1 /* smp.c: Sparc64 SMP support. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 */ 5 6 #include <linux/export.h> 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/pagemap.h> 11 #include <linux/threads.h> 12 #include <linux/smp.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/delay.h> 16 #include <linux/init.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/cache.h> 21 #include <linux/jiffies.h> 22 #include <linux/profile.h> 23 #include <linux/bootmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ftrace.h> 26 #include <linux/cpu.h> 27 #include <linux/slab.h> 28 #include <linux/kgdb.h> 29 30 #include <asm/head.h> 31 #include <asm/ptrace.h> 32 #include <linux/atomic.h> 33 #include <asm/tlbflush.h> 34 #include <asm/mmu_context.h> 35 #include <asm/cpudata.h> 36 #include <asm/hvtramp.h> 37 #include <asm/io.h> 38 #include <asm/timer.h> 39 #include <asm/setup.h> 40 41 #include <asm/irq.h> 42 #include <asm/irq_regs.h> 43 #include <asm/page.h> 44 #include <asm/pgtable.h> 45 #include <asm/oplib.h> 46 #include <asm/uaccess.h> 47 #include <asm/starfire.h> 48 #include <asm/tlb.h> 49 #include <asm/sections.h> 50 #include <asm/prom.h> 51 #include <asm/mdesc.h> 52 #include <asm/ldc.h> 53 #include <asm/hypervisor.h> 54 #include <asm/pcr.h> 55 56 #include "cpumap.h" 57 #include "kernel.h" 58 59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; 60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly = 61 { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; 62 63 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 64 EXPORT_SYMBOL(cpu_core_map); 65 66 static cpumask_t smp_commenced_mask; 67 68 void smp_info(struct seq_file *m) 69 { 70 int i; 71 72 seq_printf(m, "State:\n"); 73 for_each_online_cpu(i) 74 seq_printf(m, "CPU%d:\t\tonline\n", i); 75 } 76 77 void smp_bogo(struct seq_file *m) 78 { 79 int i; 80 81 for_each_online_cpu(i) 82 seq_printf(m, 83 "Cpu%dClkTck\t: %016lx\n", 84 i, cpu_data(i).clock_tick); 85 } 86 87 extern void setup_sparc64_timer(void); 88 89 static volatile unsigned long callin_flag = 0; 90 91 void smp_callin(void) 92 { 93 int cpuid = hard_smp_processor_id(); 94 95 __local_per_cpu_offset = __per_cpu_offset(cpuid); 96 97 if (tlb_type == hypervisor) 98 sun4v_ktsb_register(); 99 100 __flush_tlb_all(); 101 102 setup_sparc64_timer(); 103 104 if (cheetah_pcache_forced_on) 105 cheetah_enable_pcache(); 106 107 callin_flag = 1; 108 __asm__ __volatile__("membar #Sync\n\t" 109 "flush %%g6" : : : "memory"); 110 111 /* Clear this or we will die instantly when we 112 * schedule back to this idler... 113 */ 114 current_thread_info()->new_child = 0; 115 116 /* Attach to the address space of init_task. */ 117 atomic_inc(&init_mm.mm_count); 118 current->active_mm = &init_mm; 119 120 /* inform the notifiers about the new cpu */ 121 notify_cpu_starting(cpuid); 122 123 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) 124 rmb(); 125 126 set_cpu_online(cpuid, true); 127 128 /* idle thread is expected to have preempt disabled */ 129 preempt_disable(); 130 131 local_irq_enable(); 132 133 cpu_startup_entry(CPUHP_ONLINE); 134 } 135 136 void cpu_panic(void) 137 { 138 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); 139 panic("SMP bolixed\n"); 140 } 141 142 /* This tick register synchronization scheme is taken entirely from 143 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. 144 * 145 * The only change I've made is to rework it so that the master 146 * initiates the synchonization instead of the slave. -DaveM 147 */ 148 149 #define MASTER 0 150 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) 151 152 #define NUM_ROUNDS 64 /* magic value */ 153 #define NUM_ITERS 5 /* likewise */ 154 155 static DEFINE_RAW_SPINLOCK(itc_sync_lock); 156 static unsigned long go[SLAVE + 1]; 157 158 #define DEBUG_TICK_SYNC 0 159 160 static inline long get_delta (long *rt, long *master) 161 { 162 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 163 unsigned long tcenter, t0, t1, tm; 164 unsigned long i; 165 166 for (i = 0; i < NUM_ITERS; i++) { 167 t0 = tick_ops->get_tick(); 168 go[MASTER] = 1; 169 membar_safe("#StoreLoad"); 170 while (!(tm = go[SLAVE])) 171 rmb(); 172 go[SLAVE] = 0; 173 wmb(); 174 t1 = tick_ops->get_tick(); 175 176 if (t1 - t0 < best_t1 - best_t0) 177 best_t0 = t0, best_t1 = t1, best_tm = tm; 178 } 179 180 *rt = best_t1 - best_t0; 181 *master = best_tm - best_t0; 182 183 /* average best_t0 and best_t1 without overflow: */ 184 tcenter = (best_t0/2 + best_t1/2); 185 if (best_t0 % 2 + best_t1 % 2 == 2) 186 tcenter++; 187 return tcenter - best_tm; 188 } 189 190 void smp_synchronize_tick_client(void) 191 { 192 long i, delta, adj, adjust_latency = 0, done = 0; 193 unsigned long flags, rt, master_time_stamp; 194 #if DEBUG_TICK_SYNC 195 struct { 196 long rt; /* roundtrip time */ 197 long master; /* master's timestamp */ 198 long diff; /* difference between midpoint and master's timestamp */ 199 long lat; /* estimate of itc adjustment latency */ 200 } t[NUM_ROUNDS]; 