xref: /openbmc/linux/arch/sparc/kernel/smp_64.c (revision 61bf3293)
1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc64 SMP support.
3  *
4  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5  */
6 
7 #include <linux/export.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/hotplug.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/jiffies.h>
24 #include <linux/profile.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/ftrace.h>
28 #include <linux/cpu.h>
29 #include <linux/slab.h>
30 #include <linux/kgdb.h>
31 
32 #include <asm/head.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cpudata.h>
38 #include <asm/hvtramp.h>
39 #include <asm/io.h>
40 #include <asm/timer.h>
41 #include <asm/setup.h>
42 
43 #include <asm/irq.h>
44 #include <asm/irq_regs.h>
45 #include <asm/page.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/sections.h>
51 #include <asm/prom.h>
52 #include <asm/mdesc.h>
53 #include <asm/ldc.h>
54 #include <asm/hypervisor.h>
55 #include <asm/pcr.h>
56 
57 #include "cpumap.h"
58 #include "kernel.h"
59 
60 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
61 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
62 	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
63 
64 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
65 	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
66 
67 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
68 	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
69 
70 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
71 EXPORT_SYMBOL(cpu_core_map);
72 EXPORT_SYMBOL(cpu_core_sib_map);
73 EXPORT_SYMBOL(cpu_core_sib_cache_map);
74 
75 static cpumask_t smp_commenced_mask;
76 
77 static DEFINE_PER_CPU(bool, poke);
78 static bool cpu_poke;
79 
80 void smp_info(struct seq_file *m)
81 {
82 	int i;
83 
84 	seq_printf(m, "State:\n");
85 	for_each_online_cpu(i)
86 		seq_printf(m, "CPU%d:\t\tonline\n", i);
87 }
88 
89 void smp_bogo(struct seq_file *m)
90 {
91 	int i;
92 
93 	for_each_online_cpu(i)
94 		seq_printf(m,
95 			   "Cpu%dClkTck\t: %016lx\n",
96 			   i, cpu_data(i).clock_tick);
97 }
98 
99 extern void setup_sparc64_timer(void);
100 
101 static volatile unsigned long callin_flag = 0;
102 
103 void smp_callin(void)
104 {
105 	int cpuid = hard_smp_processor_id();
106 
107 	__local_per_cpu_offset = __per_cpu_offset(cpuid);
108 
109 	if (tlb_type == hypervisor)
110 		sun4v_ktsb_register();
111 
112 	__flush_tlb_all();
113 
114 	setup_sparc64_timer();
115 
116 	if (cheetah_pcache_forced_on)
117 		cheetah_enable_pcache();
118 
119 	callin_flag = 1;
120 	__asm__ __volatile__("membar #Sync\n\t"
121 			     "flush  %%g6" : : : "memory");
122 
123 	/* Clear this or we will die instantly when we
124 	 * schedule back to this idler...
125 	 */
126 	current_thread_info()->new_child = 0;
127 
128 	/* Attach to the address space of init_task. */
129 	mmgrab(&init_mm);
130 	current->active_mm = &init_mm;
131 
132 	/* inform the notifiers about the new cpu */
133 	notify_cpu_starting(cpuid);
134 
135 	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
136 		rmb();
137 
138 	set_cpu_online(cpuid, true);
139 
140 	/* idle thread is expected to have preempt disabled */
141 	preempt_disable();
142 
143 	local_irq_enable();
144 
145 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
146 }
147 
148 void cpu_panic(void)
149 {
150 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
151 	panic("SMP bolixed\n");
152 }
153 
154 /* This tick register synchronization scheme is taken entirely from
155  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
156  *
157  * The only change I've made is to rework it so that the master
158  * initiates the synchonization instead of the slave. -DaveM
159  */
160 
161 #define MASTER	0
162 #define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
163 
164 #define NUM_ROUNDS	64	/* magic value */
165 #define NUM_ITERS	5	/* likewise */
166 
167 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
168 static unsigned long go[SLAVE + 1];
169 
170 #define DEBUG_TICK_SYNC	0
171 
172 static inline long get_delta (long *rt, long *master)
173 {
174 	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
175 	unsigned long tcenter, t0, t1, tm;
176 	unsigned long i;
177 
178 	for (i = 0; i < NUM_ITERS; i++) {
179 		t0 = tick_ops->get_tick();
180 		go[MASTER] = 1;
181 		membar_safe("#StoreLoad");
182 		while (!(tm = go[SLAVE]))
183 			rmb();
184 		go[SLAVE] = 0;
185 		wmb();
186 		t1 = tick_ops->get_tick();
187 
188 		if (t1 - t0 < best_t1 - best_t0)
189 			best_t0 = t0, best_t1 = t1, best_tm = tm;
190 	}
191 
192 	*rt = best_t1 - best_t0;
193 	*master = best_tm - best_t0;
194 
195 	/* average best_t0 and best_t1 without overflow: */
196 	tcenter = (best_t0/2 + best_t1/2);
197 	if (best_t0 % 2 + best_t1 % 2 == 2)
198 		tcenter++;
199 	return tcenter - best_tm;
200 }
201 
202 void smp_synchronize_tick_client(void)
203 {
204 	long i, delta, adj, adjust_latency = 0, done = 0;
205 	unsigned long flags, rt, master_time_stamp;
206 #if DEBUG_TICK_SYNC
207 	struct {
208 		long rt;	/* roundtrip time */
209 		long master;	/* master's timestamp */
210 		long diff;	/* difference between midpoint and master's timestamp */
211 		long lat;	/* estimate of itc adjustment latency */
