xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision 8a10bc9d)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38 
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53 
54 #include "cpumap.h"
55 
56 int sparc64_multi_core __read_mostly;
57 
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61 
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64 
65 static cpumask_t smp_commenced_mask;
66 
67 void smp_info(struct seq_file *m)
68 {
69 	int i;
70 
71 	seq_printf(m, "State:\n");
72 	for_each_online_cpu(i)
73 		seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75 
76 void smp_bogo(struct seq_file *m)
77 {
78 	int i;
79 
80 	for_each_online_cpu(i)
81 		seq_printf(m,
82 			   "Cpu%dClkTck\t: %016lx\n",
83 			   i, cpu_data(i).clock_tick);
84 }
85 
86 extern void setup_sparc64_timer(void);
87 
88 static volatile unsigned long callin_flag = 0;
89 
90 void smp_callin(void)
91 {
92 	int cpuid = hard_smp_processor_id();
93 
94 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
95 
96 	if (tlb_type == hypervisor)
97 		sun4v_ktsb_register();
98 
99 	__flush_tlb_all();
100 
101 	setup_sparc64_timer();
102 
103 	if (cheetah_pcache_forced_on)
104 		cheetah_enable_pcache();
105 
106 	callin_flag = 1;
107 	__asm__ __volatile__("membar #Sync\n\t"
108 			     "flush  %%g6" : : : "memory");
109 
110 	/* Clear this or we will die instantly when we
111 	 * schedule back to this idler...
112 	 */
113 	current_thread_info()->new_child = 0;
114 
115 	/* Attach to the address space of init_task. */
116 	atomic_inc(&init_mm.mm_count);
117 	current->active_mm = &init_mm;
118 
119 	/* inform the notifiers about the new cpu */
120 	notify_cpu_starting(cpuid);
121 
122 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123 		rmb();
124 
125 	set_cpu_online(cpuid, true);
126 
127 	/* idle thread is expected to have preempt disabled */
128 	preempt_disable();
129 
130 	local_irq_enable();
131 
132 	cpu_startup_entry(CPUHP_ONLINE);
133 }
134 
135 void cpu_panic(void)
136 {
137 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138 	panic("SMP bolixed\n");
139 }
140 
141 /* This tick register synchronization scheme is taken entirely from
142  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
143  *
144  * The only change I've made is to rework it so that the master
145  * initiates the synchonization instead of the slave. -DaveM
146  */
147 
148 #define MASTER	0
149 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
150 
151 #define NUM_ROUNDS	64	/* magic value */
152 #define NUM_ITERS	5	/* likewise */
153 
154 static DEFINE_SPINLOCK(itc_sync_lock);
155 static unsigned long go[SLAVE + 1];
156 
157 #define DEBUG_TICK_SYNC	0
158 
159 static inline long get_delta (long *rt, long *master)
160 {
161 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
162 	unsigned long tcenter, t0, t1, tm;
163 	unsigned long i;
164 
165 	for (i = 0; i < NUM_ITERS; i++) {
166 		t0 = tick_ops->get_tick();
167 		go[MASTER] = 1;
168 		membar_safe("#StoreLoad");
169 		while (!(tm = go[SLAVE]))
170 			rmb();
171 		go[SLAVE] = 0;
172 		wmb();
173 		t1 = tick_ops->get_tick();
174 
175 		if (t1 - t0 < best_t1 - best_t0)
176 			best_t0 = t0, best_t1 = t1, best_tm = tm;
177 	}
178 
179 	*rt = best_t1 - best_t0;
180 	*master = best_tm - best_t0;
181 
182 	/* average best_t0 and best_t1 without overflow: */
183 	tcenter = (best_t0/2 + best_t1/2);
184 	if (best_t0 % 2 + best_t1 % 2 == 2)
185 		tcenter++;
186 	return tcenter - best_tm;
187 }
188 
189 void smp_synchronize_tick_client(void)
190 {
191 	long i, delta, adj, adjust_latency = 0, done = 0;
192 	unsigned long flags, rt, master_time_stamp;
193 #if DEBUG_TICK_SYNC
194 	struct {
195 		long rt;	/* roundtrip time */
196 		long master;	/* master's timestamp */
197 		long diff;	/* difference between midpoint and master's timestamp */
198 		long lat;	/* estimate of itc adjustment latency */
199 	} t[NUM_ROUNDS];
200 #endif
201 
202 	go[MASTER] = 1;
203 
204 	while (go[MASTER])
205 		rmb();
206 
207 	local_irq_save(flags);
208 	{
209 		for (i = 0; i < NUM_ROUNDS; i++) {
210 			delta = get_delta(&rt, &master_time_stamp);
211 			if (delta == 0)
212 				done = 1;	/* let's lock on to this... */
213 
214 			if (!done) {
215 				if (i > 0) {
216 					adjust_latency += -delta;
217 					adj = -delta + adjust_latency/4;
218 				} else
219 					adj = -delta;
220 
221 				tick_ops->add_tick(adj);
222 			}
223 #if DEBUG_TICK_SYNC
224 			t[i].rt = rt;
225 			t[i].master = master_time_stamp;
226 			t[i].diff = delta;
227 			t[i].lat = adjust_latency/4;
228 #endif
229 		}
230 	}
231 	local_irq_restore(flags);
232 
233 #if DEBUG_TICK_SYNC
234 	for (i = 0; i < NUM_ROUNDS; i++)
235 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