201 #endif 202 203 go[MASTER] = 1; 204 205 while (go[MASTER]) 206 rmb(); 207 208 local_irq_save(flags); 209 { 210 for (i = 0; i < NUM_ROUNDS; i++) { 211 delta = get_delta(&rt, &master_time_stamp); 212 if (delta == 0) 213 done = 1; /* let's lock on to this... */ 214 215 if (!done) { 216 if (i > 0) { 217 adjust_latency += -delta; 218 adj = -delta + adjust_latency/4; 219 } else 220 adj = -delta; 221 222 tick_ops->add_tick(adj); 223 } 224 #if DEBUG_TICK_SYNC 225 t[i].rt = rt; 226 t[i].master = master_time_stamp; 227 t[i].diff = delta; 228 t[i].lat = adjust_latency/4; 229 #endif 230 } 231 } 232 local_irq_restore(flags); 233 234 #if DEBUG_TICK_SYNC 235 for (i = 0; i < NUM_ROUNDS; i++) 236 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 237 t[i].rt, t[i].master, t[i].diff, t[i].lat); 238 #endif 239 240 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " 241 "(last diff %ld cycles, maxerr %lu cycles)\n", 242 smp_processor_id(), delta, rt); 243 } 244 245 static void smp_start_sync_tick_client(int cpu); 246 247 static void smp_synchronize_one_tick(int cpu) 248 { 249 unsigned long flags, i; 250 251 go[MASTER] = 0; 252 253 smp_start_sync_tick_client(cpu); 254 255 /* wait for client to be ready */ 256 while (!go[MASTER]) 257 rmb(); 258 259 /* now let the client proceed into his loop */ 260 go[MASTER] = 0; 261 membar_safe("#StoreLoad"); 262 263 raw_spin_lock_irqsave(&itc_sync_lock, flags); 264 { 265 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { 266 while (!go[MASTER]) 267 rmb(); 268 go[MASTER] = 0; 269 wmb(); 270 go[SLAVE] = tick_ops->get_tick(); 271 membar_safe("#StoreLoad"); 272 } 273 } 274 raw_spin_unlock_irqrestore(&itc_sync_lock, flags); 275 } 276 277 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 278 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, 279 void **descrp) 280 { 281 extern unsigned long sparc64_ttable_tl0; 282 extern unsigned long kern_locked_tte_data; 283 struct hvtramp_descr *hdesc; 284 unsigned long trampoline_ra; 285 struct trap_per_cpu *tb; 286 u64 tte_vaddr, tte_data; 287 unsigned long hv_err; 288 int i; 289 290 hdesc = kzalloc(sizeof(*hdesc) + 291 (sizeof(struct hvtramp_mapping) * 292 num_kernel_image_mappings - 1), 293 GFP_KERNEL); 294 if (!hdesc) { 295 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " 296 "hvtramp_descr.\n"); 297 return; 298 } 299 *descrp = hdesc; 300 301 hdesc->cpu = cpu; 302 hdesc->num_mappings = num_kernel_image_mappings; 303 304 tb = &trap_block[cpu]; 305 306 hdesc->fault_info_va = (unsigned long) &tb->fault_info; 307 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); 308 309 hdesc->thread_reg = thread_reg; 310 311 tte_vaddr = (unsigned long) KERNBASE; 312 tte_data = kern_locked_tte_data; 313 314 for (i = 0; i < hdesc->num_mappings; i++) { 315 hdesc->maps[i].vaddr = tte_vaddr; 316 hdesc->maps[i].tte = tte_data; 317 tte_vaddr += 0x400000; 318 tte_data += 0x400000; 319 } 320 321 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); 322 323 hv_err = sun4v_cpu_start(cpu, trampoline_ra, 324 kimage_addr_to_ra(&sparc64_ttable_tl0), 325 __pa(hdesc)); 326 if (hv_err) 327 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " 328 "gives error %lu\n", hv_err); 329 } 330 #endif 331 332 extern unsigned long sparc64_cpu_startup; 333 334 /* The OBP cpu startup callback truncates the 3rd arg cookie to 335 * 32-bits (I think) so to be safe we have it read the pointer 336 * contained here so we work on >4GB machines. -DaveM 337 */ 338 static struct thread_info *cpu_new_thread = NULL; 339 340 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle) 341 { 342 unsigned long entry = 343 (unsigned long)(&sparc64_cpu_startup); 344 unsigned long cookie = 345 (unsigned long)(&cpu_new_thread); 346 void *descr = NULL; 347 int timeout, ret; 348 349 callin_flag = 0; 350 cpu_new_thread = task_thread_info(idle); 351 352 if (tlb_type == hypervisor) { 353 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 354 if (ldom_domaining_enabled) 355 ldom_startcpu_cpuid(cpu, 356 (unsigned long) cpu_new_thread, 357 &descr); 358 else 359 #endif 360 prom_startcpu_cpuid(cpu, entry, cookie); 361 } else { 362 struct device_node *dp = of_find_node_by_cpuid(cpu); 363 364 prom_startcpu(dp->phandle, entry, cookie); 365 } 366 367 for (timeout = 0; timeout < 50000; timeout++) { 368 if (callin_flag) 369 break; 370 udelay(100); 371 } 372 373 if (callin_flag) { 374 ret = 0; 375 } else { 376 printk("Processor %d is stuck.\n", cpu); 377 ret = -ENODEV; 378 } 379 cpu_new_thread = NULL; 380 381 kfree(descr); 382 383 return ret; 384 } 385 386 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) 387 { 388 u64 result, target; 389 int stuck, tmp; 390 391 if (this_is_starfire) { 392 /* map to real upaid */ 393 cpu = (((cpu & 0x3c) << 1) | 394 ((cpu & 0x40) >> 4) | 395 (cpu & 0x3)); 396 } 397 398 target = (cpu << 14) | 0x70; 399 again: 400 /* Ok, this is the real Spitfire Errata #54. 401 * One must read back from a UDB internal register 402 * after writes to the UDB interrupt dispatch, but 403 * before the membar Sync for that write. 