 }
1285 
1286 int __cpu_disable(void)
1287 {
1288 	int cpu = smp_processor_id();
1289 	cpuinfo_sparc *c;
1290 	int i;
1291 
1292 	for_each_cpu_mask(i, cpu_core_map[cpu])
1293 		cpu_clear(cpu, cpu_core_map[i]);
1294 	cpus_clear(cpu_core_map[cpu]);
1295 
1296 	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1297 		cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1298 	cpus_clear(per_cpu(cpu_sibling_map, cpu));
1299 
1300 	c = &cpu_data(cpu);
1301 
1302 	c->core_id = 0;
1303 	c->proc_id = -1;
1304 
1305 	smp_wmb();
1306 
1307 	/* Make sure no interrupts point to this cpu.  */
1308 	fixup_irqs();
1309 
1310 	local_irq_enable();
1311 	mdelay(1);
1312 	local_irq_disable();
1313 
1314 	ipi_call_lock();
1315 	cpu_clear(cpu, cpu_online_map);
1316 	ipi_call_unlock();
1317 
1318 	return 0;
1319 }
1320 
1321 void __cpu_die(unsigned int cpu)
1322 {
1323 	int i;
1324 
1325 	for (i = 0; i < 100; i++) {
1326 		smp_rmb();
1327 		if (!cpu_isset(cpu, smp_commenced_mask))
1328 			break;
1329 		msleep(100);
1330 	}
1331 	if (cpu_isset(cpu, smp_commenced_mask)) {
1332 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1333 	} else {
1334 #if defined(CONFIG_SUN_LDOMS)
1335 		unsigned long hv_err;
1336 		int limit = 100;
1337 
1338 		do {
1339 			hv_err = sun4v_cpu_stop(cpu);
1340 			if (hv_err == HV_EOK) {
1341 				cpu_clear(cpu, cpu_present_map);
1342 				break;
1343 			}
1344 		} while (--limit > 0);
1345 		if (limit <= 0) {
1346 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1347 			       hv_err);
1348 		}
1349 #endif
1350 	}
1351 }
1352 #endif
1353 
1354 void __init smp_cpus_done(unsigned int max_cpus)
1355 {
1356 }
1357 
1358 void smp_send_reschedule(int cpu)
1359 {
1360 	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1361 		      &cpumask_of_cpu(cpu));
1362 }
1363 
1364 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1365 {
1366 	clear_softint(1 << irq);
1367 }
1368 
1369 /* This is a nop because we capture all other cpus
1370  * anyways when making the PROM active.
1371  */
1372 void smp_send_stop(void)
1373 {
1374 }
1375 
1376 unsigned long __per_cpu_base __read_mostly;
1377 unsigned long __per_cpu_shift __read_mostly;
1378 
1379 EXPORT_SYMBOL(__per_cpu_base);
1380 EXPORT_SYMBOL(__per_cpu_shift);
1381 
1382 void __init real_setup_per_cpu_areas(void)
1383 {
1384 	unsigned long paddr, goal, size, i;
1385 	char *ptr;
1386 
1387 	/* Copy section for each CPU (we discard the original) */
1388 	goal = PERCPU_ENOUGH_ROOM;
1389 
1390 	__per_cpu_shift = PAGE_SHIFT;
1391 	for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1392 		__per_cpu_shift++;
1393 
1394 	paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1395 	if (!paddr) {
1396 		prom_printf("Cannot allocate per-cpu memory.\n");
1397 		prom_halt();
1398 	}
1399 
1400 	ptr = __va(paddr);
1401 	__per_cpu_base = ptr - __per_cpu_start;
1402 
1403 	for (i = 0; i < NR_CPUS; i++, ptr += size)
1404 		memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1405 
1406 	/* Setup %g5 for the boot cpu.  */
1407 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1408 }
1409