212 	} t[NUM_ROUNDS];
213 #endif
214 
215 	go[MASTER] = 1;
216 
217 	while (go[MASTER])
218 		rmb();
219 
220 	local_irq_save(flags);
221 	{
222 		for (i = 0; i < NUM_ROUNDS; i++) {
223 			delta = get_delta(&rt, &master_time_stamp);
224 			if (delta == 0)
225 				done = 1;	/* let's lock on to this... */
226 
227 			if (!done) {
228 				if (i > 0) {
229 					adjust_latency += -delta;
230 					adj = -delta + adjust_latency/4;
231 				} else
232 					adj = -delta;
233 
234 				tick_ops->add_tick(adj);
235 			}
236 #if DEBUG_TICK_SYNC
237 			t[i].rt = rt;
238 			t[i].master = master_time_stamp;
239 			t[i].diff = delta;
240 			t[i].lat = adjust_latency/4;
241 #endif
242 		}
243 	}
244 	local_irq_restore(flags);
245 
246 #if DEBUG_TICK_SYNC
247 	for (i = 0; i < NUM_ROUNDS; i++)
248 		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
249 		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
250 #endif
251 
252 	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
253 	       "(last diff %ld cycles, maxerr %lu cycles)\n",
254 	       smp_processor_id(), delta, rt);
255 }
256 
257 static void smp_start_sync_tick_client(int cpu);
258 
259 static void smp_synchronize_one_tick(int cpu)
260 {
261 	unsigned long flags, i;
262 
263 	go[MASTER] = 0;
264 
265 	smp_start_sync_tick_client(cpu);
266 
267 	/* wait for client to be ready */
268 	while (!go[MASTER])
269 		rmb();
270 
271 	/* now let the client proceed into his loop */
272 	go[MASTER] = 0;
273 	membar_safe("#StoreLoad");
274 
275 	raw_spin_lock_irqsave(&itc_sync_lock, flags);
276 	{
277 		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
278 			while (!go[MASTER])
279 				rmb();
280 			go[MASTER] = 0;
281 			wmb();
282 			go[SLAVE] = tick_ops->get_tick();
283 			membar_safe("#StoreLoad");
284 		}
285 	}
286 	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
287 }
288 
289 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
290 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
291 				void **descrp)
292 {
293 	extern unsigned long sparc64_ttable_tl0;
294 	extern unsigned long kern_locked_tte_data;
295 	struct hvtramp_descr *hdesc;
296 	unsigned long trampoline_ra;
297 	struct trap_per_cpu *tb;
298 	u64 tte_vaddr, tte_data;
299 	unsigned long hv_err;
300 	int i;
301 
302 	hdesc = kzalloc(sizeof(*hdesc) +
303 			(sizeof(struct hvtramp_mapping) *
304 			 num_kernel_image_mappings - 1),
305 			GFP_KERNEL);
306 	if (!hdesc) {
307 		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
308 		       "hvtramp_descr.\n");
309 		return;
310 	}
311 	*descrp = hdesc;
312 
313 	hdesc->cpu = cpu;
314 	hdesc->num_mappings = num_kernel_image_mappings;
315 
316 	tb = &trap_block[cpu];
317 
318 	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
319 	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
320 
321 	hdesc->thread_reg = thread_reg;
322 
323 	tte_vaddr = (unsigned long) KERNBASE;
324 	tte_data = kern_locked_tte_data;
325 
326 	for (i = 0; i < hdesc->num_mappings; i++) {
327 		hdesc->maps[i].vaddr = tte_vaddr;
328 		hdesc->maps[i].tte   = tte_data;
329 		tte_vaddr += 0x400000;
330 		tte_data  += 0x400000;
331 	}
332 
333 	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
334 
335 	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
336 				 kimage_addr_to_ra(&sparc64_ttable_tl0),
337 				 __pa(hdesc));
338 	if (hv_err)
339 		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
340 		       "gives error %lu\n", hv_err);
341 }
342 #endif
343 
344 extern unsigned long sparc64_cpu_startup;
345 
346 /* The OBP cpu startup callback truncates the 3rd arg cookie to
347  * 32-bits (I think) so to be safe we have it read the pointer
348  * contained here so we work on >4GB machines. -DaveM
349  */
350 static struct thread_info *cpu_new_thread = NULL;
351 
352 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
353 {
354 	unsigned long entry =
355 		(unsigned long)(&sparc64_cpu_startup);
356 	unsigned long cookie =
357 		(unsigned long)(&cpu_new_thread);
358 	void *descr = NULL;
359 	int timeout, ret;
360 
361 	callin_flag = 0;
362 	cpu_new_thread = task_thread_info(idle);
363 
364 	if (tlb_type == hypervisor) {
365 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
366 		if (ldom_domaining_enabled)
367 			ldom_startcpu_cpuid(cpu,
368 					    (unsigned long) cpu_new_thread,
369 					    &descr);
370 		else
371 #endif
372 			prom_startcpu_cpuid(cpu, entry, cookie);
373 	} else {
374 		struct device_node *dp = of_find_node_by_cpuid(cpu);
375 
376 		prom_startcpu(dp->phandle, entry, cookie);
377 	}
378 
379 	for (timeout = 0; timeout < 50000; timeout++) {
380 		if (callin_flag)
381 			break;
382 		udelay(100);
383 	}
384 
385 	if (callin_flag) {
386 		ret = 0;
387 	} else {
388 		printk("Processor %d is stuck.\n", cpu);
389 		ret = -ENODEV;
390 	}
391 	cpu_new_thread = NULL;
392 
393 	kfree(descr);
394 
395 	return ret;
396 }
397 
398 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
399 {
400 	u64 result, target;
401 	int stuck, tmp;
402 
403 	if (this_is_starfire) {
404 		/* map to real upaid */
405 		cpu = (((cpu & 0x3c) << 1) |
406 			((cpu & 0x40) >> 4) |
407 			(cpu & 0x3));
408 	}
409 
410 	target = (cpu << 14) | 0x70;
411 again:
412 	/* Ok, this is the real Spitfire Errata #54.
