1 /* smp.c: Sparc64 SMP support. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 */ 5 6 #include <linux/export.h> 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/pagemap.h> 11 #include <linux/threads.h> 12 #include <linux/smp.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/delay.h> 16 #include <linux/init.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/cache.h> 21 #include <linux/jiffies.h> 22 #include <linux/profile.h> 23 #include <linux/bootmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ftrace.h> 26 #include <linux/cpu.h> 27 #include <linux/slab.h> 28 29 #include <asm/head.h> 30 #include <asm/ptrace.h> 31 #include <linux/atomic.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mmu_context.h> 34 #include <asm/cpudata.h> 35 #include <asm/hvtramp.h> 36 #include <asm/io.h> 37 #include <asm/timer.h> 38 39 #include <asm/irq.h> 40 #include <asm/irq_regs.h> 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/oplib.h> 44 #include <asm/uaccess.h> 45 #include <asm/starfire.h> 46 #include <asm/tlb.h> 47 #include <asm/sections.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/ldc.h> 51 #include <asm/hypervisor.h> 52 #include <asm/pcr.h> 53 54 #include "cpumap.h" 55 56 int sparc64_multi_core __read_mostly; 57 58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; 59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly = 60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; 61 62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 63 EXPORT_SYMBOL(cpu_core_map); 64 65 static cpumask_t smp_commenced_mask; 66 67 void smp_info(struct seq_file *m) 68 { 69 int i; 70 71 seq_printf(m, "State:\n"); 72 for_each_online_cpu(i) 73 seq_printf(m, "CPU%d:\t\tonline\n", i); 74 } 75 76 void smp_bogo(struct seq_file *m) 77 { 78 int i; 79 80 for_each_online_cpu(i) 81 seq_printf(m, 82 "Cpu%dClkTck\t: %016lx\n", 83 i, cpu_data(i).clock_tick); 84 } 85 86 extern void setup_sparc64_timer(void); 87 88 static volatile unsigned long callin_flag = 0; 89 90 void smp_callin(void) 91 { 92 int cpuid = hard_smp_processor_id(); 93 94 __local_per_cpu_offset = __per_cpu_offset(cpuid); 95 96 if (tlb_type == hypervisor) 97 sun4v_ktsb_register(); 98 99 __flush_tlb_all(); 100 101 setup_sparc64_timer(); 102 103 if (cheetah_pcache_forced_on) 104 cheetah_enable_pcache(); 105 106 callin_flag = 1; 107 __asm__ __volatile__("membar #Sync\n\t" 108 "flush %%g6" : : : "memory"); 109 110 /* Clear this or we will die instantly when we 111 * schedule back to this idler... 112 */ 113 current_thread_info()->new_child = 0; 114 115 /* Attach to the address space of init_task. */ 116 atomic_inc(&init_mm.mm_count); 117 current->active_mm = &init_mm; 118 119 /* inform the notifiers about the new cpu */ 120 notify_cpu_starting(cpuid); 121 122 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) 123 rmb(); 124 125 set_cpu_online(cpuid, true); 126 local_irq_enable(); 127 128 /* idle thread is expected to have preempt disabled */ 129 preempt_disable(); 130 131 cpu_startup_entry(CPUHP_ONLINE); 132 } 133 134 void cpu_panic(void) 135 { 136 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); 137 panic("SMP bolixed\n"); 138 } 139 140 /* This tick register synchronization scheme is taken entirely from 141 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. 142 * 143 * The only change I've made is to rework it so that the master 144 * initiates the synchonization instead of the slave. -DaveM 145 */ 146 147 #define MASTER 0 148 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) 149 150 #define NUM_ROUNDS 64 /* magic value */ 151 #define NUM_ITERS 5 /* likewise */ 152 153 static DEFINE_SPINLOCK(itc_sync_lock); 154 static unsigned long go[SLAVE + 1]; 155 156 #define DEBUG_TICK_SYNC 0 157 158 static inline long get_delta (long *rt, long *master) 159 { 160 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 161 unsigned long tcenter, t0, t1, tm; 162 unsigned long i; 163 164 for (i = 0; i < NUM_ITERS; i++) { 165 t0 = tick_ops->get_tick(); 166 go[MASTER] = 1; 167 membar_safe("#StoreLoad"); 168 while (!(tm = go[SLAVE])) 169 rmb(); 170 go[SLAVE] = 0; 171 wmb(); 172 t1 = tick_ops->get_tick(); 173 174 if (t1 - t0 < best_t1 - best_t0) 175 best_t0 = t0, best_t1 = t1, best_tm = tm; 176 } 177 178 *rt = best_t1 - best_t0; 179 *master = best_tm - best_t0; 180 181 /* average best_t0 and best_t1 without overflow: */ 182 tcenter = (best_t0/2 + best_t1/2); 183 if (best_t0 % 2 + best_t1 % 2 == 2) 184 tcenter++; 185 return tcenter - best_tm; 186 } 187 188 void smp_synchronize_tick_client(void) 189 { 190 long i, delta, adj, adjust_latency = 0, done = 0; 191 unsigned long flags, rt, master_time_stamp; 192 #if DEBUG_TICK_SYNC 193 struct { 194 long rt; /* roundtrip time */ 195 long master; /* master's timestamp */ 196 long diff; /* difference between midpoint and master's timestamp */ 197 long lat; /* estimate of itc adjustment latency */ 198 } t[NUM_ROUNDS]; 199 #endif 200 201 go[MASTER] = 1; 202 203 while (go[MASTER]) 204 rmb(); 205 206 local_irq_save(flags); 207 { 208 for (i = 0; i < NUM_ROUNDS; i++) { 209 delta = get_delta(&rt, &master_time_stamp); 210 if (delta == 0) 211 done = 1; /* let's lock on to this... */ 212 213 if (!done) { 214 if (i > 0) { 215 adjust_latency += -delta; 216 adj = -delta + adjust_latency/4; 217 } else 218 adj = -delta; 219 220 tick_ops->add_tick(adj); 221 } 222 #if DEBUG_TICK_SYNC 223 t[i].rt = rt; 224 t[i].master = master_time_stamp; 225 t[i].diff = delta; 226 t[i].lat = adjust_latency/4; 227 #endif 228 } 229 } 230 local_irq_restore(flags); 231 232 #if DEBUG_TICK_SYNC 233 for (i = 0; i < NUM_ROUNDS; i++) 234 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 235 t[i].rt, t[i].master, t[i].diff, t[i].lat); 236 #endif 237 238 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " 239 "(last diff %ld cycles, maxerr %lu cycles)\n", 240 smp_processor_id(), delta, rt); 241 } 242 243 static void smp_start_sync_tick_client(int cpu); 244 245 static void smp_synchronize_one_tick(int cpu) 246 { 247 unsigned long flags, i; 248 249 go[MASTER] = 0; 250 251 smp_start_sync_tick_client(cpu); 252 253 /* wait for client to be ready */ 254 while (!go[MASTER]) 255 rmb(); 256 257 /* now let the client proceed into his loop */ 258 go[MASTER] = 0; 259 membar_safe("#StoreLoad"); 260 261 spin_lock_irqsave(&itc_sync_lock, flags); 262 { 263 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { 264 while (!go[MASTER]) 265 rmb(); 266 go[MASTER] = 0; 267 wmb(); 268 go[SLAVE] = tick_ops->get_tick(); 269 membar_safe("#StoreLoad"); 270 } 271 } 272 spin_unlock_irqrestore(&itc_sync_lock, flags); 273 } 274 275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 276 /* XXX Put this in some common place. XXX */ 277 static unsigned long kimage_addr_to_ra(void *p) 278 { 279 unsigned long val = (unsigned long) p; 280 281 return kern_base + (val - KERNBASE); 282 } 283 284 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, 285 void **descrp) 286 { 287 extern unsigned long sparc64_ttable_tl0; 288 extern unsigned long kern_locked_tte_data; 289 struct hvtramp_descr *hdesc; 290 unsigned long trampoline_ra; 291 struct trap_per_cpu *tb; 292 u64 tte_vaddr, tte_data; 293 unsigned long hv_err; 294 int i; 295 296 hdesc = kzalloc(sizeof(*hdesc) + 297 (sizeof(struct hvtramp_mapping) * 298 num_kernel_image_mappings - 1), 299 GFP_KERNEL); 300 if (!hdesc) { 301 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " 302 "hvtramp_descr.\n"); 303 return; 304 } 305 *descrp = hdesc; 306 307 hdesc->cpu = cpu; 308 hdesc->num_mappings = num_kernel_image_mappings; 309 310 tb = &trap_block[cpu]; 311 312 hdesc->fault_info_va = (unsigned long) &tb->fault_info; 313 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); 314 315 hdesc->thread_reg = thread_reg; 316 317 tte_vaddr = (unsigned long) KERNBASE; 318 tte_data = kern_locked_tte_data; 319 320 for (i = 0; i < hdesc->num_mappings; i++) { 321 hdesc->maps[i].vaddr = tte_vaddr; 322 hdesc->maps[i].tte = tte_data; 323 tte_vaddr += 0x400000; 324 tte_data += 0x400000; 325 } 326 327 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); 328 329 hv_err = sun4v_cpu_start(cpu, trampoline_ra, 330 kimage_addr_to_ra(&sparc64_ttable_tl0), 331 __pa(hdesc)); 332 if (hv_err) 333 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " 334 "gives error %lu\n", hv_err); 335 } 336 #endif 337 338 extern unsigned long sparc64_cpu_startup; 339 340 /* The OBP cpu startup callback truncates the 3rd arg cookie to 341 * 32-bits (I think) so to be safe we have it read the pointer 342 * contained here so we work on >4GB machines. -DaveM 343 */ 344 static struct thread_info *cpu_new_thread = NULL; 345 346 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle) 347 { 348 unsigned long entry = 349 (unsigned long)(&sparc64_cpu_startup); 350 unsigned long cookie = 351 (unsigned long)(&cpu_new_thread); 352 void *descr = NULL; 353 int timeout, ret; 354 355 callin_flag = 0; 356 cpu_new_thread = task_thread_info(idle); 357 358 if (tlb_type == hypervisor) { 359 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 360 if (ldom_domaining_enabled) 361 ldom_startcpu_cpuid(cpu, 362 (unsigned long) cpu_new_thread, 363 &descr); 364 else 365 #endif 366 prom_startcpu_cpuid(cpu, entry, cookie); 367 } else { 368 struct device_node *dp = of_find_node_by_cpuid(cpu); 369 370 prom_startcpu(dp->phandle, entry, cookie); 371 } 372 373 for (timeout = 0; timeout < 50000; timeout++) { 374 if (callin_flag) 375 break; 376 udelay(100); 377 } 378 379 if (callin_flag) { 380 ret = 0; 381 } else { 382 printk("Processor %d is stuck.\n", cpu); 383 ret = -ENODEV; 384 } 385 cpu_new_thread = NULL; 386 387 kfree(descr); 388 389 return ret; 390 } 391 392 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) 393 { 394 u64 result, target; 395 int stuck, tmp; 396 397 if (this_is_starfire) { 398 /* map to real upaid */ 399 cpu = (((cpu & 0x3c) << 1) | 400 ((cpu & 0x40) >> 4) | 401 (cpu & 0x3)); 402 } 403 404 target = (cpu << 14) | 0x70; 405 again: 406 /* Ok, this is the real Spitfire Errata #54. 