xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision 62e7ca52)
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29 
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40 
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55 
56 #include "cpumap.h"
57 #include "kernel.h"
58 
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62 
63 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
64 EXPORT_SYMBOL(cpu_core_map);
65 
66 static cpumask_t smp_commenced_mask;
67 
68 void smp_info(struct seq_file *m)
69 {
70 	int i;
71 
72 	seq_printf(m, "State:\n");
73 	for_each_online_cpu(i)
74 		seq_printf(m, "CPU%d:\t\tonline\n", i);
75 }
76 
77 void smp_bogo(struct seq_file *m)
78 {
79 	int i;
80 
81 	for_each_online_cpu(i)
82 		seq_printf(m,
83 			   "Cpu%dClkTck\t: %016lx\n",
84 			   i, cpu_data(i).clock_tick);
85 }
86 
87 extern void setup_sparc64_timer(void);
88 
89 static volatile unsigned long callin_flag = 0;
90 
91 void smp_callin(void)
92 {
93 	int cpuid = hard_smp_processor_id();
94 
95 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
96 
97 	if (tlb_type == hypervisor)
98 		sun4v_ktsb_register();
99 
100 	__flush_tlb_all();
101 
102 	setup_sparc64_timer();
103 
104 	if (cheetah_pcache_forced_on)
105 		cheetah_enable_pcache();
106 
107 	callin_flag = 1;
108 	__asm__ __volatile__("membar #Sync\n\t"
109 			     "flush  %%g6" : : : "memory");
110 
111 	/* Clear this or we will die instantly when we
112 	 * schedule back to this idler...
113 	 */
114 	current_thread_info()->new_child = 0;
115 
116 	/* Attach to the address space of init_task. */
117 	atomic_inc(&init_mm.mm_count);
118 	current->active_mm = &init_mm;
119 
120 	/* inform the notifiers about the new cpu */
121 	notify_cpu_starting(cpuid);
122 
123 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
124 		rmb();
125 
126 	set_cpu_online(cpuid, true);
127 
128 	/* idle thread is expected to have preempt disabled */
129 	preempt_disable();
130 
131 	local_irq_enable();
132 
133 	cpu_startup_entry(CPUHP_ONLINE);
134 }
135 
136 void cpu_panic(void)
137 {
138 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
139 	panic("SMP bolixed\n");
140 }
141 
142 /* This tick register synchronization scheme is taken entirely from
143  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
144  *
145  * The only change I've made is to rework it so that the master
146  * initiates the synchonization instead of the slave. -DaveM
147  */
148 
149 #define MASTER	0
150 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
151 
152 #define NUM_ROUNDS	64	/* magic value */
153 #define NUM_ITERS	5	/* likewise */
154 
155 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
156 static unsigned long go[SLAVE + 1];
157 
158 #define DEBUG_TICK_SYNC	0
159 
160 static inline long get_delta (long *rt, long *master)
161 {
162 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
163 	unsigned long tcenter, t0, t1, tm;
164 	unsigned long i;
165 
166 	for (i = 0; i < NUM_ITERS; i++) {
167 		t0 = tick_ops->get_tick();
168 		go[MASTER] = 1;
169 		membar_safe("#StoreLoad");
170 		while (!(tm = go[SLAVE]))
171 			rmb();
172 		go[SLAVE] = 0;
173 		wmb();
174 		t1 = tick_ops->get_tick();
175 
176 		if (t1 - t0 < best_t1 - best_t0)
177 			best_t0 = t0, best_t1 = t1, best_tm = tm;
178 	}
179 
180 	*rt = best_t1 - best_t0;
181 	*master = best_tm - best_t0;
182 
183 	/* average best_t0 and best_t1 without overflow: */
184 	tcenter = (best_t0/2 + best_t1/2);
185 	if (best_t0 % 2 + best_t1 % 2 == 2)
186 		tcenter++;
187 	return tcenter - best_tm;
188 }
189 
190 void smp_synchronize_tick_client(void)
191 {
192 	long i, delta, adj, adjust_latency = 0, done = 0;
193 	unsigned long flags, rt, master_time_stamp;
194 #if DEBUG_TICK_SYNC
195 	struct {
196 		long rt;	/* roundtrip time */
197 		long master;	/* master's timestamp */
198 		long diff;	/* difference between midpoint and master's timestamp */
199 		long lat;	/* estimate of itc adjustment latency */
200 	} t[NUM_ROUNDS];
201 #endif
202 
203 	go[MASTER] = 1;
204 
205 	while (go[MASTER])
206 		rmb();
207 
208 	local_irq_save(flags);
209 	{
210 		for (i = 0; i < NUM_ROUNDS; i++) {
211 			delta = get_delta(&rt, &master_time_stamp);
212 			if (delta == 0)
213 				done = 1;	/* let's lock on to this... */
214 
215 			if (!done) {
216 				if (i > 0) {
217 					adjust_latency += -delta;
218 					adj = -delta + adjust_latency/4;
219 				} else
220 					adj = -delta;
221 
222 				tick_ops->add_tick(adj);
223 			}
224 #if DEBUG_TICK_SYNC
225 			t[i].rt = rt;
226 			t[i].master = master_time_stamp;
227 			t[i].diff = delta;
228 			t[i].lat = adjust_latency/4;
229 #endif
230 		}
231 	}
232 	local_irq_restore(flags);