413 	 * One must read back from a UDB internal register
414 	 * after writes to the UDB interrupt dispatch, but
415 	 * before the membar Sync for that write.
416 	 * So we use the high UDB control register (ASI 0x7f,
417 	 * ADDR 0x20) for the dummy read. -DaveM
418 	 */
419 	tmp = 0x40;
420 	__asm__ __volatile__(
421 	"wrpr	%1, %2, %%pstate\n\t"
422 	"stxa	%4, [%0] %3\n\t"
423 	"stxa	%5, [%0+%8] %3\n\t"
424 	"add	%0, %8, %0\n\t"
425 	"stxa	%6, [%0+%8] %3\n\t"
426 	"membar	#Sync\n\t"
427 	"stxa	%%g0, [%7] %3\n\t"
428 	"membar	#Sync\n\t"
429 	"mov	0x20, %%g1\n\t"
430 	"ldxa	[%%g1] 0x7f, %%g0\n\t"
431 	"membar	#Sync"
432 	: "=r" (tmp)
433 	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
434 	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
435 	  "r" (0x10), "0" (tmp)
436         : "g1");
437 
438 	/* NOTE: PSTATE_IE is still clear. */
439 	stuck = 100000;
440 	do {
441 		__asm__ __volatile__("ldxa [%%g0] %1, %0"
442 			: "=r" (result)
443 			: "i" (ASI_INTR_DISPATCH_STAT));
444 		if (result == 0) {
445 			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446 					     : : "r" (pstate));
447 			return;
448 		}
449 		stuck -= 1;
450 		if (stuck == 0)
451 			break;
452 	} while (result & 0x1);
453 	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
454 			     : : "r" (pstate));
455 	if (stuck == 0) {
456 		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
457 		       smp_processor_id(), result);
458 	} else {
459 		udelay(2);
460 		goto again;
461 	}
462 }
463 
464 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
465 {
466 	u64 *mondo, data0, data1, data2;
467 	u16 *cpu_list;
468 	u64 pstate;
469 	int i;
470 
471 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
472 	cpu_list = __va(tb->cpu_list_pa);
473 	mondo = __va(tb->cpu_mondo_block_pa);
474 	data0 = mondo[0];
475 	data1 = mondo[1];
476 	data2 = mondo[2];
477 	for (i = 0; i < cnt; i++)
478 		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
479 }
480 
481 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
482  * packet, but we have no use for that.  However we do take advantage of
483  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
484  */
485 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
486 {
487 	int nack_busy_id, is_jbus, need_more;
488 	u64 *mondo, pstate, ver, busy_mask;
489 	u16 *cpu_list;
490 
491 	cpu_list = __va(tb->cpu_list_pa);
492 	mondo = __va(tb->cpu_mondo_block_pa);
493 
494 	/* Unfortunately, someone at Sun had the brilliant idea to make the
495 	 * busy/nack fields hard-coded by ITID number for this Ultra-III
496 	 * derivative processor.
497 	 */
498 	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
499 	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
500 		   (ver >> 32) == __SERRANO_ID);
501 
502 	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
503 
504 retry:
505 	need_more = 0;
506 	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
507 			     : : "r" (pstate), "i" (PSTATE_IE));
508 
509 	/* Setup the dispatch data registers. */
510 	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
511 			     "stxa	%1, [%4] %6\n\t"
512 			     "stxa	%2, [%5] %6\n\t"
513 			     "membar	#Sync\n\t"
514 			     : /* no outputs */
515 			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
516 			       "r" (0x40), "r" (0x50), "r" (0x60),
517 			       "i" (ASI_INTR_W));
518 
519 	nack_busy_id = 0;
520 	busy_mask = 0;
521 	{
522 		int i;
523 
524 		for (i = 0; i < cnt; i++) {
525 			u64 target, nr;
526 
527 			nr = cpu_list[i];
528 			if (nr == 0xffff)
529 				continue;
530 
531 			target = (nr << 14) | 0x70;
532 			if (is_jbus) {
533 				busy_mask |= (0x1UL << (nr * 2));
534 			} else {
535 				target |= (nack_busy_id << 24);
536 				busy_mask |= (0x1UL <<
537 					      (nack_busy_id * 2));
538 			}
539 			__asm__ __volatile__(
540 				"stxa	%%g0, [%0] %1\n\t"
541 				"membar	#Sync\n\t"
542 				: /* no outputs */
543 				: "r" (target), "i" (ASI_INTR_W));
544 			nack_busy_id++;
545 			if (nack_busy_id == 32) {
546 				need_more = 1;
547 				break;
548 			}
549 		}
550 	}
551 
552 	/* Now, poll for completion. */
553 	{
554 		u64 dispatch_stat, nack_mask;
555 		long stuck;
556 
557 		stuck = 100000 * nack_busy_id;
558 		nack_mask = busy_mask << 1;
559 		do {
560 			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
561 					     : "=r" (dispatch_stat)
562 					     : "i" (ASI_INTR_DISPATCH_STAT));
563 			if (!(dispatch_stat & (busy_mask | nack_mask))) {
564 				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
565 						     : : "r" (pstate));
566 				if (unlikely(need_more)) {
567 					int i, this_cnt = 0;
568 					for (i = 0; i < cnt; i++) {
569 						if (cpu_list[i] == 0xffff)
570 							continue;
571 						cpu_list[i] = 0xffff;
572 						this_cnt++;
573 						if (this_cnt == 32)
574 							break;
575 					}
576 					goto retry;
577 				}
578 				return;
579 			}
580 			if (!--stuck)
581 				break;
582 		} while (dispatch_stat & busy_mask);
583 
584 		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
585 				     : : "r" (pstate));
586 
587 		if (dispatch_stat & busy_mask) {
588 			/* Busy bits will not clear, continue instead
589 			 * of freezing up on this cpu.