407 * One must read back from a UDB internal register 408 * after writes to the UDB interrupt dispatch, but 409 * before the membar Sync for that write. 410 * So we use the high UDB control register (ASI 0x7f, 411 * ADDR 0x20) for the dummy read. -DaveM 412 */ 413 tmp = 0x40; 414 __asm__ __volatile__( 415 "wrpr %1, %2, %%pstate\n\t" 416 "stxa %4, [%0] %3\n\t" 417 "stxa %5, [%0+%8] %3\n\t" 418 "add %0, %8, %0\n\t" 419 "stxa %6, [%0+%8] %3\n\t" 420 "membar #Sync\n\t" 421 "stxa %%g0, [%7] %3\n\t" 422 "membar #Sync\n\t" 423 "mov 0x20, %%g1\n\t" 424 "ldxa [%%g1] 0x7f, %%g0\n\t" 425 "membar #Sync" 426 : "=r" (tmp) 427 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), 428 "r" (data0), "r" (data1), "r" (data2), "r" (target), 429 "r" (0x10), "0" (tmp) 430 : "g1"); 431 432 /* NOTE: PSTATE_IE is still clear. */ 433 stuck = 100000; 434 do { 435 __asm__ __volatile__("ldxa [%%g0] %1, %0" 436 : "=r" (result) 437 : "i" (ASI_INTR_DISPATCH_STAT)); 438 if (result == 0) { 439 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 440 : : "r" (pstate)); 441 return; 442 } 443 stuck -= 1; 444 if (stuck == 0) 445 break; 446 } while (result & 0x1); 447 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 448 : : "r" (pstate)); 449 if (stuck == 0) { 450 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 451 smp_processor_id(), result); 452 } else { 453 udelay(2); 454 goto again; 455 } 456 } 457 458 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) 459 { 460 u64 *mondo, data0, data1, data2; 461 u16 *cpu_list; 462 u64 pstate; 463 int i; 464 465 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 466 cpu_list = __va(tb->cpu_list_pa); 467 mondo = __va(tb->cpu_mondo_block_pa); 468 data0 = mondo[0]; 469 data1 = mondo[1]; 470 data2 = mondo[2]; 471 for (i = 0; i < cnt; i++) 472 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); 473 } 474 475 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt 476 * packet, but we have no use for that. However we do take advantage of 477 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). 478 */ 479 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) 480 { 481 int nack_busy_id, is_jbus, need_more; 482 u64 *mondo, pstate, ver, busy_mask; 483 u16 *cpu_list; 484 485 cpu_list = __va(tb->cpu_list_pa); 486 mondo = __va(tb->cpu_mondo_block_pa); 487 488 /* Unfortunately, someone at Sun had the brilliant idea to make the 489 * busy/nack fields hard-coded by ITID number for this Ultra-III 490 * derivative processor. 491 */ 492 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 493 is_jbus = ((ver >> 32) == __JALAPENO_ID || 494 (ver >> 32) == __SERRANO_ID); 495 496 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 497 498 retry: 499 need_more = 0; 500 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" 501 : : "r" (pstate), "i" (PSTATE_IE)); 502 503 /* Setup the dispatch data registers. */ 504 __asm__ __volatile__("stxa %0, [%3] %6\n\t" 505 "stxa %1, [%4] %6\n\t" 506 "stxa %2, [%5] %6\n\t" 507 "membar #Sync\n\t" 508 : /* no outputs */ 509 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), 510 "r" (0x40), "r" (0x50), "r" (0x60), 511 "i" (ASI_INTR_W)); 512 513 nack_busy_id = 0; 514 busy_mask = 0; 515 { 516 int i; 517 518 for (i = 0; i < cnt; i++) { 519 u64 target, nr; 520 521 nr = cpu_list[i]; 522 if (nr == 0xffff) 523 continue; 524 525 target = (nr << 14) | 0x70; 526 if (is_jbus) { 527 busy_mask |= (0x1UL << (nr * 2)); 528 } else { 529 target |= (nack_busy_id << 24); 530 busy_mask |= (0x1UL << 531 (nack_busy_id * 2)); 532 } 533 __asm__ __volatile__( 534 "stxa %%g0, [%0] %1\n\t" 535 "membar #Sync\n\t" 536 : /* no outputs */ 537 : "r" (target), "i" (ASI_INTR_W)); 538 nack_busy_id++; 539 if (nack_busy_id == 32) { 540 need_more = 1; 541 break; 542 } 543 } 544 } 545 546 /* Now, poll for completion. */ 547 { 548 u64 dispatch_stat, nack_mask; 549 long stuck; 550 551 stuck = 100000 * nack_busy_id; 552 nack_mask = busy_mask << 1; 553 do { 554 __asm__ __volatile__("ldxa [%%g0] %1, %0" 555 : "=r" (dispatch_stat) 556 : "i" (ASI_INTR_DISPATCH_STAT)); 557 if (!(dispatch_stat & (busy_mask | nack_mask))) { 558 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 559 : : "r" (pstate)); 560 if (unlikely(need_more)) { 561 int i, this_cnt = 0; 562 for (i = 0; i < cnt; i++) { 563 if (cpu_list[i] == 0xffff) 564 continue; 565 cpu_list[i] = 0xffff; 566 this_cnt++; 567 if (this_cnt == 32) 568 break; 569 } 570 goto retry; 571 } 572 return; 573 } 574 if (!--stuck) 575 break; 576 } while (dispatch_stat & busy_mask); 577 578 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 579 : : "r" (pstate)); 580 581 if (dispatch_stat & busy_mask) { 582 /* Busy bits will not clear, continue instead 583 * of freezing up on this cpu. 584 */ 585 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 586 smp_processor_id(), dispatch_stat); 587 } else { 588 int i, this_busy_nack = 0; 589 590 /* Delay some random time with interrupts enabled 591 * to prevent deadlock. 