233 
234 #if DEBUG_TICK_SYNC
235 	for (i = 0; i < NUM_ROUNDS; i++)
236 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
237 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
238 #endif
239 
240 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
241 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
242 	       smp_processor_id(), delta, rt);
243 }
244 
245 static void smp_start_sync_tick_client(int cpu);
246 
247 static void smp_synchronize_one_tick(int cpu)
248 {
249 	unsigned long flags, i;
250 
251 	go[MASTER] = 0;
252 
253 	smp_start_sync_tick_client(cpu);
254 
255 	/* wait for client to be ready */
256 	while (!go[MASTER])
257 		rmb();
258 
259 	/* now let the client proceed into his loop */
260 	go[MASTER] = 0;
261 	membar_safe("#StoreLoad");
262 
263 	raw_spin_lock_irqsave(&itc_sync_lock, flags);
264 	{
265 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
266 			while (!go[MASTER])
267 				rmb();
268 			go[MASTER] = 0;
269 			wmb();
270 			go[SLAVE] = tick_ops->get_tick();
271 			membar_safe("#StoreLoad");
272 		}
273 	}
274 	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
275 }
276 
277 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
278 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
279 				void **descrp)
280 {
281 	extern unsigned long sparc64_ttable_tl0;
282 	extern unsigned long kern_locked_tte_data;
283 	struct hvtramp_descr *hdesc;
284 	unsigned long trampoline_ra;
285 	struct trap_per_cpu *tb;
286 	u64 tte_vaddr, tte_data;
287 	unsigned long hv_err;
288 	int i;
289 
290 	hdesc = kzalloc(sizeof(*hdesc) +
291 			(sizeof(struct hvtramp_mapping) *
292 			 num_kernel_image_mappings - 1),
293 			GFP_KERNEL);
294 	if (!hdesc) {
295 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
296 		       "hvtramp_descr.\n");
297 		return;
298 	}
299 	*descrp = hdesc;
300 
301 	hdesc->cpu = cpu;
302 	hdesc->num_mappings = num_kernel_image_mappings;
303 
304 	tb = &trap_block[cpu];
305 
306 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
307 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
308 
309 	hdesc->thread_reg = thread_reg;
310 
311 	tte_vaddr = (unsigned long) KERNBASE;
312 	tte_data = kern_locked_tte_data;
313 
314 	for (i = 0; i < hdesc->num_mappings; i++) {
315 		hdesc->maps[i].vaddr = tte_vaddr;
316 		hdesc->maps[i].tte   = tte_data;
317 		tte_vaddr += 0x400000;
318 		tte_data  += 0x400000;
319 	}
320 
321 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
322 
323 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
324 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
325 				 __pa(hdesc));
326 	if (hv_err)
327 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
328 		       "gives error %lu\n", hv_err);
329 }
330 #endif
331 
332 extern unsigned long sparc64_cpu_startup;
333 
334 /* The OBP cpu startup callback truncates the 3rd arg cookie to
335  * 32-bits (I think) so to be safe we have it read the pointer
336  * contained here so we work on >4GB machines. -DaveM
337  */
338 static struct thread_info *cpu_new_thread = NULL;
339 
340 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
341 {
342 	unsigned long entry =
343 		(unsigned long)(&sparc64_cpu_startup);
344 	unsigned long cookie =
345 		(unsigned long)(&cpu_new_thread);
346 	void *descr = NULL;
347 	int timeout, ret;
348 
349 	callin_flag = 0;
350 	cpu_new_thread = task_thread_info(idle);
351 
352 	if (tlb_type == hypervisor) {
353 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
354 		if (ldom_domaining_enabled)
355 			ldom_startcpu_cpuid(cpu,
356 					    (unsigned long) cpu_new_thread,
357 					    &descr);
358 		else
359 #endif
360 			prom_startcpu_cpuid(cpu, entry, cookie);
361 	} else {
362 		struct device_node *dp = of_find_node_by_cpuid(cpu);
363 
364 		prom_startcpu(dp->phandle, entry, cookie);
365 	}
366 
367 	for (timeout = 0; timeout < 50000; timeout++) {
368 		if (callin_flag)
369 			break;
370 		udelay(100);
371 	}
372 
373 	if (callin_flag) {
374 		ret = 0;
375 	} else {
376 		printk("Processor %d is stuck.\n", cpu);
377 		ret = -ENODEV;
378 	}
379 	cpu_new_thread = NULL;
380 
381 	kfree(descr);
382 
383 	return ret;
384 }
385 
386 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
387 {
388 	u64 result, target;
389 	int stuck, tmp;
390 
391 	if (this_is_starfire) {
392 		/* map to real upaid */
393 		cpu = (((cpu & 0x3c) << 1) |
394 			((cpu & 0x40) >> 4) |
395 			(cpu & 0x3));
396 	}
397 
398 	target = (cpu << 14) | 0x70;
399 again:
400 	/* Ok, this is the real Spitfire Errata #54.
401 	 * One must read back from a UDB internal register
402 	 * after writes to the UDB interrupt dispatch, but
403 	 * before the membar Sync for that write.