237 #endif
238 
239 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
240 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
241 	       smp_processor_id(), delta, rt);
242 }
243 
244 static void smp_start_sync_tick_client(int cpu);
245 
246 static void smp_synchronize_one_tick(int cpu)
247 {
248 	unsigned long flags, i;
249 
250 	go[MASTER] = 0;
251 
252 	smp_start_sync_tick_client(cpu);
253 
254 	/* wait for client to be ready */
255 	while (!go[MASTER])
256 		rmb();
257 
258 	/* now let the client proceed into his loop */
259 	go[MASTER] = 0;
260 	membar_safe("#StoreLoad");
261 
262 	spin_lock_irqsave(&itc_sync_lock, flags);
263 	{
264 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265 			while (!go[MASTER])
266 				rmb();
267 			go[MASTER] = 0;
268 			wmb();
269 			go[SLAVE] = tick_ops->get_tick();
270 			membar_safe("#StoreLoad");
271 		}
272 	}
273 	spin_unlock_irqrestore(&itc_sync_lock, flags);
274 }
275 
276 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277 /* XXX Put this in some common place. XXX */
278 static unsigned long kimage_addr_to_ra(void *p)
279 {
280 	unsigned long val = (unsigned long) p;
281 
282 	return kern_base + (val - KERNBASE);
283 }
284 
285 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
286 				void **descrp)
287 {
288 	extern unsigned long sparc64_ttable_tl0;
289 	extern unsigned long kern_locked_tte_data;
290 	struct hvtramp_descr *hdesc;
291 	unsigned long trampoline_ra;
292 	struct trap_per_cpu *tb;
293 	u64 tte_vaddr, tte_data;
294 	unsigned long hv_err;
295 	int i;
296 
297 	hdesc = kzalloc(sizeof(*hdesc) +
298 			(sizeof(struct hvtramp_mapping) *
299 			 num_kernel_image_mappings - 1),
300 			GFP_KERNEL);
301 	if (!hdesc) {
302 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
303 		       "hvtramp_descr.\n");
304 		return;
305 	}
306 	*descrp = hdesc;
307 
308 	hdesc->cpu = cpu;
309 	hdesc->num_mappings = num_kernel_image_mappings;
310 
311 	tb = &trap_block[cpu];
312 
313 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
314 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
315 
316 	hdesc->thread_reg = thread_reg;
317 
318 	tte_vaddr = (unsigned long) KERNBASE;
319 	tte_data = kern_locked_tte_data;
320 
321 	for (i = 0; i < hdesc->num_mappings; i++) {
322 		hdesc->maps[i].vaddr = tte_vaddr;
323 		hdesc->maps[i].tte   = tte_data;
324 		tte_vaddr += 0x400000;
325 		tte_data  += 0x400000;
326 	}
327 
328 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
329 
330 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
331 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
332 				 __pa(hdesc));
333 	if (hv_err)
334 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
335 		       "gives error %lu\n", hv_err);
336 }
337 #endif
338 
339 extern unsigned long sparc64_cpu_startup;
340 
341 /* The OBP cpu startup callback truncates the 3rd arg cookie to
342  * 32-bits (I think) so to be safe we have it read the pointer
343  * contained here so we work on >4GB machines. -DaveM
344  */
345 static struct thread_info *cpu_new_thread = NULL;
346 
347 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
348 {
349 	unsigned long entry =
350 		(unsigned long)(&sparc64_cpu_startup);
351 	unsigned long cookie =
352 		(unsigned long)(&cpu_new_thread);
353 	void *descr = NULL;
354 	int timeout, ret;
355 
356 	callin_flag = 0;
357 	cpu_new_thread = task_thread_info(idle);
358 
359 	if (tlb_type == hypervisor) {
360 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
361 		if (ldom_domaining_enabled)
362 			ldom_startcpu_cpuid(cpu,
363 					    (unsigned long) cpu_new_thread,
364 					    &descr);
365 		else
366 #endif
367 			prom_startcpu_cpuid(cpu, entry, cookie);
368 	} else {
369 		struct device_node *dp = of_find_node_by_cpuid(cpu);
370 
371 		prom_startcpu(dp->phandle, entry, cookie);
372 	}
373 
374 	for (timeout = 0; timeout < 50000; timeout++) {
375 		if (callin_flag)
376 			break;
377 		udelay(100);
378 	}
379 
380 	if (callin_flag) {
381 		ret = 0;
382 	} else {
383 		printk("Processor %d is stuck.\n", cpu);
384 		ret = -ENODEV;
385 	}
386 	cpu_new_thread = NULL;
387 
388 	kfree(descr);
389 
390 	return ret;
391 }
392 
393 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
394 {
395 	u64 result, target;
396 	int stuck, tmp;
397 
398 	if (this_is_starfire) {
399 		/* map to real upaid */
400 		cpu = (((cpu & 0x3c) << 1) |
401 			((cpu & 0x40) >> 4) |
402 			(cpu & 0x3));
403 	}
404 
405 	target = (cpu << 14) | 0x70;
406 again:
407 	/* Ok, this is the real Spitfire Errata #54.
408 	 * One must read back from a UDB internal register
409 	 * after writes to the UDB interrupt dispatch, but
410 	 * before the membar Sync for that write.