590 			 */
591 			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
592 			       smp_processor_id(), dispatch_stat);
593 		} else {
594 			int i, this_busy_nack = 0;
595 
596 			/* Delay some random time with interrupts enabled
597 			 * to prevent deadlock.
598 			 */
599 			udelay(2 * nack_busy_id);
600 
601 			/* Clear out the mask bits for cpus which did not
602 			 * NACK us.
603 			 */
604 			for (i = 0; i < cnt; i++) {
605 				u64 check_mask, nr;
606 
607 				nr = cpu_list[i];
608 				if (nr == 0xffff)
609 					continue;
610 
611 				if (is_jbus)
612 					check_mask = (0x2UL << (2*nr));
613 				else
614 					check_mask = (0x2UL <<
615 						      this_busy_nack);
616 				if ((dispatch_stat & check_mask) == 0)
617 					cpu_list[i] = 0xffff;
618 				this_busy_nack += 2;
619 				if (this_busy_nack == 64)
620 					break;
621 			}
622 
623 			goto retry;
624 		}
625 	}
626 }
627 
628 #define	CPU_MONDO_COUNTER(cpuid)	(cpu_mondo_counter[cpuid])
629 #define	MONDO_USEC_WAIT_MIN		2
630 #define	MONDO_USEC_WAIT_MAX		100
631 #define	MONDO_RETRY_LIMIT		500000
632 
633 /* Multi-cpu list version.
634  *
635  * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
636  * Sometimes not all cpus receive the mondo, requiring us to re-send
637  * the mondo until all cpus have received, or cpus are truly stuck
638  * unable to receive mondo, and we timeout.
639  * Occasionally a target cpu strand is borrowed briefly by hypervisor to
640  * perform guest service, such as PCIe error handling. Consider the
641  * service time, 1 second overall wait is reasonable for 1 cpu.
642  * Here two in-between mondo check wait time are defined: 2 usec for
643  * single cpu quick turn around and up to 100usec for large cpu count.
644  * Deliver mondo to large number of cpus could take longer, we adjusts
645  * the retry count as long as target cpus are making forward progress.
646  */
647 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
648 {
649 	int this_cpu, tot_cpus, prev_sent, i, rem;
650 	int usec_wait, retries, tot_retries;
651 	u16 first_cpu = 0xffff;
652 	unsigned long xc_rcvd = 0;
653 	unsigned long status;
654 	int ecpuerror_id = 0;
655 	int enocpu_id = 0;
656 	u16 *cpu_list;
657 	u16 cpu;
658 
659 	this_cpu = smp_processor_id();
660 	cpu_list = __va(tb->cpu_list_pa);
661 	usec_wait = cnt * MONDO_USEC_WAIT_MIN;
662 	if (usec_wait > MONDO_USEC_WAIT_MAX)
663 		usec_wait = MONDO_USEC_WAIT_MAX;
664 	retries = tot_retries = 0;
665 	tot_cpus = cnt;
666 	prev_sent = 0;
667 
668 	do {
669 		int n_sent, mondo_delivered, target_cpu_busy;
670 
671 		status = sun4v_cpu_mondo_send(cnt,
672 					      tb->cpu_list_pa,
673 					      tb->cpu_mondo_block_pa);
674 
675 		/* HV_EOK means all cpus received the xcall, we're done.  */
676 		if (likely(status == HV_EOK))
677 			goto xcall_done;
678 
679 		/* If not these non-fatal errors, panic */
680 		if (unlikely((status != HV_EWOULDBLOCK) &&
681 			(status != HV_ECPUERROR) &&
682 			(status != HV_ENOCPU)))
683 			goto fatal_errors;
684 
685 		/* First, see if we made any forward progress.
686 		 *
687 		 * Go through the cpu_list, count the target cpus that have
688 		 * received our mondo (n_sent), and those that did not (rem).
689 		 * Re-pack cpu_list with the cpus remain to be retried in the
690 		 * front - this simplifies tracking the truly stalled cpus.
691 		 *
692 		 * The hypervisor indicates successful sends by setting
693 		 * cpu list entries to the value 0xffff.