404 	 * So we use the high UDB control register (ASI 0x7f,
405 	 * ADDR 0x20) for the dummy read. -DaveM
406 	 */
407 	tmp = 0x40;
408 	__asm__ __volatile__(
409 	"wrpr	%1, %2, %%pstate\n\t"
410 	"stxa	%4, [%0] %3\n\t"
411 	"stxa	%5, [%0+%8] %3\n\t"
412 	"add	%0, %8, %0\n\t"
413 	"stxa	%6, [%0+%8] %3\n\t"
414 	"membar	#Sync\n\t"
415 	"stxa	%%g0, [%7] %3\n\t"
416 	"membar	#Sync\n\t"
417 	"mov	0x20, %%g1\n\t"
418 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
419 	"membar	#Sync"
420 	: "=r" (tmp)
421 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
422 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
423 	  "r" (0x10), "0" (tmp)
424         : "g1");
425 
426 	/* NOTE: PSTATE_IE is still clear. */
427 	stuck = 100000;
428 	do {
429 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
430 			: "=r" (result)
431 			: "i" (ASI_INTR_DISPATCH_STAT));
432 		if (result == 0) {
433 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
434 					     : : "r" (pstate));
435 			return;
436 		}
437 		stuck -= 1;
438 		if (stuck == 0)
439 			break;
440 	} while (result & 0x1);
441 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 			     : : "r" (pstate));
443 	if (stuck == 0) {
444 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
445 		       smp_processor_id(), result);
446 	} else {
447 		udelay(2);
448 		goto again;
449 	}
450 }
451 
452 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
453 {
454 	u64 *mondo, data0, data1, data2;
455 	u16 *cpu_list;
456 	u64 pstate;
457 	int i;
458 
459 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
460 	cpu_list = __va(tb->cpu_list_pa);
461 	mondo = __va(tb->cpu_mondo_block_pa);
462 	data0 = mondo[0];
463 	data1 = mondo[1];
464 	data2 = mondo[2];
465 	for (i = 0; i < cnt; i++)
466 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
467 }
468 
469 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
470  * packet, but we have no use for that.  However we do take advantage of
471  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
472  */
473 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
474 {
475 	int nack_busy_id, is_jbus, need_more;
476 	u64 *mondo, pstate, ver, busy_mask;
477 	u16 *cpu_list;
478 
479 	cpu_list = __va(tb->cpu_list_pa);
480 	mondo = __va(tb->cpu_mondo_block_pa);
481 
482 	/* Unfortunately, someone at Sun had the brilliant idea to make the
483 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
484 	 * derivative processor.
485 	 */
486 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
487 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
488 		   (ver >> 32) == __SERRANO_ID);
489 
490 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
491 
492 retry:
493 	need_more = 0;
494 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
495 			     : : "r" (pstate), "i" (PSTATE_IE));
496 
497 	/* Setup the dispatch data registers. */
498 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
499 			     "stxa	%1, [%4] %6\n\t"
500 			     "stxa	%2, [%5] %6\n\t"
501 			     "membar	#Sync\n\t"
502 			     : /* no outputs */
503 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
504 			       "r" (0x40), "r" (0x50), "r" (0x60),
505 			       "i" (ASI_INTR_W));
506 
507 	nack_busy_id = 0;
508 	busy_mask = 0;
509 	{
510 		int i;
511 
512 		for (i = 0; i < cnt; i++) {
513 			u64 target, nr;
514 
515 			nr = cpu_list[i];
516 			if (nr == 0xffff)
517 				continue;
518 
519 			target = (nr << 14) | 0x70;
520 			if (is_jbus) {
521 				busy_mask |= (0x1UL << (nr * 2));
522 			} else {
523 				target |= (nack_busy_id << 24);
524 				busy_mask |= (0x1UL <<
525 					      (nack_busy_id * 2));
526 			}
527 			__asm__ __volatile__(
528 				"stxa	%%g0, [%0] %1\n\t"
529 				"membar	#Sync\n\t"
530 				: /* no outputs */
531 				: "r" (target), "i" (ASI_INTR_W));
532 			nack_busy_id++;
533 			if (nack_busy_id == 32) {
534 				need_more = 1;
535 				break;
536 			}
537 		}
538 	}
539 
540 	/* Now, poll for completion. */
541 	{
542 		u64 dispatch_stat, nack_mask;
543 		long stuck;
544 
545 		stuck = 100000 * nack_busy_id;
546 		nack_mask = busy_mask << 1;
547 		do {
548 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
549 					     : "=r" (dispatch_stat)
550 					     : "i" (ASI_INTR_DISPATCH_STAT));
551 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
552 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
553 						     : : "r" (pstate));
554 				if (unlikely(need_more)) {
555 					int i, this_cnt = 0;
556 					for (i = 0; i < cnt; i++) {
557 						if (cpu_list[i] == 0xffff)
558 							continue;
559 						cpu_list[i] = 0xffff;
560 						this_cnt++;
561 						if (this_cnt == 32)
562 							break;
563 					}
564 					goto retry;
565 				}
566 				return;
567 			}
568 			if (!--stuck)
569 				break;
570 		} while (dispatch_stat & busy_mask);
571 
572 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
573 				     : : "r" (pstate));
574 
575 		if (dispatch_stat & busy_mask) {
576 			/* Busy bits will not clear, continue instead
577 			 * of freezing up on this cpu.
578 			 */
579 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
580 			       smp_processor_id(), dispatch_stat);
581 		} else {
582 			int i, this_busy_nack = 0;
583 
584 			/* Delay some random time with interrupts enabled
585 			 * to prevent deadlock.
586 			 */
587 			udelay(2 * nack_busy_id);
588 
589 			/* Clear out the mask bits for cpus which did not
590 			 * NACK us.