411 	 * So we use the high UDB control register (ASI 0x7f,
412 	 * ADDR 0x20) for the dummy read. -DaveM
413 	 */
414 	tmp = 0x40;
415 	__asm__ __volatile__(
416 	"wrpr	%1, %2, %%pstate\n\t"
417 	"stxa	%4, [%0] %3\n\t"
418 	"stxa	%5, [%0+%8] %3\n\t"
419 	"add	%0, %8, %0\n\t"
420 	"stxa	%6, [%0+%8] %3\n\t"
421 	"membar	#Sync\n\t"
422 	"stxa	%%g0, [%7] %3\n\t"
423 	"membar	#Sync\n\t"
424 	"mov	0x20, %%g1\n\t"
425 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
426 	"membar	#Sync"
427 	: "=r" (tmp)
428 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
429 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
430 	  "r" (0x10), "0" (tmp)
431         : "g1");
432 
433 	/* NOTE: PSTATE_IE is still clear. */
434 	stuck = 100000;
435 	do {
436 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
437 			: "=r" (result)
438 			: "i" (ASI_INTR_DISPATCH_STAT));
439 		if (result == 0) {
440 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
441 					     : : "r" (pstate));
442 			return;
443 		}
444 		stuck -= 1;
445 		if (stuck == 0)
446 			break;
447 	} while (result & 0x1);
448 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
449 			     : : "r" (pstate));
450 	if (stuck == 0) {
451 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
452 		       smp_processor_id(), result);
453 	} else {
454 		udelay(2);
455 		goto again;
456 	}
457 }
458 
459 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
460 {
461 	u64 *mondo, data0, data1, data2;
462 	u16 *cpu_list;
463 	u64 pstate;
464 	int i;
465 
466 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
467 	cpu_list = __va(tb->cpu_list_pa);
468 	mondo = __va(tb->cpu_mondo_block_pa);
469 	data0 = mondo[0];
470 	data1 = mondo[1];
471 	data2 = mondo[2];
472 	for (i = 0; i < cnt; i++)
473 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
474 }
475 
476 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
477  * packet, but we have no use for that.  However we do take advantage of
478  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
479  */
480 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
481 {
482 	int nack_busy_id, is_jbus, need_more;
483 	u64 *mondo, pstate, ver, busy_mask;
484 	u16 *cpu_list;
485 
486 	cpu_list = __va(tb->cpu_list_pa);
487 	mondo = __va(tb->cpu_mondo_block_pa);
488 
489 	/* Unfortunately, someone at Sun had the brilliant idea to make the
490 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
491 	 * derivative processor.
492 	 */
493 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
494 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
495 		   (ver >> 32) == __SERRANO_ID);
496 
497 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
498 
499 retry:
500 	need_more = 0;
501 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
502 			     : : "r" (pstate), "i" (PSTATE_IE));
503 
504 	/* Setup the dispatch data registers. */
505 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
506 			     "stxa	%1, [%4] %6\n\t"
507 			     "stxa	%2, [%5] %6\n\t"
508 			     "membar	#Sync\n\t"
509 			     : /* no outputs */
510 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
511 			       "r" (0x40), "r" (0x50), "r" (0x60),
512 			       "i" (ASI_INTR_W));
513 
514 	nack_busy_id = 0;
515 	busy_mask = 0;
516 	{
517 		int i;
518 
519 		for (i = 0; i < cnt; i++) {
520 			u64 target, nr;
521 
522 			nr = cpu_list[i];
523 			if (nr == 0xffff)
524 				continue;
525 
526 			target = (nr << 14) | 0x70;
527 			if (is_jbus) {
528 				busy_mask |= (0x1UL << (nr * 2));
529 			} else {
530 				target |= (nack_busy_id << 24);
531 				busy_mask |= (0x1UL <<
532 					      (nack_busy_id * 2));
533 			}
534 			__asm__ __volatile__(
535 				"stxa	%%g0, [%0] %1\n\t"
536 				"membar	#Sync\n\t"
537 				: /* no outputs */
538 				: "r" (target), "i" (ASI_INTR_W));
539 			nack_busy_id++;
540 			if (nack_busy_id == 32) {
541 				need_more = 1;
542 				break;
543 			}
544 		}
545 	}
546 
547 	/* Now, poll for completion. */
548 	{
549 		u64 dispatch_stat, nack_mask;
550 		long stuck;
551 
552 		stuck = 100000 * nack_busy_id;
553 		nack_mask = busy_mask << 1;
554 		do {
555 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
556 					     : "=r" (dispatch_stat)
557 					     : "i" (ASI_INTR_DISPATCH_STAT));
558 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
559 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
560 						     : : "r" (pstate));
561 				if (unlikely(need_more)) {
562 					int i, this_cnt = 0;
563 					for (i = 0; i < cnt; i++) {
564 						if (cpu_list[i] == 0xffff)
565 							continue;
566 						cpu_list[i] = 0xffff;
567 						this_cnt++;
568 						if (this_cnt == 32)
569 							break;
570 					}
571 					goto retry;
572 				}
573 				return;
574 			}
575 			if (!--stuck)
576 				break;
577 		} while (dispatch_stat & busy_mask);
578 
579 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
580 				     : : "r" (pstate));
581 
582 		if (dispatch_stat & busy_mask) {
583 			/* Busy bits will not clear, continue instead
584 			 * of freezing up on this cpu.
585 			 */
586 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
587 			       smp_processor_id(), dispatch_stat);
588 		} else {
589 			int i, this_busy_nack = 0;
590 
591 			/* Delay some random time with interrupts enabled
592 			 * to prevent deadlock.
593 			 */
594 			udelay(2 * nack_busy_id);
595 
596 			/* Clear out the mask bits for cpus which did not
597 			 * NACK us.