694 		 *
695 		 * EWOULDBLOCK means some target cpus did not receive the
696 		 * mondo and retry usually helps.
697 		 *
698 		 * ECPUERROR means at least one target cpu is in error state,
699 		 * it's usually safe to skip the faulty cpu and retry.
700 		 *
701 		 * ENOCPU means one of the target cpu doesn't belong to the
702 		 * domain, perhaps offlined which is unexpected, but not
703 		 * fatal and it's okay to skip the offlined cpu.
704 		 */
705 		rem = 0;
706 		n_sent = 0;
707 		for (i = 0; i < cnt; i++) {
708 			cpu = cpu_list[i];
709 			if (likely(cpu == 0xffff)) {
710 				n_sent++;
711 			} else if ((status == HV_ECPUERROR) &&
712 				(sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
713 				ecpuerror_id = cpu + 1;
714 			} else if (status == HV_ENOCPU && !cpu_online(cpu)) {
715 				enocpu_id = cpu + 1;
716 			} else {
717 				cpu_list[rem++] = cpu;
718 			}
719 		}
720 
721 		/* No cpu remained, we're done. */
722 		if (rem == 0)
723 			break;
724 
725 		/* Otherwise, update the cpu count for retry. */
726 		cnt = rem;
727 
728 		/* Record the overall number of mondos received by the
729 		 * first of the remaining cpus.
730 		 */
731 		if (first_cpu != cpu_list[0]) {
732 			first_cpu = cpu_list[0];
733 			xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
734 		}
735 
736 		/* Was any mondo delivered successfully? */
737 		mondo_delivered = (n_sent > prev_sent);
738 		prev_sent = n_sent;
739 
740 		/* or, was any target cpu busy processing other mondos? */
741 		target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
742 		xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
743 
744 		/* Retry count is for no progress. If we're making progress,
745 		 * reset the retry count.
746 		 */
747 		if (likely(mondo_delivered || target_cpu_busy)) {
748 			tot_retries += retries;
749 			retries = 0;
750 		} else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
751 			goto fatal_mondo_timeout;
752 		}
753 
754 		/* Delay a little bit to let other cpus catch up on
755 		 * their cpu mondo queue work.
756 		 */
757 		if (!mondo_delivered)
758 			udelay(usec_wait);
759 
760 		retries++;
761 	} while (1);
762 
763 xcall_done:
764 	if (unlikely(ecpuerror_id > 0)) {
765 		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
766 		       this_cpu, ecpuerror_id - 1);
767 	} else if (unlikely(enocpu_id > 0)) {
768 		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
769 		       this_cpu, enocpu_id - 1);
770 	}
771 	return;
772 
773 fatal_errors:
774 	/* fatal errors include bad alignment, etc */
775 	pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
776 	       this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
777 	panic("Unexpected SUN4V mondo error %lu\n", status);
778 
779 fatal_mondo_timeout:
780 	/* some cpus being non-responsive to the cpu mondo */
781 	pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
782 	       this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
783 	panic("SUN4V mondo timeout panic\n");
784 }
785 
786 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
787 
788 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
789 {
790 	struct trap_per_cpu *tb;
791 	int this_cpu, i, cnt;
792 	unsigned long flags;
793 	u16 *cpu_list;
794 	u64 *mondo;
795 
796 	/* We have to do this whole thing with interrupts fully disabled.
797 	 * Otherwise if we send an xcall from interrupt context it will
798 	 * corrupt both our mondo block and cpu list state.
799 	 *
800 	 * One consequence of this is that we cannot use timeout mechanisms
801 	 * that depend upon interrupts being delivered locally.  So, for
802 	 * example, we cannot sample jiffies and expect it to advance.
803 	 *
804 	 * Fortunately, udelay() uses %stick/%tick so we can use that.
805 	 */
806 	local_irq_save(flags);
807 
808 	this_cpu = smp_processor_id();
809 	tb = &trap_block[this_cpu];
810 
811 	mondo = __va(tb->cpu_mondo_block_pa);
812 	mondo[0] = data0;
813 	mondo[1] = data1;
814 	mondo[2] = data2;
815 	wmb();
816 
817 	cpu_list = __va(tb->cpu_list_pa);
818 
819 	/* Setup the initial cpu list.  */
820 	cnt = 0;
821 	for_each_cpu(i, mask) {
822 		if (i == this_cpu || !cpu_online(i))
823 			continue;
824 		cpu_list[cnt++] = i;
825 	}
826 
827 	if (cnt)
828 		xcall_deliver_impl(tb, cnt);
829 
830 	local_irq_restore(flags);
831 }
832 
833 /* Send cross call to all processors mentioned in MASK_P
834  * except self.  Really, there are only two cases currently,
835  * "cpu_online_mask" and "mm_cpumask(mm)".