591 			 */
592 			for (i = 0; i < cnt; i++) {
593 				u64 check_mask, nr;
594 
595 				nr = cpu_list[i];
596 				if (nr == 0xffff)
597 					continue;
598 
599 				if (is_jbus)
600 					check_mask = (0x2UL << (2*nr));
601 				else
602 					check_mask = (0x2UL <<
603 						      this_busy_nack);
604 				if ((dispatch_stat & check_mask) == 0)
605 					cpu_list[i] = 0xffff;
606 				this_busy_nack += 2;
607 				if (this_busy_nack == 64)
608 					break;
609 			}
610 
611 			goto retry;
612 		}
613 	}
614 }
615 
616 /* Multi-cpu list version.  */
617 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
618 {
619 	int retries, this_cpu, prev_sent, i, saw_cpu_error;
620 	unsigned long status;
621 	u16 *cpu_list;
622 
623 	this_cpu = smp_processor_id();
624 
625 	cpu_list = __va(tb->cpu_list_pa);
626 
627 	saw_cpu_error = 0;
628 	retries = 0;
629 	prev_sent = 0;
630 	do {
631 		int forward_progress, n_sent;
632 
633 		status = sun4v_cpu_mondo_send(cnt,
634 					      tb->cpu_list_pa,
635 					      tb->cpu_mondo_block_pa);
636 
637 		/* HV_EOK means all cpus received the xcall, we're done.  */
638 		if (likely(status == HV_EOK))
639 			break;
640 
641 		/* First, see if we made any forward progress.
642 		 *
643 		 * The hypervisor indicates successful sends by setting
644 		 * cpu list entries to the value 0xffff.
645 		 */
646 		n_sent = 0;
647 		for (i = 0; i < cnt; i++) {
648 			if (likely(cpu_list[i] == 0xffff))
649 				n_sent++;
650 		}
651 
652 		forward_progress = 0;
653 		if (n_sent > prev_sent)
654 			forward_progress = 1;
655 
656 		prev_sent = n_sent;
657 
658 		/* If we get a HV_ECPUERROR, then one or more of the cpus
659 		 * in the list are in error state.  Use the cpu_state()
660 		 * hypervisor call to find out which cpus are in error state.
661 		 */
662 		if (unlikely(status == HV_ECPUERROR)) {
663 			for (i = 0; i < cnt; i++) {
664 				long err;
665 				u16 cpu;
666 
667 				cpu = cpu_list[i];
668 				if (cpu == 0xffff)
669 					continue;
670 
671 				err = sun4v_cpu_state(cpu);
672 				if (err == HV_CPU_STATE_ERROR) {
673 					saw_cpu_error = (cpu + 1);
674 					cpu_list[i] = 0xffff;
675 				}
676 			}
677 		} else if (unlikely(status != HV_EWOULDBLOCK))
678 			goto fatal_mondo_error;
679 
680 		/* Don't bother rewriting the CPU list, just leave the
681 		 * 0xffff and non-0xffff entries in there and the
682 		 * hypervisor will do the right thing.
683 		 *
684 		 * Only advance timeout state if we didn't make any
685 		 * forward progress.
686 		 */
687 		if (unlikely(!forward_progress)) {
688 			if (unlikely(++retries > 10000))
689 				goto fatal_mondo_timeout;
690 
691 			/* Delay a little bit to let other cpus catch up
692 			 * on their cpu mondo queue work.
693 			 */
694 			udelay(2 * cnt);
695 		}
696 	} while (1);
697 
698 	if (unlikely(saw_cpu_error))
699 		goto fatal_mondo_cpu_error;
700 
701 	return;
702 
703 fatal_mondo_cpu_error:
704 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
705 	       "(including %d) were in error state\n",
706 	       this_cpu, saw_cpu_error - 1);
707 	return;
708 
709 fatal_mondo_timeout:
710 	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
711 	       " progress after %d retries.\n",
712 	       this_cpu, retries);
713 	goto dump_cpu_list_and_out;
714 
715 fatal_mondo_error:
716 	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
717 	       this_cpu, status);
718 	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
719 	       "mondo_block_pa(%lx)\n",
720 	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
721 
722 dump_cpu_list_and_out:
723 	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
724 	for (i = 0; i < cnt; i++)
725 		printk("%u ", cpu_list[i]);
726 	printk("]\n");
727 }
728 
729 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
730 
731 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
732 {
733 	struct trap_per_cpu *tb;
734 	int this_cpu, i, cnt;
735 	unsigned long flags;
736 	u16 *cpu_list;
737 	u64 *mondo;
738 
739 	/* We have to do this whole thing with interrupts fully disabled.
740 	 * Otherwise if we send an xcall from interrupt context it will
741 	 * corrupt both our mondo block and cpu list state.
742 	 *
743 	 * One consequence of this is that we cannot use timeout mechanisms
744 	 * that depend upon interrupts being delivered locally.  So, for
745 	 * example, we cannot sample jiffies and expect it to advance.
746 	 *
747 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
748 	 */
749 	local_irq_save(flags);
750 
751 	this_cpu = smp_processor_id();
752 	tb = &trap_block[this_cpu];
753 
754 	mondo = __va(tb->cpu_mondo_block_pa);
755 	mondo[0] = data0;
756 	mondo[1] = data1;
757 	mondo[2] = data2;
758 	wmb();
759 
760 	cpu_list = __va(tb->cpu_list_pa);
761 
762 	/* Setup the initial cpu list.  */
763 	cnt = 0;
764 	for_each_cpu(i, mask) {
765 		if (i == this_cpu || !cpu_online(i))
766 			continue;
767 		cpu_list[cnt++] = i;
768 	}
769 
770 	if (cnt)
771 		xcall_deliver_impl(tb, cnt);
772 
773 	local_irq_restore(flags);
774 }
775 
776 /* Send cross call to all processors mentioned in MASK_P
777  * except self.  Really, there are only two cases currently,
778  * "cpu_online_mask" and "mm_cpumask(mm)".