592 */ 593 udelay(2 * nack_busy_id); 594 595 /* Clear out the mask bits for cpus which did not 596 * NACK us. 597 */ 598 for (i = 0; i < cnt; i++) { 599 u64 check_mask, nr; 600 601 nr = cpu_list[i]; 602 if (nr == 0xffff) 603 continue; 604 605 if (is_jbus) 606 check_mask = (0x2UL << (2*nr)); 607 else 608 check_mask = (0x2UL << 609 this_busy_nack); 610 if ((dispatch_stat & check_mask) == 0) 611 cpu_list[i] = 0xffff; 612 this_busy_nack += 2; 613 if (this_busy_nack == 64) 614 break; 615 } 616 617 goto retry; 618 } 619 } 620 } 621 622 /* Multi-cpu list version. */ 623 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) 624 { 625 int retries, this_cpu, prev_sent, i, saw_cpu_error; 626 unsigned long status; 627 u16 *cpu_list; 628 629 this_cpu = smp_processor_id(); 630 631 cpu_list = __va(tb->cpu_list_pa); 632 633 saw_cpu_error = 0; 634 retries = 0; 635 prev_sent = 0; 636 do { 637 int forward_progress, n_sent; 638 639 status = sun4v_cpu_mondo_send(cnt, 640 tb->cpu_list_pa, 641 tb->cpu_mondo_block_pa); 642 643 /* HV_EOK means all cpus received the xcall, we're done. */ 644 if (likely(status == HV_EOK)) 645 break; 646 647 /* First, see if we made any forward progress. 648 * 649 * The hypervisor indicates successful sends by setting 650 * cpu list entries to the value 0xffff. 651 */ 652 n_sent = 0; 653 for (i = 0; i < cnt; i++) { 654 if (likely(cpu_list[i] == 0xffff)) 655 n_sent++; 656 } 657 658 forward_progress = 0; 659 if (n_sent > prev_sent) 660 forward_progress = 1; 661 662 prev_sent = n_sent; 663 664 /* If we get a HV_ECPUERROR, then one or more of the cpus 665 * in the list are in error state. Use the cpu_state() 666 * hypervisor call to find out which cpus are in error state. 667 */ 668 if (unlikely(status == HV_ECPUERROR)) { 669 for (i = 0; i < cnt; i++) { 670 long err; 671 u16 cpu; 672 673 cpu = cpu_list[i]; 674 if (cpu == 0xffff) 675 continue; 676 677 err = sun4v_cpu_state(cpu); 678 if (err == HV_CPU_STATE_ERROR) { 679 saw_cpu_error = (cpu + 1); 680 cpu_list[i] = 0xffff; 681 } 682 } 683 } else if (unlikely(status != HV_EWOULDBLOCK)) 684 goto fatal_mondo_error; 685 686 /* Don't bother rewriting the CPU list, just leave the 687 * 0xffff and non-0xffff entries in there and the 688 * hypervisor will do the right thing. 689 * 690 * Only advance timeout state if we didn't make any 691 * forward progress. 692 */ 693 if (unlikely(!forward_progress)) { 694 if (unlikely(++retries > 10000)) 695 goto fatal_mondo_timeout; 696 697 /* Delay a little bit to let other cpus catch up 698 * on their cpu mondo queue work. 699 */ 700 udelay(2 * cnt); 701 } 702 } while (1); 703 704 if (unlikely(saw_cpu_error)) 705 goto fatal_mondo_cpu_error; 706 707 return; 708 709 fatal_mondo_cpu_error: 710 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " 711 "(including %d) were in error state\n", 712 this_cpu, saw_cpu_error - 1); 713 return; 714 715 fatal_mondo_timeout: 716 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " 717 " progress after %d retries.\n", 718 this_cpu, retries); 719 goto dump_cpu_list_and_out; 720 721 fatal_mondo_error: 722 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", 723 this_cpu, status); 724 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " 725 "mondo_block_pa(%lx)\n", 726 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); 727 728 dump_cpu_list_and_out: 729 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); 730 for (i = 0; i < cnt; i++) 731 printk("%u ", cpu_list[i]); 732 printk("]\n"); 733 } 734 735 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); 736 737 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) 738 { 739 struct trap_per_cpu *tb; 740 int this_cpu, i, cnt; 741 unsigned long flags; 742 u16 *cpu_list; 743 u64 *mondo; 744 745 /* We have to do this whole thing with interrupts fully disabled. 746 * Otherwise if we send an xcall from interrupt context it will 747 * corrupt both our mondo block and cpu list state. 748 * 749 * One consequence of this is that we cannot use timeout mechanisms 750 * that depend upon interrupts being delivered locally. So, for 751 * example, we cannot sample jiffies and expect it to advance. 752 * 753 * Fortunately, udelay() uses %stick/%tick so we can use that. 754 */ 755 local_irq_save(flags); 756 757 this_cpu = smp_processor_id(); 758 tb = &trap_block[this_cpu]; 759 760 mondo = __va(tb->cpu_mondo_block_pa); 761 mondo[0] = data0; 762 mondo[1] = data1; 763 mondo[2] = data2; 764 wmb(); 765 766 cpu_list = __va(tb->cpu_list_pa); 767 768 /* Setup the initial cpu list. */ 769 cnt = 0; 770 for_each_cpu(i, mask) { 771 if (i == this_cpu || !cpu_online(i)) 772 continue; 773 cpu_list[cnt++] = i; 774 } 775 776 if (cnt) 777 xcall_deliver_impl(tb, cnt); 778 779 local_irq_restore(flags); 780 } 781 782 /* Send cross call to all processors mentioned in MASK_P 783 * except self. Really, there are only two cases currently, 784 * "cpu_online_mask" and "mm_cpumask(mm)". 