836  */
837 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
838 {
839 	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
840 
841 	xcall_deliver(data0, data1, data2, mask);
842 }
843 
844 /* Send cross call to all processors except self. */
845 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
846 {
847 	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
848 }
849 
850 extern unsigned long xcall_sync_tick;
851 
852 static void smp_start_sync_tick_client(int cpu)
853 {
854 	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
855 		      cpumask_of(cpu));
856 }
857 
858 extern unsigned long xcall_call_function;
859 
860 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
861 {
862 	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
863 }
864 
865 extern unsigned long xcall_call_function_single;
866 
867 void arch_send_call_function_single_ipi(int cpu)
868 {
869 	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
870 		      cpumask_of(cpu));
871 }
872 
873 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
874 {
875 	clear_softint(1 << irq);
876 	irq_enter();
877 	generic_smp_call_function_interrupt();
878 	irq_exit();
879 }
880 
881 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
882 {
883 	clear_softint(1 << irq);
884 	irq_enter();
885 	generic_smp_call_function_single_interrupt();
886 	irq_exit();
887 }
888 
889 static void tsb_sync(void *info)
890 {
891 	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
892 	struct mm_struct *mm = info;
893 
894 	/* It is not valid to test "current->active_mm == mm" here.
895 	 *
896 	 * The value of "current" is not changed atomically with
897 	 * switch_mm().  But that's OK, we just need to check the
898 	 * current cpu's trap block PGD physical address.
899 	 */
900 	if (tp->pgd_paddr == __pa(mm->pgd))
901 		tsb_context_switch(mm);
902 }
903 
904 void smp_tsb_sync(struct mm_struct *mm)
905 {
906 	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
907 }
908 
909 extern unsigned long xcall_flush_tlb_mm;
910 extern unsigned long xcall_flush_tlb_page;
911 extern unsigned long xcall_flush_tlb_kernel_range;
912 extern unsigned long xcall_fetch_glob_regs;
913 extern unsigned long xcall_fetch_glob_pmu;
914 extern unsigned long xcall_fetch_glob_pmu_n4;
915 extern unsigned long xcall_receive_signal;
916 extern unsigned long xcall_new_mmu_context_version;
917 #ifdef CONFIG_KGDB
918 extern unsigned long xcall_kgdb_capture;
919 #endif
920 
921 #ifdef DCACHE_ALIASING_POSSIBLE
922 extern unsigned long xcall_flush_dcache_page_cheetah;
923 #endif
924 extern unsigned long xcall_flush_dcache_page_spitfire;
925 
926 static inline void __local_flush_dcache_page(struct page *page)
927 {
928 #ifdef DCACHE_ALIASING_POSSIBLE
929 	__flush_dcache_page(page_address(page),
930 			    ((tlb_type == spitfire) &&
931 			     page_mapping_file(page) != NULL));
932 #else
933 	if (page_mapping_file(page) != NULL &&
934 	    tlb_type == spitfire)
935 		__flush_icache_page(__pa(page_address(page)));
936 #endif
937 }
938 
939 void smp_flush_dcache_page_impl(struct page *page, int cpu)
940 {
941 	int this_cpu;
942 
943 	if (tlb_type == hypervisor)
944 		return;
945 
946 #ifdef CONFIG_DEBUG_DCFLUSH
947 	atomic_inc(&dcpage_flushes);
948 #endif
949 
950 	this_cpu = get_cpu();
951 
952 	if (cpu == this_cpu) {
953 		__local_flush_dcache_page(page);
954 	} else if (cpu_online(cpu)) {
955 		void *pg_addr = page_address(page);
956 		u64 data0 = 0;
957 
958 		if (tlb_type == spitfire) {
959 			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
960 			if (page_mapping_file(page) != NULL)
961 				data0 |= ((u64)1 << 32);
962 		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
963 #ifdef DCACHE_ALIASING_POSSIBLE
964 			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
965 #endif
966 		}
967 		if (data0) {
968 			xcall_deliver(data0, __pa(pg_addr),
969 				      (u64) pg_addr, cpumask_of(cpu));
970 #ifdef CONFIG_DEBUG_DCFLUSH
971 			atomic_inc(&dcpage_flushes_xcall);
972 #endif
973 		}
974 	}
975 
976 	put_cpu();
977 }
978 
979 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
980 {
981 	void *pg_addr;
982 	u64 data0;
983 
984 	if (tlb_type == hypervisor)
985 		return;
986 
987 	preempt_disable();
988 
989 #ifdef CONFIG_DEBUG_DCFLUSH
990 	atomic_inc(&dcpage_flushes);
991 #endif
992 	data0 = 0;
993 	pg_addr = page_address(page);
994 	if (tlb_type == spitfire) {
995 		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
996 		if (page_mapping_file(page) != NULL)
997 			data0 |= ((u64)1 << 32);
998 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
999 #ifdef DCACHE_ALIASING_POSSIBLE
1000 		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1001 #endif
1002 	}
1003 	if (data0) {
1004 		xcall_deliver(data0, __pa(pg_addr),
1005 			      (u64) pg_addr, cpu_online_mask);
1006 #ifdef CONFIG_DEBUG_DCFLUSH
1007 		atomic_inc(&dcpage_flushes_xcall);
1008 #endif
1009 	}
1010 	__local_flush_dcache_page(page);
1011 
1012 	preempt_enable();
1013 }
1014 
1015 #ifdef CONFIG_KGDB
1016 void kgdb_roundup_cpus(void)
1017 {
1018 	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1019 }
1020 #endif
1021 
1022 void smp_fetch_global_regs(void)
1023 {
1024 	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1025 }
1026 
1027 void smp_fetch_global_pmu(void)
1028 {
1029 	if (tlb_type == hypervisor &&
1030 	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1031 		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1032 	else
1033 		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1034 }
1035 
1036 /* We know that the window frames of the user have been flushed
1037  * to the stack before we get here because all callers of us
1038  * are flush_tlb_*() routines, and these run after flush_cache_*()
1039  * which performs the flushw.