779  */
780 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
781 {
782 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
783 
784 	xcall_deliver(data0, data1, data2, mask);
785 }
786 
787 /* Send cross call to all processors except self. */
788 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
789 {
790 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
791 }
792 
793 extern unsigned long xcall_sync_tick;
794 
795 static void smp_start_sync_tick_client(int cpu)
796 {
797 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
798 		      cpumask_of(cpu));
799 }
800 
801 extern unsigned long xcall_call_function;
802 
803 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
804 {
805 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
806 }
807 
808 extern unsigned long xcall_call_function_single;
809 
810 void arch_send_call_function_single_ipi(int cpu)
811 {
812 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
813 		      cpumask_of(cpu));
814 }
815 
816 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
817 {
818 	clear_softint(1 << irq);
819 	generic_smp_call_function_interrupt();
820 }
821 
822 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
823 {
824 	clear_softint(1 << irq);
825 	generic_smp_call_function_single_interrupt();
826 }
827 
828 static void tsb_sync(void *info)
829 {
830 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
831 	struct mm_struct *mm = info;
832 
833 	/* It is not valid to test "current->active_mm == mm" here.
834 	 *
835 	 * The value of "current" is not changed atomically with
836 	 * switch_mm().  But that's OK, we just need to check the
837 	 * current cpu's trap block PGD physical address.
838 	 */
839 	if (tp->pgd_paddr == __pa(mm->pgd))
840 		tsb_context_switch(mm);
841 }
842 
843 void smp_tsb_sync(struct mm_struct *mm)
844 {
845 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
846 }
847 
848 extern unsigned long xcall_flush_tlb_mm;
849 extern unsigned long xcall_flush_tlb_page;
850 extern unsigned long xcall_flush_tlb_kernel_range;
851 extern unsigned long xcall_fetch_glob_regs;
852 extern unsigned long xcall_fetch_glob_pmu;
853 extern unsigned long xcall_fetch_glob_pmu_n4;
854 extern unsigned long xcall_receive_signal;
855 extern unsigned long xcall_new_mmu_context_version;
856 #ifdef CONFIG_KGDB
857 extern unsigned long xcall_kgdb_capture;
858 #endif
859 
860 #ifdef DCACHE_ALIASING_POSSIBLE
861 extern unsigned long xcall_flush_dcache_page_cheetah;
862 #endif
863 extern unsigned long xcall_flush_dcache_page_spitfire;
864 
865 static inline void __local_flush_dcache_page(struct page *page)
866 {
867 #ifdef DCACHE_ALIASING_POSSIBLE
868 	__flush_dcache_page(page_address(page),
869 			    ((tlb_type == spitfire) &&
870 			     page_mapping(page) != NULL));
871 #else
872 	if (page_mapping(page) != NULL &&
873 	    tlb_type == spitfire)
874 		__flush_icache_page(__pa(page_address(page)));
875 #endif
876 }
877 
878 void smp_flush_dcache_page_impl(struct page *page, int cpu)
879 {
880 	int this_cpu;
881 
882 	if (tlb_type == hypervisor)
883 		return;
884 
885 #ifdef CONFIG_DEBUG_DCFLUSH
886 	atomic_inc(&dcpage_flushes);
887 #endif
888 
889 	this_cpu = get_cpu();
890 
891 	if (cpu == this_cpu) {
892 		__local_flush_dcache_page(page);
893 	} else if (cpu_online(cpu)) {
894 		void *pg_addr = page_address(page);
895 		u64 data0 = 0;
896 
897 		if (tlb_type == spitfire) {
898 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
899 			if (page_mapping(page) != NULL)
900 				data0 |= ((u64)1 << 32);
901 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
902 #ifdef DCACHE_ALIASING_POSSIBLE
903 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
904 #endif
905 		}
906 		if (data0) {
907 			xcall_deliver(data0, __pa(pg_addr),
908 				      (u64) pg_addr, cpumask_of(cpu));
909 #ifdef CONFIG_DEBUG_DCFLUSH
910 			atomic_inc(&dcpage_flushes_xcall);
911 #endif
912 		}
913 	}
914 
915 	put_cpu();
916 }
917 
918 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
919 {
920 	void *pg_addr;
921 	u64 data0;
922 
923 	if (tlb_type == hypervisor)
924 		return;
925 
926 	preempt_disable();
927 
928 #ifdef CONFIG_DEBUG_DCFLUSH
929 	atomic_inc(&dcpage_flushes);
930 #endif
931 	data0 = 0;
932 	pg_addr = page_address(page);
933 	if (tlb_type == spitfire) {
934 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
935 		if (page_mapping(page) != NULL)
936 			data0 |= ((u64)1 << 32);
937 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
938 #ifdef DCACHE_ALIASING_POSSIBLE
939 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
940 #endif
941 	}
942 	if (data0) {
943 		xcall_deliver(data0, __pa(pg_addr),
944 			      (u64) pg_addr, cpu_online_mask);
945 #ifdef CONFIG_DEBUG_DCFLUSH
946 		atomic_inc(&dcpage_flushes_xcall);
947 #endif
948 	}
949 	__local_flush_dcache_page(page);
950 
951 	preempt_enable();
952 }
953 
954 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
955 {
956 	struct mm_struct *mm;
957 	unsigned long flags;
958 
959 	clear_softint(1 << irq);
960 
961 	/* See if we need to allocate a new TLB context because
962 	 * the version of the one we are using is now out of date.