785 */ 786 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) 787 { 788 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); 789 790 xcall_deliver(data0, data1, data2, mask); 791 } 792 793 /* Send cross call to all processors except self. */ 794 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) 795 { 796 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask); 797 } 798 799 extern unsigned long xcall_sync_tick; 800 801 static void smp_start_sync_tick_client(int cpu) 802 { 803 xcall_deliver((u64) &xcall_sync_tick, 0, 0, 804 cpumask_of(cpu)); 805 } 806 807 extern unsigned long xcall_call_function; 808 809 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 810 { 811 xcall_deliver((u64) &xcall_call_function, 0, 0, mask); 812 } 813 814 extern unsigned long xcall_call_function_single; 815 816 void arch_send_call_function_single_ipi(int cpu) 817 { 818 xcall_deliver((u64) &xcall_call_function_single, 0, 0, 819 cpumask_of(cpu)); 820 } 821 822 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs) 823 { 824 clear_softint(1 << irq); 825 generic_smp_call_function_interrupt(); 826 } 827 828 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs) 829 { 830 clear_softint(1 << irq); 831 generic_smp_call_function_single_interrupt(); 832 } 833 834 static void tsb_sync(void *info) 835 { 836 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; 837 struct mm_struct *mm = info; 838 839 /* It is not valid to test "current->active_mm == mm" here. 840 * 841 * The value of "current" is not changed atomically with 842 * switch_mm(). But that's OK, we just need to check the 843 * current cpu's trap block PGD physical address. 844 */ 845 if (tp->pgd_paddr == __pa(mm->pgd)) 846 tsb_context_switch(mm); 847 } 848 849 void smp_tsb_sync(struct mm_struct *mm) 850 { 851 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1); 852 } 853 854 extern unsigned long xcall_flush_tlb_mm; 855 extern unsigned long xcall_flush_tlb_page; 856 extern unsigned long xcall_flush_tlb_kernel_range; 857 extern unsigned long xcall_fetch_glob_regs; 858 extern unsigned long xcall_fetch_glob_pmu; 859 extern unsigned long xcall_fetch_glob_pmu_n4; 860 extern unsigned long xcall_receive_signal; 861 extern unsigned long xcall_new_mmu_context_version; 862 #ifdef CONFIG_KGDB 863 extern unsigned long xcall_kgdb_capture; 864 #endif 865 866 #ifdef DCACHE_ALIASING_POSSIBLE 867 extern unsigned long xcall_flush_dcache_page_cheetah; 868 #endif 869 extern unsigned long xcall_flush_dcache_page_spitfire; 870 871 #ifdef CONFIG_DEBUG_DCFLUSH 872 extern atomic_t dcpage_flushes; 873 extern atomic_t dcpage_flushes_xcall; 874 #endif 875 876 static inline void __local_flush_dcache_page(struct page *page) 877 { 878 #ifdef DCACHE_ALIASING_POSSIBLE 879 __flush_dcache_page(page_address(page), 880 ((tlb_type == spitfire) && 881 page_mapping(page) != NULL)); 882 #else 883 if (page_mapping(page) != NULL && 884 tlb_type == spitfire) 885 __flush_icache_page(__pa(page_address(page))); 886 #endif 887 } 888 889 void smp_flush_dcache_page_impl(struct page *page, int cpu) 890 { 891 int this_cpu; 892 893 if (tlb_type == hypervisor) 894 return; 895 896 #ifdef CONFIG_DEBUG_DCFLUSH 897 atomic_inc(&dcpage_flushes); 898 #endif 899 900 this_cpu = get_cpu(); 901 902 if (cpu == this_cpu) { 903 __local_flush_dcache_page(page); 904 } else if (cpu_online(cpu)) { 905 void *pg_addr = page_address(page); 906 u64 data0 = 0; 907 908 if (tlb_type == spitfire) { 909 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 910 if (page_mapping(page) != NULL) 911 data0 |= ((u64)1 << 32); 912 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 913 #ifdef DCACHE_ALIASING_POSSIBLE 914 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 915 #endif 916 } 917 if (data0) { 918 xcall_deliver(data0, __pa(pg_addr), 919 (u64) pg_addr, cpumask_of(cpu)); 920 #ifdef CONFIG_DEBUG_DCFLUSH 921 atomic_inc(&dcpage_flushes_xcall); 922 #endif 923 } 924 } 925 926 put_cpu(); 927 } 928 929 void flush_dcache_page_all(struct mm_struct *mm, struct page *page) 930 { 931 void *pg_addr; 932 u64 data0; 933 934 if (tlb_type == hypervisor) 935 return; 936 937 preempt_disable(); 938 939 #ifdef CONFIG_DEBUG_DCFLUSH 940 atomic_inc(&dcpage_flushes); 941 #endif 942 data0 = 0; 943 pg_addr = page_address(page); 944 if (tlb_type == spitfire) { 945 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 946 if (page_mapping(page) != NULL) 947 data0 |= ((u64)1 << 32); 948 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 949 #ifdef DCACHE_ALIASING_POSSIBLE 950 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 951 #endif 952 } 953 if (data0) { 954 xcall_deliver(data0, __pa(pg_addr), 955 (u64) pg_addr, cpu_online_mask); 956 #ifdef CONFIG_DEBUG_DCFLUSH 957 atomic_inc(&dcpage_flushes_xcall); 958 #endif 959 } 960 __local_flush_dcache_page(page); 961 962 preempt_enable(); 963 } 964 965 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) 966 { 967 struct mm_struct *mm; 968 unsigned long flags; 969 970 clear_softint(1 << irq); 971 972 /* See if we need to allocate a new TLB context because 973 * the version of the one we are using is now out of date. 974 */ 975 mm = current->active_mm; 976 if (unlikely(!mm || (mm == &init_mm))) 977 return; 