598 			 */
599 			for (i = 0; i < cnt; i++) {
600 				u64 check_mask, nr;
601 
602 				nr = cpu_list[i];
603 				if (nr == 0xffff)
604 					continue;
605 
606 				if (is_jbus)
607 					check_mask = (0x2UL << (2*nr));
608 				else
609 					check_mask = (0x2UL <<
610 						      this_busy_nack);
611 				if ((dispatch_stat & check_mask) == 0)
612 					cpu_list[i] = 0xffff;
613 				this_busy_nack += 2;
614 				if (this_busy_nack == 64)
615 					break;
616 			}
617 
618 			goto retry;
619 		}
620 	}
621 }
622 
623 /* Multi-cpu list version.  */
624 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
625 {
626 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
627 	unsigned long status;
628 	u16 *cpu_list;
629 
630 	this_cpu = smp_processor_id();
631 
632 	cpu_list = __va(tb->cpu_list_pa);
633 
634 	saw_cpu_error = 0;
635 	retries = 0;
636 	prev_sent = 0;
637 	do {
638 		int forward_progress, n_sent;
639 
640 		status = sun4v_cpu_mondo_send(cnt,
641 					      tb->cpu_list_pa,
642 					      tb->cpu_mondo_block_pa);
643 
644 		/* HV_EOK means all cpus received the xcall, we're done.  */
645 		if (likely(status == HV_EOK))
646 			break;
647 
648 		/* First, see if we made any forward progress.
649 		 *
650 		 * The hypervisor indicates successful sends by setting
651 		 * cpu list entries to the value 0xffff.
652 		 */
653 		n_sent = 0;
654 		for (i = 0; i < cnt; i++) {
655 			if (likely(cpu_list[i] == 0xffff))
656 				n_sent++;
657 		}
658 
659 		forward_progress = 0;
660 		if (n_sent > prev_sent)
661 			forward_progress = 1;
662 
663 		prev_sent = n_sent;
664 
665 		/* If we get a HV_ECPUERROR, then one or more of the cpus
666 		 * in the list are in error state.  Use the cpu_state()
667 		 * hypervisor call to find out which cpus are in error state.
668 		 */
669 		if (unlikely(status == HV_ECPUERROR)) {
670 			for (i = 0; i < cnt; i++) {
671 				long err;
672 				u16 cpu;
673 
674 				cpu = cpu_list[i];
675 				if (cpu == 0xffff)
676 					continue;
677 
678 				err = sun4v_cpu_state(cpu);
679 				if (err == HV_CPU_STATE_ERROR) {
680 					saw_cpu_error = (cpu + 1);
681 					cpu_list[i] = 0xffff;
682 				}
683 			}
684 		} else if (unlikely(status != HV_EWOULDBLOCK))
685 			goto fatal_mondo_error;
686 
687 		/* Don't bother rewriting the CPU list, just leave the
688 		 * 0xffff and non-0xffff entries in there and the
689 		 * hypervisor will do the right thing.
690 		 *
691 		 * Only advance timeout state if we didn't make any
692 		 * forward progress.
693 		 */
694 		if (unlikely(!forward_progress)) {
695 			if (unlikely(++retries > 10000))
696 				goto fatal_mondo_timeout;
697 
698 			/* Delay a little bit to let other cpus catch up
699 			 * on their cpu mondo queue work.
700 			 */
701 			udelay(2 * cnt);
702 		}
703 	} while (1);
704 
705 	if (unlikely(saw_cpu_error))
706 		goto fatal_mondo_cpu_error;
707 
708 	return;
709 
710 fatal_mondo_cpu_error:
711 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
712 	       "(including %d) were in error state\n",
713 	       this_cpu, saw_cpu_error - 1);
714 	return;
715 
716 fatal_mondo_timeout:
717 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
718 	       " progress after %d retries.\n",
719 	       this_cpu, retries);
720 	goto dump_cpu_list_and_out;
721 
722 fatal_mondo_error:
723 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
724 	       this_cpu, status);
725 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
726 	       "mondo_block_pa(%lx)\n",
727 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
728 
729 dump_cpu_list_and_out:
730 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
731 	for (i = 0; i < cnt; i++)
732 		printk("%u ", cpu_list[i]);
733 	printk("]\n");
734 }
735 
736 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
737 
738 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
739 {
740 	struct trap_per_cpu *tb;
741 	int this_cpu, i, cnt;
742 	unsigned long flags;
743 	u16 *cpu_list;
744 	u64 *mondo;
745 
746 	/* We have to do this whole thing with interrupts fully disabled.
747 	 * Otherwise if we send an xcall from interrupt context it will
748 	 * corrupt both our mondo block and cpu list state.
749 	 *
750 	 * One consequence of this is that we cannot use timeout mechanisms
751 	 * that depend upon interrupts being delivered locally.  So, for
752 	 * example, we cannot sample jiffies and expect it to advance.
753 	 *
754 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
755 	 */
756 	local_irq_save(flags);
757 
758 	this_cpu = smp_processor_id();
759 	tb = &trap_block[this_cpu];
760 
761 	mondo = __va(tb->cpu_mondo_block_pa);
762 	mondo[0] = data0;
763 	mondo[1] = data1;
764 	mondo[2] = data2;
765 	wmb();
766 
767 	cpu_list = __va(tb->cpu_list_pa);
768 
769 	/* Setup the initial cpu list.  */
770 	cnt = 0;
771 	for_each_cpu(i, mask) {
772 		if (i == this_cpu || !cpu_online(i))
773 			continue;
774 		cpu_list[cnt++] = i;
775 	}
776 
777 	if (cnt)
778 		xcall_deliver_impl(tb, cnt);
779 
780 	local_irq_restore(flags);
781 }
782 
783 /* Send cross call to all processors mentioned in MASK_P
784  * except self.  Really, there are only two cases currently,
785  * "cpu_online_mask" and "mm_cpumask(mm)".