404 * So we use the high UDB control register (ASI 0x7f, 405 * ADDR 0x20) for the dummy read. -DaveM 406 */ 407 tmp = 0x40; 408 __asm__ __volatile__( 409 "wrpr %1, %2, %%pstate\n\t" 410 "stxa %4, [%0] %3\n\t" 411 "stxa %5, [%0+%8] %3\n\t" 412 "add %0, %8, %0\n\t" 413 "stxa %6, [%0+%8] %3\n\t" 414 "membar #Sync\n\t" 415 "stxa %%g0, [%7] %3\n\t" 416 "membar #Sync\n\t" 417 "mov 0x20, %%g1\n\t" 418 "ldxa [%%g1] 0x7f, %%g0\n\t" 419 "membar #Sync" 420 : "=r" (tmp) 421 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), 422 "r" (data0), "r" (data1), "r" (data2), "r" (target), 423 "r" (0x10), "0" (tmp) 424 : "g1"); 425 426 /* NOTE: PSTATE_IE is still clear. */ 427 stuck = 100000; 428 do { 429 __asm__ __volatile__("ldxa [%%g0] %1, %0" 430 : "=r" (result) 431 : "i" (ASI_INTR_DISPATCH_STAT)); 432 if (result == 0) { 433 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 434 : : "r" (pstate)); 435 return; 436 } 437 stuck -= 1; 438 if (stuck == 0) 439 break; 440 } while (result & 0x1); 441 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 442 : : "r" (pstate)); 443 if (stuck == 0) { 444 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 445 smp_processor_id(), result); 446 } else { 447 udelay(2); 448 goto again; 449 } 450 } 451 452 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) 453 { 454 u64 *mondo, data0, data1, data2; 455 u16 *cpu_list; 456 u64 pstate; 457 int i; 458 459 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 460 cpu_list = __va(tb->cpu_list_pa); 461 mondo = __va(tb->cpu_mondo_block_pa); 462 data0 = mondo[0]; 463 data1 = mondo[1]; 464 data2 = mondo[2]; 465 for (i = 0; i < cnt; i++) 466 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); 467 } 468 469 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt 470 * packet, but we have no use for that. However we do take advantage of 471 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). 472 */ 473 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) 474 { 475 int nack_busy_id, is_jbus, need_more; 476 u64 *mondo, pstate, ver, busy_mask; 477 u16 *cpu_list; 478 479 cpu_list = __va(tb->cpu_list_pa); 480 mondo = __va(tb->cpu_mondo_block_pa); 481 482 /* Unfortunately, someone at Sun had the brilliant idea to make the 483 * busy/nack fields hard-coded by ITID number for this Ultra-III 484 * derivative processor. 485 */ 486 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 487 is_jbus = ((ver >> 32) == __JALAPENO_ID || 488 (ver >> 32) == __SERRANO_ID); 489 490 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 491 492 retry: 493 need_more = 0; 494 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" 495 : : "r" (pstate), "i" (PSTATE_IE)); 496 497 /* Setup the dispatch data registers. */ 498 __asm__ __volatile__("stxa %0, [%3] %6\n\t" 499 "stxa %1, [%4] %6\n\t" 500 "stxa %2, [%5] %6\n\t" 501 "membar #Sync\n\t" 502 : /* no outputs */ 503 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), 504 "r" (0x40), "r" (0x50), "r" (0x60), 505 "i" (ASI_INTR_W)); 506 507 nack_busy_id = 0; 508 busy_mask = 0; 509 { 510 int i; 511 512 for (i = 0; i < cnt; i++) { 513 u64 target, nr; 514 515 nr = cpu_list[i]; 516 if (nr == 0xffff) 517 continue; 518 519 target = (nr << 14) | 0x70; 520 if (is_jbus) { 521 busy_mask |= (0x1UL << (nr * 2)); 522 } else { 523 target |= (nack_busy_id << 24); 524 busy_mask |= (0x1UL << 525 (nack_busy_id * 2)); 526 } 527 __asm__ __volatile__( 528 "stxa %%g0, [%0] %1\n\t" 529 "membar #Sync\n\t" 530 : /* no outputs */ 531 : "r" (target), "i" (ASI_INTR_W)); 532 nack_busy_id++; 533 if (nack_busy_id == 32) { 534 need_more = 1; 535 break; 536 } 537 } 538 } 539 540 /* Now, poll for completion. */ 541 { 542 u64 dispatch_stat, nack_mask; 543 long stuck; 544 545 stuck = 100000 * nack_busy_id; 546 nack_mask = busy_mask << 1; 547 do { 548 __asm__ __volatile__("ldxa [%%g0] %1, %0" 549 : "=r" (dispatch_stat) 550 : "i" (ASI_INTR_DISPATCH_STAT)); 551 if (!(dispatch_stat & (busy_mask | nack_mask))) { 552 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 553 : : "r" (pstate)); 554 if (unlikely(need_more)) { 555 int i, this_cnt = 0; 556 for (i = 0; i < cnt; i++) { 557 if (cpu_list[i] == 0xffff) 558 continue; 559 cpu_list[i] = 0xffff; 560 this_cnt++; 561 if (this_cnt == 32) 562 break; 563 } 564 goto retry; 565 } 566 return; 567 } 568 if (!--stuck) 569 break; 570 } while (dispatch_stat & busy_mask); 571 572 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 573 : : "r" (pstate)); 574 575 if (dispatch_stat & busy_mask) { 576 /* Busy bits will not clear, continue instead 577 * of freezing up on this cpu. 578 */ 579 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 580 smp_processor_id(), dispatch_stat); 581 } else { 582 int i, this_busy_nack = 0; 583 584 /* Delay some random time with interrupts enabled 585 * to prevent deadlock. 