978 979 spin_lock_irqsave(&mm->context.lock, flags); 980 981 if (unlikely(!CTX_VALID(mm->context))) 982 get_new_mmu_context(mm); 983 984 spin_unlock_irqrestore(&mm->context.lock, flags); 985 986 load_secondary_context(mm); 987 __flush_tlb_mm(CTX_HWBITS(mm->context), 988 SECONDARY_CONTEXT); 989 } 990 991 void smp_new_mmu_context_version(void) 992 { 993 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); 994 } 995 996 #ifdef CONFIG_KGDB 997 void kgdb_roundup_cpus(unsigned long flags) 998 { 999 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); 1000 } 1001 #endif 1002 1003 void smp_fetch_global_regs(void) 1004 { 1005 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); 1006 } 1007 1008 void smp_fetch_global_pmu(void) 1009 { 1010 if (tlb_type == hypervisor && 1011 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 1012 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0); 1013 else 1014 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0); 1015 } 1016 1017 /* We know that the window frames of the user have been flushed 1018 * to the stack before we get here because all callers of us 1019 * are flush_tlb_*() routines, and these run after flush_cache_*() 1020 * which performs the flushw. 1021 * 1022 * The SMP TLB coherency scheme we use works as follows: 1023 * 1024 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address 1025 * space has (potentially) executed on, this is the heuristic 1026 * we use to avoid doing cross calls. 1027 * 1028 * Also, for flushing from kswapd and also for clones, we 1029 * use cpu_vm_mask as the list of cpus to make run the TLB. 1030 * 1031 * 2) TLB context numbers are shared globally across all processors 1032 * in the system, this allows us to play several games to avoid 1033 * cross calls. 1034 * 1035 * One invariant is that when a cpu switches to a process, and 1036 * that processes tsk->active_mm->cpu_vm_mask does not have the 1037 * current cpu's bit set, that tlb context is flushed locally. 1038 * 1039 * If the address space is non-shared (ie. mm->count == 1) we avoid 1040 * cross calls when we want to flush the currently running process's 1041 * tlb state. This is done by clearing all cpu bits except the current 1042 * processor's in current->mm->cpu_vm_mask and performing the 1043 * flush locally only. This will force any subsequent cpus which run 1044 * this task to flush the context from the local tlb if the process 1045 * migrates to another cpu (again). 1046 * 1047 * 3) For shared address spaces (threads) and swapping we bite the 1048 * bullet for most cases and perform the cross call (but only to 1049 * the cpus listed in cpu_vm_mask). 1050 * 1051 * The performance gain from "optimizing" away the cross call for threads is 1052 * questionable (in theory the big win for threads is the massive sharing of 1053 * address space state across processors). 1054 */ 1055 1056 /* This currently is only used by the hugetlb arch pre-fault 1057 * hook on UltraSPARC-III+ and later when changing the pagesize 1058 * bits of the context register for an address space. 1059 */ 1060 void smp_flush_tlb_mm(struct mm_struct *mm) 1061 { 1062 u32 ctx = CTX_HWBITS(mm->context); 1063 int cpu = get_cpu(); 1064 1065 if (atomic_read(&mm->mm_users) == 1) { 1066 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1067 goto local_flush_and_out; 1068 } 1069 1070 smp_cross_call_masked(&xcall_flush_tlb_mm, 1071 ctx, 0, 0, 1072 mm_cpumask(mm)); 1073 1074 local_flush_and_out: 1075 __flush_tlb_mm(ctx, SECONDARY_CONTEXT); 1076 1077 put_cpu(); 1078 } 1079 1080 struct tlb_pending_info { 1081 unsigned long ctx; 1082 unsigned long nr; 1083 unsigned long *vaddrs; 1084 }; 1085 1086 static void tlb_pending_func(void *info) 1087 { 1088 struct tlb_pending_info *t = info; 1089 1090 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs); 1091 } 1092 1093 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) 1094 { 1095 u32 ctx = CTX_HWBITS(mm->context); 1096 struct tlb_pending_info info; 1097 int cpu = get_cpu(); 1098 1099 info.ctx = ctx; 1100 info.nr = nr; 1101 info.vaddrs = vaddrs; 1102 1103 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1104 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1105 else 1106 smp_call_function_many(mm_cpumask(mm), tlb_pending_func, 1107 &info, 1); 1108 1109 __flush_tlb_pending(ctx, nr, vaddrs); 1110 1111 put_cpu(); 1112 } 1113 1114 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr) 1115 { 1116 unsigned long context = CTX_HWBITS(mm->context); 1117 int cpu = get_cpu(); 1118 1119 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1120 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1121 else 1122 smp_cross_call_masked(&xcall_flush_tlb_page, 1123 context, vaddr, 0, 1124 mm_cpumask(mm)); 1125 __flush_tlb_page(context, vaddr); 1126 1127 put_cpu(); 1128 } 1129 1130 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) 1131 { 1132 start &= PAGE_MASK; 1133 end = PAGE_ALIGN(end); 1134 if (start != end) { 1135 smp_cross_call(&xcall_flush_tlb_kernel_range, 1136 