786  */
787 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
788 {
789 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
790 
791 	xcall_deliver(data0, data1, data2, mask);
792 }
793 
794 /* Send cross call to all processors except self. */
795 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
796 {
797 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
798 }
799 
800 extern unsigned long xcall_sync_tick;
801 
802 static void smp_start_sync_tick_client(int cpu)
803 {
804 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
805 		      cpumask_of(cpu));
806 }
807 
808 extern unsigned long xcall_call_function;
809 
810 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
811 {
812 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
813 }
814 
815 extern unsigned long xcall_call_function_single;
816 
817 void arch_send_call_function_single_ipi(int cpu)
818 {
819 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
820 		      cpumask_of(cpu));
821 }
822 
823 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
824 {
825 	clear_softint(1 << irq);
826 	generic_smp_call_function_interrupt();
827 }
828 
829 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
830 {
831 	clear_softint(1 << irq);
832 	generic_smp_call_function_single_interrupt();
833 }
834 
835 static void tsb_sync(void *info)
836 {
837 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
838 	struct mm_struct *mm = info;
839 
840 	/* It is not valid to test "current->active_mm == mm" here.
841 	 *
842 	 * The value of "current" is not changed atomically with
843 	 * switch_mm().  But that's OK, we just need to check the
844 	 * current cpu's trap block PGD physical address.
845 	 */
846 	if (tp->pgd_paddr == __pa(mm->pgd))
847 		tsb_context_switch(mm);
848 }
849 
850 void smp_tsb_sync(struct mm_struct *mm)
851 {
852 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
853 }
854 
855 extern unsigned long xcall_flush_tlb_mm;
856 extern unsigned long xcall_flush_tlb_page;
857 extern unsigned long xcall_flush_tlb_kernel_range;
858 extern unsigned long xcall_fetch_glob_regs;
859 extern unsigned long xcall_fetch_glob_pmu;
860 extern unsigned long xcall_fetch_glob_pmu_n4;
861 extern unsigned long xcall_receive_signal;
862 extern unsigned long xcall_new_mmu_context_version;
863 #ifdef CONFIG_KGDB
864 extern unsigned long xcall_kgdb_capture;
865 #endif
866 
867 #ifdef DCACHE_ALIASING_POSSIBLE
868 extern unsigned long xcall_flush_dcache_page_cheetah;
869 #endif
870 extern unsigned long xcall_flush_dcache_page_spitfire;
871 
872 #ifdef CONFIG_DEBUG_DCFLUSH
873 extern atomic_t dcpage_flushes;
874 extern atomic_t dcpage_flushes_xcall;
875 #endif
876 
877 static inline void __local_flush_dcache_page(struct page *page)
878 {
879 #ifdef DCACHE_ALIASING_POSSIBLE
880 	__flush_dcache_page(page_address(page),
881 			    ((tlb_type == spitfire) &&
882 			     page_mapping(page) != NULL));
883 #else
884 	if (page_mapping(page) != NULL &&
885 	    tlb_type == spitfire)
886 		__flush_icache_page(__pa(page_address(page)));
887 #endif
888 }
889 
890 void smp_flush_dcache_page_impl(struct page *page, int cpu)
891 {
892 	int this_cpu;
893 
894 	if (tlb_type == hypervisor)
895 		return;
896 
897 #ifdef CONFIG_DEBUG_DCFLUSH
898 	atomic_inc(&dcpage_flushes);
899 #endif
900 
901 	this_cpu = get_cpu();
902 
903 	if (cpu == this_cpu) {
904 		__local_flush_dcache_page(page);
905 	} else if (cpu_online(cpu)) {
906 		void *pg_addr = page_address(page);
907 		u64 data0 = 0;
908 
909 		if (tlb_type == spitfire) {
910 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
911 			if (page_mapping(page) != NULL)
912 				data0 |= ((u64)1 << 32);
913 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
914 #ifdef DCACHE_ALIASING_POSSIBLE
915 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
916 #endif
917 		}
918 		if (data0) {
919 			xcall_deliver(data0, __pa(pg_addr),
920 				      (u64) pg_addr, cpumask_of(cpu));
921 #ifdef CONFIG_DEBUG_DCFLUSH
922 			atomic_inc(&dcpage_flushes_xcall);
923 #endif
924 		}
925 	}
926 
927 	put_cpu();
928 }
929 
930 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
931 {
932 	void *pg_addr;
933 	u64 data0;
934 
935 	if (tlb_type == hypervisor)
936 		return;
937 
938 	preempt_disable();
939 
940 #ifdef CONFIG_DEBUG_DCFLUSH
941 	atomic_inc(&dcpage_flushes);
942 #endif
943 	data0 = 0;
944 	pg_addr = page_address(page);
945 	if (tlb_type == spitfire) {
946 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947 		if (page_mapping(page) != NULL)
948 			data0 |= ((u64)1 << 32);
949 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
952 #endif
953 	}
954 	if (data0) {
955 		xcall_deliver(data0, __pa(pg_addr),
956 			      (u64) pg_addr, cpu_online_mask);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958 		atomic_inc(&dcpage_flushes_xcall);
959 #endif
960 	}
961 	__local_flush_dcache_page(page);
962 
963 	preempt_enable();
964 }
965 
966 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
967 {
968 	struct mm_struct *mm;
969 	unsigned long flags;
970 
971 	clear_softint(1 << irq);
972 
973 	/* See if we need to allocate a new TLB context because
974 	 * the version of the one we are using is now out of date.