1040  *
1041  * The SMP TLB coherency scheme we use works as follows:
1042  *
1043  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1044  *    space has (potentially) executed on, this is the heuristic
1045  *    we use to avoid doing cross calls.
1046  *
1047  *    Also, for flushing from kswapd and also for clones, we
1048  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1049  *
1050  * 2) TLB context numbers are shared globally across all processors
1051  *    in the system, this allows us to play several games to avoid
1052  *    cross calls.
1053  *
1054  *    One invariant is that when a cpu switches to a process, and
1055  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1056  *    current cpu's bit set, that tlb context is flushed locally.
1057  *
1058  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1059  *    cross calls when we want to flush the currently running process's
1060  *    tlb state.  This is done by clearing all cpu bits except the current
1061  *    processor's in current->mm->cpu_vm_mask and performing the
1062  *    flush locally only.  This will force any subsequent cpus which run
1063  *    this task to flush the context from the local tlb if the process
1064  *    migrates to another cpu (again).
1065  *
1066  * 3) For shared address spaces (threads) and swapping we bite the
1067  *    bullet for most cases and perform the cross call (but only to
1068  *    the cpus listed in cpu_vm_mask).
1069  *
1070  *    The performance gain from "optimizing" away the cross call for threads is
1071  *    questionable (in theory the big win for threads is the massive sharing of
1072  *    address space state across processors).
1073  */
1074 
1075 /* This currently is only used by the hugetlb arch pre-fault
1076  * hook on UltraSPARC-III+ and later when changing the pagesize
1077  * bits of the context register for an address space.
1078  */
1079 void smp_flush_tlb_mm(struct mm_struct *mm)
1080 {
1081 	u32 ctx = CTX_HWBITS(mm->context);
1082 	int cpu = get_cpu();
1083 
1084 	if (atomic_read(&mm->mm_users) == 1) {
1085 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1086 		goto local_flush_and_out;
1087 	}
1088 
1089 	smp_cross_call_masked(&xcall_flush_tlb_mm,
1090 			      ctx, 0, 0,
1091 			      mm_cpumask(mm));
1092 
1093 local_flush_and_out:
1094 	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1095 
1096 	put_cpu();
1097 }
1098 
1099 struct tlb_pending_info {
1100 	unsigned long ctx;
1101 	unsigned long nr;
1102 	unsigned long *vaddrs;
1103 };
1104 
1105 static void tlb_pending_func(void *info)
1106 {
1107 	struct tlb_pending_info *t = info;
1108 
1109 	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1110 }
1111 
1112 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1113 {
1114 	u32 ctx = CTX_HWBITS(mm->context);
1115 	struct tlb_pending_info info;
1116 	int cpu = get_cpu();
1117 
1118 	info.ctx = ctx;
1119 	info.nr = nr;
1120 	info.vaddrs = vaddrs;
1121 
1122 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1123 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1124 	else
1125 		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1126 				       &info, 1);
1127 
1128 	__flush_tlb_pending(ctx, nr, vaddrs);
1129 
1130 	put_cpu();
1131 }
1132 
1133 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1134 {
1135 	unsigned long context = CTX_HWBITS(mm->context);
1136 	int cpu = get_cpu();
1137 
1138 	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1139 		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1140 	else
1141 		smp_cross_call_masked(&xcall_flush_tlb_page,
1142 				      context, vaddr, 0,
1143 				      mm_cpumask(mm));
1144 	__flush_tlb_page(context, vaddr);
1145 
1146 	put_cpu();
1147 }
1148 
1149 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1150 {
1151 	start &= PAGE_MASK;
1152 	end    = PAGE_ALIGN(end);
1153 	if (start != end) {
1154 		smp_cross_call(&xcall_flush_tlb_kernel_range,
1155 			       0, start, end);
1156 
1157 		__flush_tlb_kernel_range(start, end);
1158 	}
1159 }
1160 
1161 /* CPU capture. */
1162 /* #define CAPTURE_DEBUG */
1163 extern unsigned long xcall_capture;
1164 
1165 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1166 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1167 static unsigned long penguins_are_doing_time;
1168 
1169 void smp_capture(void)
1170 {
1171 	int result = atomic_add_return(1, &smp_capture_depth);
1172 
1173 	if (result == 1) {
1174 		int ncpus = num_online_cpus();
1175 
1176 #ifdef CAPTURE_DEBUG
1177 		printk("CPU[%d]: Sending penguins to jail...",
1178 		       smp_processor_id());
1179 #endif
1180 		penguins_are_doing_time = 1;
1181 		atomic_inc(&smp_capture_registry);
1182 		smp_cross_call(&xcall_capture, 0, 0, 0);
1183 		while (atomic_read(&smp_capture_registry) != ncpus)
1184 			rmb();
1185 #ifdef CAPTURE_DEBUG
1186 		printk("done\n");
1187 #endif
1188 	}
1189 }
1190 
1191 void smp_release(void)
1192 {
1193 	if (atomic_dec_and_test(&smp_capture_depth)) {
1194 #ifdef CAPTURE_DEBUG
1195 		printk("CPU[%d]: Giving pardon to "
1196 		       "imprisoned penguins\n",
1197 		       smp_processor_id());
1198 #endif
1199 		penguins_are_doing_time = 0;
1200 		membar_safe("#StoreLoad");
1201 		atomic_dec(&smp_capture_registry);
1202 	}
1203 }
1204 
1205 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1206  * set, so they can service tlb flush xcalls...