586 */ 587 udelay(2 * nack_busy_id); 588 589 /* Clear out the mask bits for cpus which did not 590 * NACK us. 591 */ 592 for (i = 0; i < cnt; i++) { 593 u64 check_mask, nr; 594 595 nr = cpu_list[i]; 596 if (nr == 0xffff) 597 continue; 598 599 if (is_jbus) 600 check_mask = (0x2UL << (2*nr)); 601 else 602 check_mask = (0x2UL << 603 this_busy_nack); 604 if ((dispatch_stat & check_mask) == 0) 605 cpu_list[i] = 0xffff; 606 this_busy_nack += 2; 607 if (this_busy_nack == 64) 608 break; 609 } 610 611 goto retry; 612 } 613 } 614 } 615 616 /* Multi-cpu list version. */ 617 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) 618 { 619 int retries, this_cpu, prev_sent, i, saw_cpu_error; 620 unsigned long status; 621 u16 *cpu_list; 622 623 this_cpu = smp_processor_id(); 624 625 cpu_list = __va(tb->cpu_list_pa); 626 627 saw_cpu_error = 0; 628 retries = 0; 629 prev_sent = 0; 630 do { 631 int forward_progress, n_sent; 632 633 status = sun4v_cpu_mondo_send(cnt, 634 tb->cpu_list_pa, 635 tb->cpu_mondo_block_pa); 636 637 /* HV_EOK means all cpus received the xcall, we're done. */ 638 if (likely(status == HV_EOK)) 639 break; 640 641 /* First, see if we made any forward progress. 642 * 643 * The hypervisor indicates successful sends by setting 644 * cpu list entries to the value 0xffff. 645 */ 646 n_sent = 0; 647 for (i = 0; i < cnt; i++) { 648 if (likely(cpu_list[i] == 0xffff)) 649 n_sent++; 650 } 651 652 forward_progress = 0; 653 if (n_sent > prev_sent) 654 forward_progress = 1; 655 656 prev_sent = n_sent; 657 658 /* If we get a HV_ECPUERROR, then one or more of the cpus 659 * in the list are in error state. Use the cpu_state() 660 * hypervisor call to find out which cpus are in error state. 661 */ 662 if (unlikely(status == HV_ECPUERROR)) { 663 for (i = 0; i < cnt; i++) { 664 long err; 665 u16 cpu; 666 667 cpu = cpu_list[i]; 668 if (cpu == 0xffff) 669 continue; 670 671 err = sun4v_cpu_state(cpu); 672 if (err == HV_CPU_STATE_ERROR) { 673 saw_cpu_error = (cpu + 1); 674 cpu_list[i] = 0xffff; 675 } 676 } 677 } else if (unlikely(status != HV_EWOULDBLOCK)) 678 goto fatal_mondo_error; 679 680 /* Don't bother rewriting the CPU list, just leave the 681 * 0xffff and non-0xffff entries in there and the 682 * hypervisor will do the right thing. 683 * 684 * Only advance timeout state if we didn't make any 685 * forward progress. 686 */ 687 if (unlikely(!forward_progress)) { 688 if (unlikely(++retries > 10000)) 689 goto fatal_mondo_timeout; 690 691 /* Delay a little bit to let other cpus catch up 692 * on their cpu mondo queue work. 693 */ 694 udelay(2 * cnt); 695 } 696 } while (1); 697 698 if (unlikely(saw_cpu_error)) 699 goto fatal_mondo_cpu_error; 700 701 return; 702 703 fatal_mondo_cpu_error: 704 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " 705 "(including %d) were in error state\n", 706 this_cpu, saw_cpu_error - 1); 707 return; 708 709 fatal_mondo_timeout: 710 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " 711 " progress after %d retries.\n", 712 this_cpu, retries); 713 goto dump_cpu_list_and_out; 714 715 fatal_mondo_error: 716 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", 717 this_cpu, status); 718 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " 719 "mondo_block_pa(%lx)\n", 720 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); 721 722 dump_cpu_list_and_out: 723 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); 724 for (i = 0; i < cnt; i++) 725 printk("%u ", cpu_list[i]); 726 printk("]\n"); 727 } 728 729 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); 730 731 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) 732 { 733 struct trap_per_cpu *tb; 734 int this_cpu, i, cnt; 735 unsigned long flags; 736 u16 *cpu_list; 737 u64 *mondo; 738 739 /* We have to do this whole thing with interrupts fully disabled. 740 * Otherwise if we send an xcall from interrupt context it will 741 * corrupt both our mondo block and cpu list state. 742 * 743 * One consequence of this is that we cannot use timeout mechanisms 744 * that depend upon interrupts being delivered locally. So, for 745 * example, we cannot sample jiffies and expect it to advance. 746 * 747 * Fortunately, udelay() uses %stick/%tick so we can use that. 748 */ 749 local_irq_save(flags); 750 751 this_cpu = smp_processor_id(); 752 tb = &trap_block[this_cpu]; 753 754 mondo = __va(tb->cpu_mondo_block_pa); 755 mondo[0] = data0; 756 mondo[1] = data1; 757 mondo[2] = data2; 758 wmb(); 759 760 cpu_list = __va(tb->cpu_list_pa); 761 762 /* Setup the initial cpu list. */ 763 cnt = 0; 764 for_each_cpu(i, mask) { 765 if (i == this_cpu || !cpu_online(i)) 766 continue; 767 cpu_list[cnt++] = i; 768 } 769 770 if (cnt) 771 xcall_deliver_impl(tb, cnt); 772 773 local_irq_restore(flags); 774 } 775 776 /* Send cross call to all processors mentioned in MASK_P 777 * except self. Really, there are only two cases currently, 778 * "cpu_online_mask" and "mm_cpumask(mm)". 