0, start, end); 1137 1138 __flush_tlb_kernel_range(start, end); 1139 } 1140 } 1141 1142 /* CPU capture. */ 1143 /* #define CAPTURE_DEBUG */ 1144 extern unsigned long xcall_capture; 1145 1146 static atomic_t smp_capture_depth = ATOMIC_INIT(0); 1147 static atomic_t smp_capture_registry = ATOMIC_INIT(0); 1148 static unsigned long penguins_are_doing_time; 1149 1150 void smp_capture(void) 1151 { 1152 int result = atomic_add_ret(1, &smp_capture_depth); 1153 1154 if (result == 1) { 1155 int ncpus = num_online_cpus(); 1156 1157 #ifdef CAPTURE_DEBUG 1158 printk("CPU[%d]: Sending penguins to jail...", 1159 smp_processor_id()); 1160 #endif 1161 penguins_are_doing_time = 1; 1162 atomic_inc(&smp_capture_registry); 1163 smp_cross_call(&xcall_capture, 0, 0, 0); 1164 while (atomic_read(&smp_capture_registry) != ncpus) 1165 rmb(); 1166 #ifdef CAPTURE_DEBUG 1167 printk("done\n"); 1168 #endif 1169 } 1170 } 1171 1172 void smp_release(void) 1173 { 1174 if (atomic_dec_and_test(&smp_capture_depth)) { 1175 #ifdef CAPTURE_DEBUG 1176 printk("CPU[%d]: Giving pardon to " 1177 "imprisoned penguins\n", 1178 smp_processor_id()); 1179 #endif 1180 penguins_are_doing_time = 0; 1181 membar_safe("#StoreLoad"); 1182 atomic_dec(&smp_capture_registry); 1183 } 1184 } 1185 1186 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE 1187 * set, so they can service tlb flush xcalls... 1188 */ 1189 extern void prom_world(int); 1190 1191 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs) 1192 { 1193 clear_softint(1 << irq); 1194 1195 preempt_disable(); 1196 1197 __asm__ __volatile__("flushw"); 1198 prom_world(1); 1199 atomic_inc(&smp_capture_registry); 1200 membar_safe("#StoreLoad"); 1201 while (penguins_are_doing_time) 1202 rmb(); 1203 atomic_dec(&smp_capture_registry); 1204 prom_world(0); 1205 1206 preempt_enable(); 1207 } 1208 1209 /* /proc/profile writes can call this, don't __init it please. */ 1210 int setup_profiling_timer(unsigned int multiplier) 1211 { 1212 return -EINVAL; 1213 } 1214 1215 void __init smp_prepare_cpus(unsigned int max_cpus) 1216 { 1217 } 1218 1219 void smp_prepare_boot_cpu(void) 1220 { 1221 } 1222 1223 void __init smp_setup_processor_id(void) 1224 { 1225 if (tlb_type == spitfire) 1226 xcall_deliver_impl = spitfire_xcall_deliver; 1227 else if (tlb_type == cheetah || tlb_type == cheetah_plus) 1228 xcall_deliver_impl = cheetah_xcall_deliver; 1229 else 1230 xcall_deliver_impl = hypervisor_xcall_deliver; 1231 } 1232 1233 void smp_fill_in_sib_core_maps(void) 1234 { 1235 unsigned int i; 1236 1237 for_each_present_cpu(i) { 1238 unsigned int j; 1239 1240 cpumask_clear(&cpu_core_map[i]); 1241 if (cpu_data(i).core_id == 0) { 1242 cpumask_set_cpu(i, &cpu_core_map[i]); 1243 continue; 1244 } 1245 1246 for_each_present_cpu(j) { 1247 if (cpu_data(i).core_id == 1248 cpu_data(j).core_id) 1249 cpumask_set_cpu(j, &cpu_core_map[i]); 1250 } 1251 } 1252 1253 for_each_present_cpu(i) { 1254 unsigned int j; 1255 1256 cpumask_clear(&per_cpu(cpu_sibling_map, i)); 1257 if (cpu_data(i).proc_id == -1) { 1258 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i)); 1259 continue; 1260 } 1261 1262 for_each_present_cpu(j) { 1263 if (cpu_data(i).proc_id == 1264 cpu_data(j).proc_id) 1265 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i)); 1266 } 1267 } 1268 } 1269 1270 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1271 { 1272 int ret = smp_boot_one_cpu(cpu, tidle); 1273 1274 if (!ret) { 1275 cpumask_set_cpu(cpu, &smp_commenced_mask); 1276 while (!cpu_online(cpu)) 1277 mb(); 1278 if (!cpu_online(cpu)) { 1279 ret = -ENODEV; 1280 } else { 1281 /* On SUN4V, writes to %tick and %stick are 1282 * not allowed. 1283 */ 1284 if (tlb_type != hypervisor) 1285 smp_synchronize_one_tick(cpu); 1286 } 1287 } 1288 return ret; 1289 } 1290 1291 #ifdef CONFIG_HOTPLUG_CPU 1292 void cpu_play_dead(void) 1293 { 1294 int cpu = smp_processor_id(); 1295 unsigned long pstate; 1296 1297 idle_task_exit(); 1298 1299 if (tlb_type == hypervisor) { 1300 struct trap_per_cpu *tb = &trap_block[cpu]; 1301 1302 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, 1303 tb->cpu_mondo_pa, 0); 1304 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, 1305 tb->dev_mondo_pa, 0); 1306 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, 1307 tb->resum_mondo_pa, 0); 1308 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, 1309 tb->nonresum_mondo_pa, 0); 1310 } 1311 1312 cpumask_clear_cpu(cpu, &smp_commenced_mask); 1313 membar_safe("#Sync"); 1314 1315 local_irq_disable(); 1316 1317 __asm__ __volatile__( 1318 "rdpr %%pstate, %0\n\t" 1319 "wrpr %0, %1, %%pstate" 1320 : "=r" (pstate) 1321 : "i" (PSTATE_IE)); 1322 1323 while (1) 1324 barrier(); 1325 } 1326 1327 int __cpu_disable(void) 1328 { 1329 int cpu = smp_processor_id(); 1330 cpuinfo_sparc *c; 1331 int i; 1332 1333 for_each_cpu(i, &cpu_core_map[cpu]) 1334 cpumask_clear_cpu(cpu, &cpu_core_map[i]); 1335 cpumask_clear(&cpu_core_map[cpu]); 1336 1337 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) 1338 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); 