963 	 */
964 	mm = current->active_mm;
965 	if (unlikely(!mm || (mm == &init_mm)))
966 		return;
967 
968 	spin_lock_irqsave(&mm->context.lock, flags);
969 
970 	if (unlikely(!CTX_VALID(mm->context)))
971 		get_new_mmu_context(mm);
972 
973 	spin_unlock_irqrestore(&mm->context.lock, flags);
974 
975 	load_secondary_context(mm);
976 	__flush_tlb_mm(CTX_HWBITS(mm->context),
977 		       SECONDARY_CONTEXT);
978 }
979 
980 void smp_new_mmu_context_version(void)
981 {
982 	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
983 }
984 
985 #ifdef CONFIG_KGDB
986 void kgdb_roundup_cpus(unsigned long flags)
987 {
988 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
989 }
990 #endif
991 
992 void smp_fetch_global_regs(void)
993 {
994 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
995 }
996 
997 void smp_fetch_global_pmu(void)
998 {
999 	if (tlb_type == hypervisor &&
1000 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1001 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1002 	else
1003 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1004 }
1005 
1006 /* We know that the window frames of the user have been flushed
1007  * to the stack before we get here because all callers of us
1008  * are flush_tlb_*() routines, and these run after flush_cache_*()
1009  * which performs the flushw.
1010  *
1011  * The SMP TLB coherency scheme we use works as follows:
1012  *
1013  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1014  *    space has (potentially) executed on, this is the heuristic
1015  *    we use to avoid doing cross calls.
1016  *
1017  *    Also, for flushing from kswapd and also for clones, we
1018  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1019  *
1020  * 2) TLB context numbers are shared globally across all processors
1021  *    in the system, this allows us to play several games to avoid
1022  *    cross calls.
1023  *
1024  *    One invariant is that when a cpu switches to a process, and
1025  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1026  *    current cpu's bit set, that tlb context is flushed locally.
1027  *
1028  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1029  *    cross calls when we want to flush the currently running process's
1030  *    tlb state.  This is done by clearing all cpu bits except the current
1031  *    processor's in current->mm->cpu_vm_mask and performing the
1032  *    flush locally only.  This will force any subsequent cpus which run
1033  *    this task to flush the context from the local tlb if the process
1034  *    migrates to another cpu (again).
1035  *
1036  * 3) For shared address spaces (threads) and swapping we bite the
1037  *    bullet for most cases and perform the cross call (but only to
1038  *    the cpus listed in cpu_vm_mask).
1039  *
1040  *    The performance gain from "optimizing" away the cross call for threads is
1041  *    questionable (in theory the big win for threads is the massive sharing of
1042  *    address space state across processors).
1043  */
1044 
1045 /* This currently is only used by the hugetlb arch pre-fault
1046  * hook on UltraSPARC-III+ and later when changing the pagesize
1047  * bits of the context register for an address space.
1048  */
1049 void smp_flush_tlb_mm(struct mm_struct *mm)
1050 {
1051 	u32 ctx = CTX_HWBITS(mm->context);
1052 	int cpu = get_cpu();
1053 
1054 	if (atomic_read(&mm->mm_users) == 1) {
1055 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1056 		goto local_flush_and_out;
1057 	}
1058 
1059 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1060 			      ctx, 0, 0,
1061 			      mm_cpumask(mm));
1062 
1063 local_flush_and_out:
1064 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1065 
1066 	put_cpu();
1067 }
1068 
1069 struct tlb_pending_info {
1070 	unsigned long ctx;
1071 	unsigned long nr;
1072 	unsigned long *vaddrs;
1073 };
1074 
1075 static void tlb_pending_func(void *info)
1076 {
1077 	struct tlb_pending_info *t = info;
1078 
1079 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1080 }
1081 
1082 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1083 {
1084 	u32 ctx = CTX_HWBITS(mm->context);
1085 	struct tlb_pending_info info;
1086 	int cpu = get_cpu();
1087 
1088 	info.ctx = ctx;
1089 	info.nr = nr;
1090 	info.vaddrs = vaddrs;
1091 
1092 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1093 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1094 	else
1095 		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1096 				       &info, 1);
1097 
1098 	__flush_tlb_pending(ctx, nr, vaddrs);
1099 
1100 	put_cpu();
1101 }
1102 
1103 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1104 {
1105 	unsigned long context = CTX_HWBITS(mm->context);
1106 	int cpu = get_cpu();
1107 
1108 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1109 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1110 	else
1111 		smp_cross_call_masked(&xcall_flush_tlb_page,
1112 				      context, vaddr, 0,
1113 				      mm_cpumask(mm));
1114 	__flush_tlb_page(context, vaddr);
1115 
1116 	put_cpu();
1117 }
1118 
1119 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1120 {
1121 	start &= PAGE_MASK;
1122 	end    = PAGE_ALIGN(end);
1123 	if (start != end) {
1124 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1125 			       0, start, end);
1126 
1127 		__flush_tlb_kernel_range(start, end);
1128 	}
1129 }
1130 
1131 /* CPU capture. */
1132 /* #define CAPTURE_DEBUG */
1133 extern unsigned long xcall_capture;
1134 
1135 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1136 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1137 static unsigned long penguins_are_doing_time;
1138 
1139 void smp_capture(void)
1140 {
1141 	int result = atomic_add_ret(1, &smp_capture_depth);
1142 
1143 	if (result == 1) {
1144 		int ncpus = num_online_cpus();
1145 
1146 #ifdef CAPTURE_DEBUG
1147 		printk("CPU[%d]: Sending penguins to jail...",
1148 		       smp_processor_id());
1149 #endif
1150 		penguins_are_doing_time = 1;
1151 		atomic_inc(&smp_capture_registry);
1152 		smp_cross_call(&xcall_capture, 0, 0, 0);
1153 		while (atomic_read(&smp_capture_registry) != ncpus)
1154 			rmb();
1155 #ifdef CAPTURE_DEBUG
1156 		printk("done\n");
1157 #endif
1158 	}
1159 }
1160 
1161 void smp_release(void)
1162 {
1163 	if (atomic_dec_and_test(&smp_capture_depth)) {
1164 #ifdef CAPTURE_DEBUG
1165 		printk("CPU[%d]: Giving pardon to "
1166 		       "imprisoned penguins\n",
1167 		       smp_processor_id());
1168 #endif
1169 		penguins_are_doing_time = 0;
1170 		membar_safe("#StoreLoad");
1171 		atomic_dec(&smp_capture_registry);
1172 	}
1173 }
1174 
1175 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1176  * set, so they can service tlb flush xcalls...