779 */ 780 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) 781 { 782 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); 783 784 xcall_deliver(data0, data1, data2, mask); 785 } 786 787 /* Send cross call to all processors except self. */ 788 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) 789 { 790 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask); 791 } 792 793 extern unsigned long xcall_sync_tick; 794 795 static void smp_start_sync_tick_client(int cpu) 796 { 797 xcall_deliver((u64) &xcall_sync_tick, 0, 0, 798 cpumask_of(cpu)); 799 } 800 801 extern unsigned long xcall_call_function; 802 803 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 804 { 805 xcall_deliver((u64) &xcall_call_function, 0, 0, mask); 806 } 807 808 extern unsigned long xcall_call_function_single; 809 810 void arch_send_call_function_single_ipi(int cpu) 811 { 812 xcall_deliver((u64) &xcall_call_function_single, 0, 0, 813 cpumask_of(cpu)); 814 } 815 816 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs) 817 { 818 clear_softint(1 << irq); 819 generic_smp_call_function_interrupt(); 820 } 821 822 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs) 823 { 824 clear_softint(1 << irq); 825 generic_smp_call_function_single_interrupt(); 826 } 827 828 static void tsb_sync(void *info) 829 { 830 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; 831 struct mm_struct *mm = info; 832 833 /* It is not valid to test "current->active_mm == mm" here. 834 * 835 * The value of "current" is not changed atomically with 836 * switch_mm(). But that's OK, we just need to check the 837 * current cpu's trap block PGD physical address. 838 */ 839 if (tp->pgd_paddr == __pa(mm->pgd)) 840 tsb_context_switch(mm); 841 } 842 843 void smp_tsb_sync(struct mm_struct *mm) 844 { 845 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1); 846 } 847 848 extern unsigned long xcall_flush_tlb_mm; 849 extern unsigned long xcall_flush_tlb_page; 850 extern unsigned long xcall_flush_tlb_kernel_range; 851 extern unsigned long xcall_fetch_glob_regs; 852 extern unsigned long xcall_fetch_glob_pmu; 853 extern unsigned long xcall_fetch_glob_pmu_n4; 854 extern unsigned long xcall_receive_signal; 855 extern unsigned long xcall_new_mmu_context_version; 856 #ifdef CONFIG_KGDB 857 extern unsigned long xcall_kgdb_capture; 858 #endif 859 860 #ifdef DCACHE_ALIASING_POSSIBLE 861 extern unsigned long xcall_flush_dcache_page_cheetah; 862 #endif 863 extern unsigned long xcall_flush_dcache_page_spitfire; 864 865 static inline void __local_flush_dcache_page(struct page *page) 866 { 867 #ifdef DCACHE_ALIASING_POSSIBLE 868 __flush_dcache_page(page_address(page), 869 ((tlb_type == spitfire) && 870 page_mapping(page) != NULL)); 871 #else 872 if (page_mapping(page) != NULL && 873 tlb_type == spitfire) 874 __flush_icache_page(__pa(page_address(page))); 875 #endif 876 } 877 878 void smp_flush_dcache_page_impl(struct page *page, int cpu) 879 { 880 int this_cpu; 881 882 if (tlb_type == hypervisor) 883 return; 884 885 #ifdef CONFIG_DEBUG_DCFLUSH 886 atomic_inc(&dcpage_flushes); 887 #endif 888 889 this_cpu = get_cpu(); 890 891 if (cpu == this_cpu) { 892 __local_flush_dcache_page(page); 893 } else if (cpu_online(cpu)) { 894 void *pg_addr = page_address(page); 895 u64 data0 = 0; 896 897 if (tlb_type == spitfire) { 898 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 899 if (page_mapping(page) != NULL) 900 data0 |= ((u64)1 << 32); 901 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 902 #ifdef DCACHE_ALIASING_POSSIBLE 903 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 904 #endif 905 } 906 if (data0) { 907 xcall_deliver(data0, __pa(pg_addr), 908 (u64) pg_addr, cpumask_of(cpu)); 909 #ifdef CONFIG_DEBUG_DCFLUSH 910 atomic_inc(&dcpage_flushes_xcall); 911 #endif 912 } 913 } 914 915 put_cpu(); 916 } 917 918 void flush_dcache_page_all(struct mm_struct *mm, struct page *page) 919 { 920 void *pg_addr; 921 u64 data0; 922 923 if (tlb_type == hypervisor) 924 return; 925 926 preempt_disable(); 927 928 #ifdef CONFIG_DEBUG_DCFLUSH 929 atomic_inc(&dcpage_flushes); 930 #endif 931 data0 = 0; 932 pg_addr = page_address(page); 933 if (tlb_type == spitfire) { 934 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 935 if (page_mapping(page) != NULL) 936 data0 |= ((u64)1 << 32); 937 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 938 #ifdef DCACHE_ALIASING_POSSIBLE 939 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 940 #endif 941 } 942 if (data0) { 943 xcall_deliver(data0, __pa(pg_addr), 944 (u64) pg_addr, cpu_online_mask); 945 #ifdef CONFIG_DEBUG_DCFLUSH 946 atomic_inc(&dcpage_flushes_xcall); 947 #endif 948 } 949 __local_flush_dcache_page(page); 950 951 preempt_enable(); 952 } 953 954 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) 955 { 956 struct mm_struct *mm; 957 unsigned long flags; 958 959 clear_softint(1 << irq); 960 961 /* See if we need to allocate a new TLB context because 962 * the version of the one we are using is now out of date. 963 */ 964 mm = current->active_mm; 965 if (unlikely(!mm || (mm == &init_mm))) 966 return; 967 968 spin_lock_irqsave(&mm->context.lock, flags); 969 970 if (unlikely(!CTX_VALID(mm->context))) 