975 	 */
976 	mm = current->active_mm;
977 	if (unlikely(!mm || (mm == &init_mm)))
978 		return;
979 
980 	spin_lock_irqsave(&mm->context.lock, flags);
981 
982 	if (unlikely(!CTX_VALID(mm->context)))
983 		get_new_mmu_context(mm);
984 
985 	spin_unlock_irqrestore(&mm->context.lock, flags);
986 
987 	load_secondary_context(mm);
988 	__flush_tlb_mm(CTX_HWBITS(mm->context),
989 		       SECONDARY_CONTEXT);
990 }
991 
992 void smp_new_mmu_context_version(void)
993 {
994 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
995 }
996 
997 #ifdef CONFIG_KGDB
998 void kgdb_roundup_cpus(unsigned long flags)
999 {
1000 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001 }
1002 #endif
1003 
1004 void smp_fetch_global_regs(void)
1005 {
1006 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007 }
1008 
1009 void smp_fetch_global_pmu(void)
1010 {
1011 	if (tlb_type == hypervisor &&
1012 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014 	else
1015 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1016 }
1017 
1018 /* We know that the window frames of the user have been flushed
1019  * to the stack before we get here because all callers of us
1020  * are flush_tlb_*() routines, and these run after flush_cache_*()
1021  * which performs the flushw.
1022  *
1023  * The SMP TLB coherency scheme we use works as follows:
1024  *
1025  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026  *    space has (potentially) executed on, this is the heuristic
1027  *    we use to avoid doing cross calls.
1028  *
1029  *    Also, for flushing from kswapd and also for clones, we
1030  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1031  *
1032  * 2) TLB context numbers are shared globally across all processors
1033  *    in the system, this allows us to play several games to avoid
1034  *    cross calls.
1035  *
1036  *    One invariant is that when a cpu switches to a process, and
1037  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1038  *    current cpu's bit set, that tlb context is flushed locally.
1039  *
1040  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1041  *    cross calls when we want to flush the currently running process's
1042  *    tlb state.  This is done by clearing all cpu bits except the current
1043  *    processor's in current->mm->cpu_vm_mask and performing the
1044  *    flush locally only.  This will force any subsequent cpus which run
1045  *    this task to flush the context from the local tlb if the process
1046  *    migrates to another cpu (again).
1047  *
1048  * 3) For shared address spaces (threads) and swapping we bite the
1049  *    bullet for most cases and perform the cross call (but only to
1050  *    the cpus listed in cpu_vm_mask).
1051  *
1052  *    The performance gain from "optimizing" away the cross call for threads is
1053  *    questionable (in theory the big win for threads is the massive sharing of
1054  *    address space state across processors).
1055  */
1056 
1057 /* This currently is only used by the hugetlb arch pre-fault
1058  * hook on UltraSPARC-III+ and later when changing the pagesize
1059  * bits of the context register for an address space.
1060  */
1061 void smp_flush_tlb_mm(struct mm_struct *mm)
1062 {
1063 	u32 ctx = CTX_HWBITS(mm->context);
1064 	int cpu = get_cpu();
1065 
1066 	if (atomic_read(&mm->mm_users) == 1) {
1067 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068 		goto local_flush_and_out;
1069 	}
1070 
1071 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1072 			      ctx, 0, 0,
1073 			      mm_cpumask(mm));
1074 
1075 local_flush_and_out:
1076 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1077 
1078 	put_cpu();
1079 }
1080 
1081 struct tlb_pending_info {
1082 	unsigned long ctx;
1083 	unsigned long nr;
1084 	unsigned long *vaddrs;
1085 };
1086 
1087 static void tlb_pending_func(void *info)
1088 {
1089 	struct tlb_pending_info *t = info;
1090 
1091 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1092 }
1093 
1094 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095 {
1096 	u32 ctx = CTX_HWBITS(mm->context);
1097 	struct tlb_pending_info info;
1098 	int cpu = get_cpu();
1099 
1100 	info.ctx = ctx;
1101 	info.nr = nr;
1102 	info.vaddrs = vaddrs;
1103 
1104 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1106 	else
1107 		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108 				       &info, 1);
1109 
1110 	__flush_tlb_pending(ctx, nr, vaddrs);
1111 
1112 	put_cpu();
1113 }
1114 
1115 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116 {
1117 	unsigned long context = CTX_HWBITS(mm->context);
1118 	int cpu = get_cpu();
1119 
1120 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122 	else
1123 		smp_cross_call_masked(&xcall_flush_tlb_page,
1124 				      context, vaddr, 0,
1125 				      mm_cpumask(mm));
1126 	__flush_tlb_page(context, vaddr);
1127 
1128 	put_cpu();
1129 }
1130 
1131 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132 {
1133 	start &= PAGE_MASK;
1134 	end    = PAGE_ALIGN(end);
1135 	if (start != end) {
1136 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1137 			       0, start, end);
1138 
1139 		__flush_tlb_kernel_range(start, end);
1140 	}
1141 }
1142 
1143 /* CPU capture. */
1144 /* #define CAPTURE_DEBUG */
1145 extern unsigned long xcall_capture;
1146 
1147 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149 static unsigned long penguins_are_doing_time;
1150 
1151 void smp_capture(void)
1152 {
1153 	int result = atomic_add_ret(1, &smp_capture_depth);
1154 
1155 	if (result == 1) {
1156 		int ncpus = num_online_cpus();
1157 
1158 #ifdef CAPTURE_DEBUG
1159 		printk("CPU[%d]: Sending penguins to jail...",
1160 		       smp_processor_id());
1161 #endif
1162 		penguins_are_doing_time = 1;
1163 		atomic_inc(&smp_capture_registry);
1164 		smp_cross_call(&xcall_capture, 0, 0, 0);
1165 		while (atomic_read(&smp_capture_registry) != ncpus)
1166 			rmb();
1167 #ifdef CAPTURE_DEBUG
1168 		printk("done\n");
1169 #endif
1170 	}
1171 }
1172 
1173 void smp_release(void)
1174 {
1175 	if (atomic_dec_and_test(&smp_capture_depth)) {
1176 #ifdef CAPTURE_DEBUG
1177 		printk("CPU[%d]: Giving pardon to "
1178 		       "imprisoned penguins\n",
1179 		       smp_processor_id());
1180 #endif
1181 		penguins_are_doing_time = 0;
1182 		membar_safe("#StoreLoad");
1183 		atomic_dec(&smp_capture_registry);
1184 	}
1185 }
1186 
1187 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188  * set, so they can service tlb flush xcalls...