1177  */
1178 extern void prom_world(int);
1179 
1180 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1181 {
1182 	clear_softint(1 << irq);
1183 
1184 	preempt_disable();
1185 
1186 	__asm__ __volatile__("flushw");
1187 	prom_world(1);
1188 	atomic_inc(&smp_capture_registry);
1189 	membar_safe("#StoreLoad");
1190 	while (penguins_are_doing_time)
1191 		rmb();
1192 	atomic_dec(&smp_capture_registry);
1193 	prom_world(0);
1194 
1195 	preempt_enable();
1196 }
1197 
1198 /* /proc/profile writes can call this, don't __init it please. */
1199 int setup_profiling_timer(unsigned int multiplier)
1200 {
1201 	return -EINVAL;
1202 }
1203 
1204 void __init smp_prepare_cpus(unsigned int max_cpus)
1205 {
1206 }
1207 
1208 void smp_prepare_boot_cpu(void)
1209 {
1210 }
1211 
1212 void __init smp_setup_processor_id(void)
1213 {
1214 	if (tlb_type == spitfire)
1215 		xcall_deliver_impl = spitfire_xcall_deliver;
1216 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1217 		xcall_deliver_impl = cheetah_xcall_deliver;
1218 	else
1219 		xcall_deliver_impl = hypervisor_xcall_deliver;
1220 }
1221 
1222 void smp_fill_in_sib_core_maps(void)
1223 {
1224 	unsigned int i;
1225 
1226 	for_each_present_cpu(i) {
1227 		unsigned int j;
1228 
1229 		cpumask_clear(&cpu_core_map[i]);
1230 		if (cpu_data(i).core_id == 0) {
1231 			cpumask_set_cpu(i, &cpu_core_map[i]);
1232 			continue;
1233 		}
1234 
1235 		for_each_present_cpu(j) {
1236 			if (cpu_data(i).core_id ==
1237 			    cpu_data(j).core_id)
1238 				cpumask_set_cpu(j, &cpu_core_map[i]);
1239 		}
1240 	}
1241 
1242 	for_each_present_cpu(i) {
1243 		unsigned int j;
1244 
1245 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1246 		if (cpu_data(i).proc_id == -1) {
1247 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1248 			continue;
1249 		}
1250 
1251 		for_each_present_cpu(j) {
1252 			if (cpu_data(i).proc_id ==
1253 			    cpu_data(j).proc_id)
1254 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1255 		}
1256 	}
1257 }
1258 
1259 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1260 {
1261 	int ret = smp_boot_one_cpu(cpu, tidle);
1262 
1263 	if (!ret) {
1264 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1265 		while (!cpu_online(cpu))
1266 			mb();
1267 		if (!cpu_online(cpu)) {
1268 			ret = -ENODEV;
1269 		} else {
1270 			/* On SUN4V, writes to %tick and %stick are
1271 			 * not allowed.
1272 			 */
1273 			if (tlb_type != hypervisor)
1274 				smp_synchronize_one_tick(cpu);
1275 		}
1276 	}
1277 	return ret;
1278 }
1279 
1280 #ifdef CONFIG_HOTPLUG_CPU
1281 void cpu_play_dead(void)
1282 {
1283 	int cpu = smp_processor_id();
1284 	unsigned long pstate;
1285 
1286 	idle_task_exit();
1287 
1288 	if (tlb_type == hypervisor) {
1289 		struct trap_per_cpu *tb = &trap_block[cpu];
1290 
1291 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1292 				tb->cpu_mondo_pa, 0);
1293 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1294 				tb->dev_mondo_pa, 0);
1295 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1296 				tb->resum_mondo_pa, 0);
1297 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1298 				tb->nonresum_mondo_pa, 0);
1299 	}
1300 
1301 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1302 	membar_safe("#Sync");
1303 
1304 	local_irq_disable();
1305 
1306 	__asm__ __volatile__(
1307 		"rdpr	%%pstate, %0\n\t"
1308 		"wrpr	%0, %1, %%pstate"
1309 		: "=r" (pstate)
1310 		: "i" (PSTATE_IE));
1311 
1312 	while (1)
1313 		barrier();
1314 }
1315 
1316 int __cpu_disable(void)
1317 {
1318 	int cpu = smp_processor_id();
1319 	cpuinfo_sparc *c;
1320 	int i;
1321 
1322 	for_each_cpu(i, &cpu_core_map[cpu])
1323 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1324 	cpumask_clear(&cpu_core_map[cpu]);
1325 
1326 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1327 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1328 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1329 
1330 	c = &cpu_data(cpu);
1331 
1332 	c->core_id = 0;
1333 	c->proc_id = -1;
1334 
1335 	smp_wmb();
1336 
1337 	/* Make sure no interrupts point to this cpu.  */
1338 	fixup_irqs();
1339 
1340 	local_irq_enable();
1341 	mdelay(1);
1342 	local_irq_disable();
1343 
1344 	set_cpu_online(cpu, false);
1345 
1346 	cpu_map_rebuild();
1347 
1348 	return 0;
1349 }
1350 
1351 void __cpu_die(unsigned int cpu)
1352 {
1353 	int i;
1354 
1355 	for (i = 0; i < 100; i++) {
1356 		smp_rmb();
1357 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1358 			break;
1359 		msleep(100);
1360 	}