971 get_new_mmu_context(mm); 972 973 spin_unlock_irqrestore(&mm->context.lock, flags); 974 975 load_secondary_context(mm); 976 __flush_tlb_mm(CTX_HWBITS(mm->context), 977 SECONDARY_CONTEXT); 978 } 979 980 void smp_new_mmu_context_version(void) 981 { 982 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); 983 } 984 985 #ifdef CONFIG_KGDB 986 void kgdb_roundup_cpus(unsigned long flags) 987 { 988 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); 989 } 990 #endif 991 992 void smp_fetch_global_regs(void) 993 { 994 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); 995 } 996 997 void smp_fetch_global_pmu(void) 998 { 999 if (tlb_type == hypervisor && 1000 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 1001 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0); 1002 else 1003 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0); 1004 } 1005 1006 /* We know that the window frames of the user have been flushed 1007 * to the stack before we get here because all callers of us 1008 * are flush_tlb_*() routines, and these run after flush_cache_*() 1009 * which performs the flushw. 1010 * 1011 * The SMP TLB coherency scheme we use works as follows: 1012 * 1013 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address 1014 * space has (potentially) executed on, this is the heuristic 1015 * we use to avoid doing cross calls. 1016 * 1017 * Also, for flushing from kswapd and also for clones, we 1018 * use cpu_vm_mask as the list of cpus to make run the TLB. 1019 * 1020 * 2) TLB context numbers are shared globally across all processors 1021 * in the system, this allows us to play several games to avoid 1022 * cross calls. 1023 * 1024 * One invariant is that when a cpu switches to a process, and 1025 * that processes tsk->active_mm->cpu_vm_mask does not have the 1026 * current cpu's bit set, that tlb context is flushed locally. 1027 * 1028 * If the address space is non-shared (ie. mm->count == 1) we avoid 1029 * cross calls when we want to flush the currently running process's 1030 * tlb state. This is done by clearing all cpu bits except the current 1031 * processor's in current->mm->cpu_vm_mask and performing the 1032 * flush locally only. This will force any subsequent cpus which run 1033 * this task to flush the context from the local tlb if the process 1034 * migrates to another cpu (again). 1035 * 1036 * 3) For shared address spaces (threads) and swapping we bite the 1037 * bullet for most cases and perform the cross call (but only to 1038 * the cpus listed in cpu_vm_mask). 1039 * 1040 * The performance gain from "optimizing" away the cross call for threads is 1041 * questionable (in theory the big win for threads is the massive sharing of 1042 * address space state across processors). 1043 */ 1044 1045 /* This currently is only used by the hugetlb arch pre-fault 1046 * hook on UltraSPARC-III+ and later when changing the pagesize 1047 * bits of the context register for an address space. 1048 */ 1049 void smp_flush_tlb_mm(struct mm_struct *mm) 1050 { 1051 u32 ctx = CTX_HWBITS(mm->context); 1052 int cpu = get_cpu(); 1053 1054 if (atomic_read(&mm->mm_users) == 1) { 1055 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1056 goto local_flush_and_out; 1057 } 1058 1059 smp_cross_call_masked(&xcall_flush_tlb_mm, 1060 ctx, 0, 0, 1061 mm_cpumask(mm)); 1062 1063 local_flush_and_out: 1064 __flush_tlb_mm(ctx, SECONDARY_CONTEXT); 1065 1066 put_cpu(); 1067 } 1068 1069 struct tlb_pending_info { 1070 unsigned long ctx; 1071 unsigned long nr; 1072 unsigned long *vaddrs; 1073 }; 1074 1075 static void tlb_pending_func(void *info) 1076 { 1077 struct tlb_pending_info *t = info; 1078 1079 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs); 1080 } 1081 1082 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) 1083 { 1084 u32 ctx = CTX_HWBITS(mm->context); 1085 struct tlb_pending_info info; 1086 int cpu = get_cpu(); 1087 1088 info.ctx = ctx; 1089 info.nr = nr; 1090 info.vaddrs = vaddrs; 1091 1092 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1093 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1094 else 1095 smp_call_function_many(mm_cpumask(mm), tlb_pending_func, 1096 &info, 1); 1097 1098 __flush_tlb_pending(ctx, nr, vaddrs); 1099 1100 put_cpu(); 1101 } 1102 1103 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr) 1104 { 1105 unsigned long context = CTX_HWBITS(mm->context); 1106 int cpu = get_cpu(); 1107 1108 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1109 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1110 else 1111 smp_cross_call_masked(&xcall_flush_tlb_page, 1112 context, vaddr, 0, 1113 mm_cpumask(mm)); 1114 __flush_tlb_page(context, vaddr); 1115 1116 put_cpu(); 1117 } 1118 1119 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) 1120 { 1121 start &= PAGE_MASK; 1122 end = PAGE_ALIGN(end); 1123 if (start != end) { 1124 smp_cross_call(&xcall_flush_tlb_kernel_range, 1125 0, start, end); 1126 1127 __flush_tlb_kernel_range(start, end); 