1189  */
1190 extern void prom_world(int);
1191 
1192 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1193 {
1194 	clear_softint(1 << irq);
1195 
1196 	preempt_disable();
1197 
1198 	__asm__ __volatile__("flushw");
1199 	prom_world(1);
1200 	atomic_inc(&smp_capture_registry);
1201 	membar_safe("#StoreLoad");
1202 	while (penguins_are_doing_time)
1203 		rmb();
1204 	atomic_dec(&smp_capture_registry);
1205 	prom_world(0);
1206 
1207 	preempt_enable();
1208 }
1209 
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 int setup_profiling_timer(unsigned int multiplier)
1212 {
1213 	return -EINVAL;
1214 }
1215 
1216 void __init smp_prepare_cpus(unsigned int max_cpus)
1217 {
1218 }
1219 
1220 void smp_prepare_boot_cpu(void)
1221 {
1222 }
1223 
1224 void __init smp_setup_processor_id(void)
1225 {
1226 	if (tlb_type == spitfire)
1227 		xcall_deliver_impl = spitfire_xcall_deliver;
1228 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229 		xcall_deliver_impl = cheetah_xcall_deliver;
1230 	else
1231 		xcall_deliver_impl = hypervisor_xcall_deliver;
1232 }
1233 
1234 void smp_fill_in_sib_core_maps(void)
1235 {
1236 	unsigned int i;
1237 
1238 	for_each_present_cpu(i) {
1239 		unsigned int j;
1240 
1241 		cpumask_clear(&cpu_core_map[i]);
1242 		if (cpu_data(i).core_id == 0) {
1243 			cpumask_set_cpu(i, &cpu_core_map[i]);
1244 			continue;
1245 		}
1246 
1247 		for_each_present_cpu(j) {
1248 			if (cpu_data(i).core_id ==
1249 			    cpu_data(j).core_id)
1250 				cpumask_set_cpu(j, &cpu_core_map[i]);
1251 		}
1252 	}
1253 
1254 	for_each_present_cpu(i) {
1255 		unsigned int j;
1256 
1257 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1258 		if (cpu_data(i).proc_id == -1) {
1259 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1260 			continue;
1261 		}
1262 
1263 		for_each_present_cpu(j) {
1264 			if (cpu_data(i).proc_id ==
1265 			    cpu_data(j).proc_id)
1266 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1267 		}
1268 	}
1269 }
1270 
1271 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1272 {
1273 	int ret = smp_boot_one_cpu(cpu, tidle);
1274 
1275 	if (!ret) {
1276 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1277 		while (!cpu_online(cpu))
1278 			mb();
1279 		if (!cpu_online(cpu)) {
1280 			ret = -ENODEV;
1281 		} else {
1282 			/* On SUN4V, writes to %tick and %stick are
1283 			 * not allowed.