1339 cpumask_clear(&per_cpu(cpu_sibling_map, cpu)); 1340 1341 c = &cpu_data(cpu); 1342 1343 c->core_id = 0; 1344 c->proc_id = -1; 1345 1346 smp_wmb(); 1347 1348 /* Make sure no interrupts point to this cpu. */ 1349 fixup_irqs(); 1350 1351 local_irq_enable(); 1352 mdelay(1); 1353 local_irq_disable(); 1354 1355 set_cpu_online(cpu, false); 1356 1357 cpu_map_rebuild(); 1358 1359 return 0; 1360 } 1361 1362 void __cpu_die(unsigned int cpu) 1363 { 1364 int i; 1365 1366 for (i = 0; i < 100; i++) { 1367 smp_rmb(); 1368 if (!cpumask_test_cpu(cpu, &smp_commenced_mask)) 1369 break; 1370 msleep(100); 1371 } 1372 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) { 1373 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 1374 } else { 1375 #if defined(CONFIG_SUN_LDOMS) 1376 unsigned long hv_err; 1377 int limit = 100; 1378 1379 do { 1380 hv_err = sun4v_cpu_stop(cpu); 1381 if (hv_err == HV_EOK) { 1382 set_cpu_present(cpu, false); 1383 break; 1384 } 1385 } while (--limit > 0); 1386 if (limit <= 0) { 1387 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", 1388 hv_err); 1389 } 1390 #endif 1391 } 1392 } 1393 #endif 1394 1395 void __init smp_cpus_done(unsigned int max_cpus) 1396 { 1397 pcr_arch_init(); 1398 } 1399 1400 void smp_send_reschedule(int cpu) 1401 { 1402 if (cpu == smp_processor_id()) { 1403 WARN_ON_ONCE(preemptible()); 1404 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL); 1405 } else { 1406 xcall_deliver((u64) &xcall_receive_signal, 1407 0, 0, cpumask_of(cpu)); 1408 } 1409 } 1410 1411 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs) 1412 { 1413 clear_softint(1 << irq); 1414 scheduler_ipi(); 1415 } 1416 1417 /* This is a nop because we capture all other cpus 1418 * anyways when making the PROM active. 1419 */ 1420 void smp_send_stop(void) 1421 { 1422 } 1423 1424 /** 1425 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu 1426 * @cpu: cpu to allocate for 1427 * @size: size allocation in bytes 1428 * @align: alignment 1429 * 1430 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper 1431 * does the right thing for NUMA regardless of the current 1432 * configuration. 1433 * 1434 * RETURNS: 1435 * Pointer to the allocated area on success, NULL on failure. 1436 */ 1437 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, 1438 size_t align) 1439 { 1440 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 1441 #ifdef CONFIG_NEED_MULTIPLE_NODES 1442 int node = cpu_to_node(cpu); 1443 void *ptr; 1444 1445 if (!node_online(node) || !NODE_DATA(node)) { 1446 ptr = __alloc_bootmem(size, align, goal); 1447 pr_info("cpu %d has no node %d or node-local memory\n", 1448 cpu, node); 1449 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", 1450 cpu, size, __pa(ptr)); 1451 } else { 1452 ptr = __alloc_bootmem_node(NODE_DATA(node), 1453 size, align, goal); 1454 pr_debug("per cpu data for cpu%d %lu bytes on node%d at " 1455 "%016lx\n", cpu, size, node, __pa(ptr)); 1456 } 1457 return ptr; 1458 #else 1459 return __alloc_bootmem(size, align, goal); 1460 #endif 1461 } 1462 1463 static void __init pcpu_free_bootmem(void *ptr, size_t size) 1464 { 1465 free_bootmem(__pa(ptr), size); 1466 } 1467 1468 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 1469 { 1470 if (cpu_to_node(from) == cpu_to_node(to)) 1471 return LOCAL_DISTANCE; 1472 else 1473 return REMOTE_DISTANCE; 1474 } 1475 1476 static void __init pcpu_populate_pte(unsigned long addr) 1477 { 1478 pgd_t *pgd = pgd_offset_k(addr); 1479 pud_t *pud; 1480 pmd_t *pmd; 1481 1482 pud = pud_offset(pgd, addr); 1483 if (pud_none(*pud)) { 1484 pmd_t *new; 1485 1486 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1487 pud_populate(&init_mm, pud, new); 1488 } 1489 1490 pmd = pmd_offset(pud, addr); 1491 if (!pmd_present(*pmd)) { 1492 pte_t *new; 1493 1494 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1495 pmd_populate_kernel(&init_mm, pmd, new); 1496 } 1497 } 1498 1499 void __init setup_per_cpu_areas(void) 1500 { 1501 unsigned long delta; 1502 unsigned int cpu; 1503 int rc = -EINVAL; 1504 1505 if (pcpu_chosen_fc != PCPU_FC_PAGE) { 1506 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1507 PERCPU_DYNAMIC_RESERVE, 4 << 20, 1508 pcpu_cpu_distance, 1509 pcpu_alloc_bootmem, 1510 pcpu_free_bootmem); 1511 if (rc) 1512 pr_warning("PERCPU: %s allocator failed (%d), " 1513 "falling back to page size\n", 1514 pcpu_fc_names[pcpu_chosen_fc], rc); 1515 } 1516 if (rc < 0) 1517 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, 1518 pcpu_alloc_bootmem, 1519 pcpu_free_bootmem, 1520 pcpu_populate_pte); 1521 if (rc < 0) 1522 panic("cannot initialize percpu area (err=%d)", rc); 1523 1524 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1525 for_each_possible_cpu(cpu) 1526 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; 1527 1528 /* Setup %g5 for the boot cpu. */ 1529 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); 1530 1531 of_fill_in_cpu_data(); 1532 if (tlb_type == hypervisor) 1533 mdesc_fill_in_cpu_data(cpu_all_mask); 1534 } 1535