1128 } 1129 } 1130 1131 /* CPU capture. */ 1132 /* #define CAPTURE_DEBUG */ 1133 extern unsigned long xcall_capture; 1134 1135 static atomic_t smp_capture_depth = ATOMIC_INIT(0); 1136 static atomic_t smp_capture_registry = ATOMIC_INIT(0); 1137 static unsigned long penguins_are_doing_time; 1138 1139 void smp_capture(void) 1140 { 1141 int result = atomic_add_ret(1, &smp_capture_depth); 1142 1143 if (result == 1) { 1144 int ncpus = num_online_cpus(); 1145 1146 #ifdef CAPTURE_DEBUG 1147 printk("CPU[%d]: Sending penguins to jail...", 1148 smp_processor_id()); 1149 #endif 1150 penguins_are_doing_time = 1; 1151 atomic_inc(&smp_capture_registry); 1152 smp_cross_call(&xcall_capture, 0, 0, 0); 1153 while (atomic_read(&smp_capture_registry) != ncpus) 1154 rmb(); 1155 #ifdef CAPTURE_DEBUG 1156 printk("done\n"); 1157 #endif 1158 } 1159 } 1160 1161 void smp_release(void) 1162 { 1163 if (atomic_dec_and_test(&smp_capture_depth)) { 1164 #ifdef CAPTURE_DEBUG 1165 printk("CPU[%d]: Giving pardon to " 1166 "imprisoned penguins\n", 1167 smp_processor_id()); 1168 #endif 1169 penguins_are_doing_time = 0; 1170 membar_safe("#StoreLoad"); 1171 atomic_dec(&smp_capture_registry); 1172 } 1173 } 1174 1175 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE 1176 * set, so they can service tlb flush xcalls... 1177 */ 1178 extern void prom_world(int); 1179 1180 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs) 1181 { 1182 clear_softint(1 << irq); 1183 1184 preempt_disable(); 1185 1186 __asm__ __volatile__("flushw"); 1187 prom_world(1); 1188 atomic_inc(&smp_capture_registry); 1189 membar_safe("#StoreLoad"); 1190 while (penguins_are_doing_time) 1191 rmb(); 1192 atomic_dec(&smp_capture_registry); 1193 prom_world(0); 1194 1195 preempt_enable(); 1196 } 1197 1198 /* /proc/profile writes can call this, don't __init it please. */ 1199 int setup_profiling_timer(unsigned int multiplier) 1200 { 1201 return -EINVAL; 1202 } 1203 1204 void __init smp_prepare_cpus(unsigned int max_cpus) 1205 { 1206 } 1207 1208 void smp_prepare_boot_cpu(void) 1209 { 1210 } 1211 1212 void __init smp_setup_processor_id(void) 1213 { 1214 if (tlb_type == spitfire) 1215 xcall_deliver_impl = spitfire_xcall_deliver; 1216 else if (tlb_type == cheetah || tlb_type == cheetah_plus) 1217 xcall_deliver_impl = cheetah_xcall_deliver; 1218 else 1219 xcall_deliver_impl = hypervisor_xcall_deliver; 1220 } 1221 1222 void smp_fill_in_sib_core_maps(void) 1223 { 1224 unsigned int i; 1225 1226 for_each_present_cpu(i) { 1227 unsigned int j; 1228 1229 cpumask_clear(&cpu_core_map[i]); 1230 if (cpu_data(i).core_id == 0) { 1231 cpumask_set_cpu(i, &cpu_core_map[i]); 1232 continue; 1233 } 1234 1235 for_each_present_cpu(j) { 1236 if (cpu_data(i).core_id == 1237 cpu_data(j).core_id) 1238 cpumask_set_cpu(j, &cpu_core_map[i]); 1239 } 1240 } 1241 1242 for_each_present_cpu(i) { 1243 unsigned int j; 1244 1245 cpumask_clear(&per_cpu(cpu_sibling_map, i)); 1246 if (cpu_data(i).proc_id == -1) { 1247 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i)); 1248 continue; 1249 } 1250 1251 for_each_present_cpu(j) { 1252 if (cpu_data(i).proc_id == 1253 cpu_data(j).proc_id) 1254 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i)); 1255 } 1256 } 1257 } 1258 1259 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1260 { 1261 int ret = smp_boot_one_cpu(cpu, tidle); 1262 1263 if (!ret) { 1264 cpumask_set_cpu(cpu, &smp_commenced_mask); 1265 while (!cpu_online(cpu)) 1266 mb(); 1267 if (!cpu_online(cpu)) { 1268 ret = -ENODEV; 1269 } else { 1270 /* On SUN4V, writes to %tick and %stick are 1271 * not allowed. 1272 */ 1273 if (tlb_type != hypervisor) 1274 smp_synchronize_one_tick(cpu); 1275 } 1276 } 1277 return ret; 1278 } 1279 1280 #ifdef CONFIG_HOTPLUG_CPU 1281 void cpu_play_dead(void) 1282 { 1283 int cpu = smp_processor_id(); 1284 unsigned long pstate; 1285 1286 idle_task_exit(); 1287 1288 if (tlb_type == hypervisor) { 1289 struct trap_per_cpu *tb = &trap_block[cpu]; 1290 1291 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, 1292 tb->cpu_mondo_pa, 0); 1293 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, 1294 tb->dev_mondo_pa, 0); 1295 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, 1296 tb->resum_mondo_pa, 0); 1297 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, 1298 tb->nonresum_mondo_pa, 0); 1299 } 1300 1301 cpumask_clear_cpu(cpu, &smp_commenced_mask); 1302 membar_safe("#Sync"); 1303 1304 local_irq_disable(); 1305 1306 __asm__ __volatile__( 1307 "rdpr %%pstate, %0\n\t" 1308 "wrpr %0, %1, %%pstate" 1309 : "=r" (pstate) 1310 : "i" (PSTATE_IE)); 1311 1312 while (1) 1313 barrier(); 1314 } 1315 1316 int __cpu_disable(void) 1317 { 1318 int cpu = smp_processor_id(); 1319 cpuinfo_sparc *c; 1320 int i; 1321 1322 for_each_cpu(i, &cpu_core_map[cpu]) 1323 cpumask_clear_cpu(cpu, &cpu_core_map[i]); 1324 cpumask_clear(&cpu_core_map[cpu]); 1325 1326 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) 1327 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); 1328 