1284 			 */
1285 			if (tlb_type != hypervisor)
1286 				smp_synchronize_one_tick(cpu);
1287 		}
1288 	}
1289 	return ret;
1290 }
1291 
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 void cpu_play_dead(void)
1294 {
1295 	int cpu = smp_processor_id();
1296 	unsigned long pstate;
1297 
1298 	idle_task_exit();
1299 
1300 	if (tlb_type == hypervisor) {
1301 		struct trap_per_cpu *tb = &trap_block[cpu];
1302 
1303 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1304 				tb->cpu_mondo_pa, 0);
1305 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1306 				tb->dev_mondo_pa, 0);
1307 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1308 				tb->resum_mondo_pa, 0);
1309 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1310 				tb->nonresum_mondo_pa, 0);
1311 	}
1312 
1313 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1314 	membar_safe("#Sync");
1315 
1316 	local_irq_disable();
1317 
1318 	__asm__ __volatile__(
1319 		"rdpr	%%pstate, %0\n\t"
1320 		"wrpr	%0, %1, %%pstate"
1321 		: "=r" (pstate)
1322 		: "i" (PSTATE_IE));
1323 
1324 	while (1)
1325 		barrier();
1326 }
1327 
1328 int __cpu_disable(void)
1329 {
1330 	int cpu = smp_processor_id();
1331 	cpuinfo_sparc *c;
1332 	int i;
1333 
1334 	for_each_cpu(i, &cpu_core_map[cpu])
1335 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1336 	cpumask_clear(&cpu_core_map[cpu]);
1337 
1338 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1339 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1340 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1341 
1342 	c = &cpu_data(cpu);
1343 
1344 	c->core_id = 0;
1345 	c->proc_id = -1;
1346 
1347 	smp_wmb();
1348 
1349 	/* Make sure no interrupts point to this cpu.  */
1350 	fixup_irqs();
1351 
1352 	local_irq_enable();
1353 	mdelay(1);
1354 	local_irq_disable();
1355 
1356 	set_cpu_online(cpu, false);
1357 
1358 	cpu_map_rebuild();
1359 
1360 	return 0;
1361 }
1362 
1363 void __cpu_die(unsigned int cpu)
1364 {
1365 	int i;
1366 
1367 	for (i = 0; i < 100; i++) {
1368 		smp_rmb();
1369 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1370 			break;
1371 		msleep(100);
1372 	}
1373 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1374 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1375 	} else {
1376 #if defined(CONFIG_SUN_LDOMS)
1377 		unsigned long hv_err;
1378 		int limit = 100;
1379 
1380 		do {
1381 			hv_err = sun4v_cpu_stop(cpu);
1382 			if (hv_err == HV_EOK) {
1383 				set_cpu_present(cpu, false);
1384 				break;
1385 			}
1386 		} while (--limit > 0);
1387 		if (limit <= 0) {
1388 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1389 			       hv_err);
1390 		}
1391 #endif
1392 	}
1393 }
1394 #endif
1395 
1396 void __init smp_cpus_done(unsigned int max_cpus)
1397 {
1398 	pcr_arch_init();
1399 }
1400 
1401 void smp_send_reschedule(int cpu)
1402 {
1403 	if (cpu == smp_processor_id()) {
1404 		WARN_ON_ONCE(preemptible());
1405 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1406 	} else {
1407 		xcall_deliver((u64) &xcall_receive_signal,
1408 			      0, 0, cpumask_of(cpu));
1409 	}
1410 }
1411 
1412 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1413 {
1414 	clear_softint(1 << irq);
1415 	scheduler_ipi();
1416 }
1417 
1418 /* This is a nop because we capture all other cpus
1419  * anyways when making the PROM active.
1420  */
1421 void smp_send_stop(void)
1422 {
1423 }
1424 
1425 /**
1426  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1427  * @cpu: cpu to allocate for
1428  * @size: size allocation in bytes
1429  * @align: alignment
1430  *
1431  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1432  * does the right thing for NUMA regardless of the current
1433  * configuration.
1434  *
1435  * RETURNS:
1436  * Pointer to the allocated area on success, NULL on failure.
1437  */
1438 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1439 					size_t align)
1440 {
1441 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1442 #ifdef CONFIG_NEED_MULTIPLE_NODES
1443 	int node = cpu_to_node(cpu);
1444 	void *ptr;
1445 
1446 	if (!node_online(node) || !NODE_DATA(node)) {
1447 		ptr = __alloc_bootmem(size, align, goal);
1448 		pr_info("cpu %d has no node %d or node-local memory\n",
1449 			cpu, node);
1450 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1451 			 cpu, size, __pa(ptr));
1452 	} else {
1453 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1454 					   size, align, goal);
1455 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1456 			 "%016lx\n", cpu, size, node, __pa(ptr));
1457 	}
1458 	return ptr;
1459 #else
1460 	return __alloc_bootmem(size, align, goal);
1461 #endif
1462 }
1463 
1464 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1465 {
1466 	free_bootmem(__pa(ptr), size);
1467 }
1468 
1469 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1470 {
1471 	if (cpu_to_node(from) == cpu_to_node(to))
1472 		return LOCAL_DISTANCE;
1473 	else
1474 		return REMOTE_DISTANCE;
1475 }
1476 
1477 static void __init pcpu_populate_pte(unsigned long addr)
1478 {
1479 	pgd_t *pgd = pgd_offset_k(addr);
1480 	pud_t *pud;
1481 	pmd_t *pmd;
1482 
1483 	pud = pud_offset(pgd, addr);
1484 	if (pud_none(*pud)) {
1485 		pmd_t *new;
1486 
1487 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1488 		pud_populate(&init_mm, pud, new);
1489 	}
1490 
1491 	pmd = pmd_offset(pud, addr);
1492 	if (!pmd_present(*pmd)) {
1493 		pte_t *new;
1494 
1495 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1496 		pmd_populate_kernel(&init_mm, pmd, new);
1497 	}
1498 }
1499 
1500 void __init setup_per_cpu_areas(void)
1501 {
1502 	unsigned long delta;
1503 	unsigned int cpu;
1504 	int rc = -EINVAL;
1505 
1506 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1507 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1508 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1509 					    pcpu_cpu_distance,
1510 					    pcpu_alloc_bootmem,
1511 					    pcpu_free_bootmem);
1512 		if (rc)
1513 			pr_warning("PERCPU: %s allocator failed (%d), "
1514 				   "falling back to page size\n",
1515 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1516 	}
1517 	if (rc < 0)
1518 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1519 					   pcpu_alloc_bootmem,
1520 					   pcpu_free_bootmem,
1521 					   pcpu_populate_pte);
1522 	if (rc < 0)
1523 		panic("cannot initialize percpu area (err=%d)", rc);
1524 
1525 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1526 	for_each_possible_cpu(cpu)
1527 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1528 
1529 	/* Setup %g5 for the boot cpu.  */
1530 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1531 
1532 	of_fill_in_cpu_data();
1533 	if (tlb_type == hypervisor)
1534 		mdesc_fill_in_cpu_data(cpu_all_mask);
1535 }
1536