1361 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1362 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1363 	} else {
1364 #if defined(CONFIG_SUN_LDOMS)
1365 		unsigned long hv_err;
1366 		int limit = 100;
1367 
1368 		do {
1369 			hv_err = sun4v_cpu_stop(cpu);
1370 			if (hv_err == HV_EOK) {
1371 				set_cpu_present(cpu, false);
1372 				break;
1373 			}
1374 		} while (--limit > 0);
1375 		if (limit <= 0) {
1376 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1377 			       hv_err);
1378 		}
1379 #endif
1380 	}
1381 }
1382 #endif
1383 
1384 void __init smp_cpus_done(unsigned int max_cpus)
1385 {
1386 	pcr_arch_init();
1387 }
1388 
1389 void smp_send_reschedule(int cpu)
1390 {
1391 	if (cpu == smp_processor_id()) {
1392 		WARN_ON_ONCE(preemptible());
1393 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1394 	} else {
1395 		xcall_deliver((u64) &xcall_receive_signal,
1396 			      0, 0, cpumask_of(cpu));
1397 	}
1398 }
1399 
1400 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1401 {
1402 	clear_softint(1 << irq);
1403 	scheduler_ipi();
1404 }
1405 
1406 /* This is a nop because we capture all other cpus
1407  * anyways when making the PROM active.
1408  */
1409 void smp_send_stop(void)
1410 {
1411 }
1412 
1413 /**
1414  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1415  * @cpu: cpu to allocate for
1416  * @size: size allocation in bytes
1417  * @align: alignment
1418  *
1419  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1420  * does the right thing for NUMA regardless of the current
1421  * configuration.
1422  *
1423  * RETURNS:
1424  * Pointer to the allocated area on success, NULL on failure.
1425  */
1426 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1427 					size_t align)
1428 {
1429 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1430 #ifdef CONFIG_NEED_MULTIPLE_NODES
1431 	int node = cpu_to_node(cpu);
1432 	void *ptr;
1433 
1434 	if (!node_online(node) || !NODE_DATA(node)) {
1435 		ptr = __alloc_bootmem(size, align, goal);
1436 		pr_info("cpu %d has no node %d or node-local memory\n",
1437 			cpu, node);
1438 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1439 			 cpu, size, __pa(ptr));
1440 	} else {
1441 		ptr = __alloc_bootmem_node(NODE_DATA(node),
1442 					   size, align, goal);
1443 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1444 			 "%016lx\n", cpu, size, node, __pa(ptr));
1445 	}
1446 	return ptr;
1447 #else
1448 	return __alloc_bootmem(size, align, goal);
1449 #endif
1450 }
1451 
1452 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1453 {
1454 	free_bootmem(__pa(ptr), size);
1455 }
1456 
1457 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1458 {
1459 	if (cpu_to_node(from) == cpu_to_node(to))
1460 		return LOCAL_DISTANCE;
1461 	else
1462 		return REMOTE_DISTANCE;
1463 }
1464 
1465 static void __init pcpu_populate_pte(unsigned long addr)
1466 {
1467 	pgd_t *pgd = pgd_offset_k(addr);
1468 	pud_t *pud;
1469 	pmd_t *pmd;
1470 
1471 	pud = pud_offset(pgd, addr);
1472 	if (pud_none(*pud)) {
1473 		pmd_t *new;
1474 
1475 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1476 		pud_populate(&init_mm, pud, new);
1477 	}
1478 
1479 	pmd = pmd_offset(pud, addr);
1480 	if (!pmd_present(*pmd)) {
1481 		pte_t *new;
1482 
1483 		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1484 		pmd_populate_kernel(&init_mm, pmd, new);
1485 	}
1486 }
1487 
1488 void __init setup_per_cpu_areas(void)
1489 {
1490 	unsigned long delta;
1491 	unsigned int cpu;
1492 	int rc = -EINVAL;
1493 
1494 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1495 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1496 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1497 					    pcpu_cpu_distance,
1498 					    pcpu_alloc_bootmem,
1499 					    pcpu_free_bootmem);
1500 		if (rc)
1501 			pr_warning("PERCPU: %s allocator failed (%d), "
1502 				   "falling back to page size\n",
1503 				   pcpu_fc_names[pcpu_chosen_fc], rc);
1504 	}
1505 	if (rc < 0)
1506 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1507 					   pcpu_alloc_bootmem,
1508 					   pcpu_free_bootmem,
1509 					   pcpu_populate_pte);
1510 	if (rc < 0)
1511 		panic("cannot initialize percpu area (err=%d)", rc);
1512 
1513 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1514 	for_each_possible_cpu(cpu)
1515 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1516 
1517 	/* Setup %g5 for the boot cpu.  */
1518 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1519 
1520 	of_fill_in_cpu_data();
1521 	if (tlb_type == hypervisor)
1522 		mdesc_fill_in_cpu_data(cpu_all_mask);
1523 }
1524