cpumask_clear(&per_cpu(cpu_sibling_map, cpu)); 1329 1330 c = &cpu_data(cpu); 1331 1332 c->core_id = 0; 1333 c->proc_id = -1; 1334 1335 smp_wmb(); 1336 1337 /* Make sure no interrupts point to this cpu. */ 1338 fixup_irqs(); 1339 1340 local_irq_enable(); 1341 mdelay(1); 1342 local_irq_disable(); 1343 1344 set_cpu_online(cpu, false); 1345 1346 cpu_map_rebuild(); 1347 1348 return 0; 1349 } 1350 1351 void __cpu_die(unsigned int cpu) 1352 { 1353 int i; 1354 1355 for (i = 0; i < 100; i++) { 1356 smp_rmb(); 1357 if (!cpumask_test_cpu(cpu, &smp_commenced_mask)) 1358 break; 1359 msleep(100); 1360 } 1361 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) { 1362 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 1363 } else { 1364 #if defined(CONFIG_SUN_LDOMS) 1365 unsigned long hv_err; 1366 int limit = 100; 1367 1368 do { 1369 hv_err = sun4v_cpu_stop(cpu); 1370 if (hv_err == HV_EOK) { 1371 set_cpu_present(cpu, false); 1372 break; 1373 } 1374 } while (--limit > 0); 1375 if (limit <= 0) { 1376 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", 1377 hv_err); 1378 } 1379 #endif 1380 } 1381 } 1382 #endif 1383 1384 void __init smp_cpus_done(unsigned int max_cpus) 1385 { 1386 pcr_arch_init(); 1387 } 1388 1389 void smp_send_reschedule(int cpu) 1390 { 1391 if (cpu == smp_processor_id()) { 1392 WARN_ON_ONCE(preemptible()); 1393 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL); 1394 } else { 1395 xcall_deliver((u64) &xcall_receive_signal, 1396 0, 0, cpumask_of(cpu)); 1397 } 1398 } 1399 1400 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs) 1401 { 1402 clear_softint(1 << irq); 1403 scheduler_ipi(); 1404 } 1405 1406 /* This is a nop because we capture all other cpus 1407 * anyways when making the PROM active. 1408 */ 1409 void smp_send_stop(void) 1410 { 1411 } 1412 1413 /** 1414 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu 1415 * @cpu: cpu to allocate for 1416 * @size: size allocation in bytes 1417 * @align: alignment 1418 * 1419 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper 1420 * does the right thing for NUMA regardless of the current 1421 * configuration. 1422 * 1423 * RETURNS: 1424 * Pointer to the allocated area on success, NULL on failure. 1425 */ 1426 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, 1427 size_t align) 1428 { 1429 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 1430 #ifdef CONFIG_NEED_MULTIPLE_NODES 1431 int node = cpu_to_node(cpu); 1432 void *ptr; 1433 1434 if (!node_online(node) || !NODE_DATA(node)) { 1435 ptr = __alloc_bootmem(size, align, goal); 1436 pr_info("cpu %d has no node %d or node-local memory\n", 1437 cpu, node); 1438 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", 1439 cpu, size, __pa(ptr)); 1440 } else { 1441 ptr = __alloc_bootmem_node(NODE_DATA(node), 1442 size, align, goal); 1443 pr_debug("per cpu data for cpu%d %lu bytes on node%d at " 1444 "%016lx\n", cpu, size, node, __pa(ptr)); 1445 } 1446 return ptr; 1447 #else 1448 return __alloc_bootmem(size, align, goal); 1449 #endif 1450 } 1451 1452 static void __init pcpu_free_bootmem(void *ptr, size_t size) 1453 { 1454 free_bootmem(__pa(ptr), size); 1455 } 1456 1457 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 1458 { 1459 if (cpu_to_node(from) == cpu_to_node(to)) 1460 return LOCAL_DISTANCE; 1461 else 1462 return REMOTE_DISTANCE; 1463 } 1464 1465 static void __init pcpu_populate_pte(unsigned long addr) 1466 { 1467 pgd_t *pgd = pgd_offset_k(addr); 1468 pud_t *pud; 1469 pmd_t *pmd; 1470 1471 pud = pud_offset(pgd, addr); 1472 if (pud_none(*pud)) { 1473 pmd_t *new; 1474 1475 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1476 pud_populate(&init_mm, pud, new); 1477 } 1478 1479 pmd = pmd_offset(pud, addr); 1480 if (!pmd_present(*pmd)) { 1481 pte_t *new; 1482 1483 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1484 pmd_populate_kernel(&init_mm, pmd, new); 1485 } 1486 } 1487 1488 void __init setup_per_cpu_areas(void) 1489 { 1490 unsigned long delta; 1491 unsigned int cpu; 1492 int rc = -EINVAL; 1493 1494 if (pcpu_chosen_fc != PCPU_FC_PAGE) { 1495 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1496 PERCPU_DYNAMIC_RESERVE, 4 << 20, 1497 pcpu_cpu_distance, 1498 pcpu_alloc_bootmem, 1499 pcpu_free_bootmem); 1500 if (rc) 1501 pr_warning("PERCPU: %s allocator failed (%d), " 1502 "falling back to page size\n", 1503 pcpu_fc_names[pcpu_chosen_fc], rc); 1504 } 1505 if (rc < 0) 1506 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, 1507 pcpu_alloc_bootmem, 1508 pcpu_free_bootmem, 1509 pcpu_populate_pte); 1510 if (rc < 0) 1511 panic("cannot initialize percpu area (err=%d)", rc); 1512 1513 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1514 for_each_possible_cpu(cpu) 1515 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; 1516 1517 /* Setup %g5 for the boot cpu. */ 1518 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); 1519 1520 of_fill_in_cpu_data(); 1521 if (tlb_type == hypervisor) 1522 mdesc_fill_in_cpu_data(cpu_all_mask); 1523 } 1524