1207  */
1208 extern void prom_world(int);
1209 
1210 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1211 {
1212 	clear_softint(1 << irq);
1213 
1214 	preempt_disable();
1215 
1216 	__asm__ __volatile__("flushw");
1217 	prom_world(1);
1218 	atomic_inc(&smp_capture_registry);
1219 	membar_safe("#StoreLoad");
1220 	while (penguins_are_doing_time)
1221 		rmb();
1222 	atomic_dec(&smp_capture_registry);
1223 	prom_world(0);
1224 
1225 	preempt_enable();
1226 }
1227 
1228 /* /proc/profile writes can call this, don't __init it please. */
1229 int setup_profiling_timer(unsigned int multiplier)
1230 {
1231 	return -EINVAL;
1232 }
1233 
1234 void __init smp_prepare_cpus(unsigned int max_cpus)
1235 {
1236 }
1237 
1238 void smp_prepare_boot_cpu(void)
1239 {
1240 }
1241 
1242 void __init smp_setup_processor_id(void)
1243 {
1244 	if (tlb_type == spitfire)
1245 		xcall_deliver_impl = spitfire_xcall_deliver;
1246 	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1247 		xcall_deliver_impl = cheetah_xcall_deliver;
1248 	else
1249 		xcall_deliver_impl = hypervisor_xcall_deliver;
1250 }
1251 
1252 void __init smp_fill_in_cpu_possible_map(void)
1253 {
1254 	int possible_cpus = num_possible_cpus();
1255 	int i;
1256 
1257 	if (possible_cpus > nr_cpu_ids)
1258 		possible_cpus = nr_cpu_ids;
1259 
1260 	for (i = 0; i < possible_cpus; i++)
1261 		set_cpu_possible(i, true);
1262 	for (; i < NR_CPUS; i++)
1263 		set_cpu_possible(i, false);
1264 }
1265 
1266 void smp_fill_in_sib_core_maps(void)
1267 {
1268 	unsigned int i;
1269 
1270 	for_each_present_cpu(i) {
1271 		unsigned int j;
1272 
1273 		cpumask_clear(&cpu_core_map[i]);
1274 		if (cpu_data(i).core_id == 0) {
1275 			cpumask_set_cpu(i, &cpu_core_map[i]);
1276 			continue;
1277 		}
1278 
1279 		for_each_present_cpu(j) {
1280 			if (cpu_data(i).core_id ==
1281 			    cpu_data(j).core_id)
1282 				cpumask_set_cpu(j, &cpu_core_map[i]);
1283 		}
1284 	}
1285 
1286 	for_each_present_cpu(i)  {
1287 		unsigned int j;
1288 
1289 		for_each_present_cpu(j)  {
1290 			if (cpu_data(i).max_cache_id ==
1291 			    cpu_data(j).max_cache_id)
1292 				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1293 
1294 			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1295 				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1296 		}
1297 	}
1298 
1299 	for_each_present_cpu(i) {
1300 		unsigned int j;
1301 
1302 		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1303 		if (cpu_data(i).proc_id == -1) {
1304 			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1305 			continue;
1306 		}
1307 
1308 		for_each_present_cpu(j) {
1309 			if (cpu_data(i).proc_id ==
1310 			    cpu_data(j).proc_id)
1311 				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1312 		}
1313 	}
1314 }
1315 
1316 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1317 {
1318 	int ret = smp_boot_one_cpu(cpu, tidle);
1319 
1320 	if (!ret) {
1321 		cpumask_set_cpu(cpu, &smp_commenced_mask);
1322 		while (!cpu_online(cpu))
1323 			mb();
1324 		if (!cpu_online(cpu)) {
1325 			ret = -ENODEV;
1326 		} else {
1327 			/* On SUN4V, writes to %tick and %stick are
1328 			 * not allowed.
1329 			 */
1330 			if (tlb_type != hypervisor)
1331 				smp_synchronize_one_tick(cpu);
1332 		}
1333 	}
1334 	return ret;
1335 }
1336 
1337 #ifdef CONFIG_HOTPLUG_CPU
1338 void cpu_play_dead(void)
1339 {
1340 	int cpu = smp_processor_id();
1341 	unsigned long pstate;
1342 
1343 	idle_task_exit();
1344 
1345 	if (tlb_type == hypervisor) {
1346 		struct trap_per_cpu *tb = &trap_block[cpu];
1347 
1348 		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1349 				tb->cpu_mondo_pa, 0);
1350 		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1351 				tb->dev_mondo_pa, 0);
1352 		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1353 				tb->resum_mondo_pa, 0);
1354 		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1355 				tb->nonresum_mondo_pa, 0);
1356 	}
1357 
1358 	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1359 	membar_safe("#Sync");
1360 
1361 	local_irq_disable();
1362 
1363 	__asm__ __volatile__(
1364 		"rdpr	%%pstate, %0\n\t"
1365 		"wrpr	%0, %1, %%pstate"
1366 		: "=r" (pstate)
1367 		: "i" (PSTATE_IE));
1368 
1369 	while (1)
1370 		barrier();
1371 }
1372 
1373 int __cpu_disable(void)
1374 {
1375 	int cpu = smp_processor_id();
1376 	cpuinfo_sparc *c;
1377 	int i;
1378 
1379 	for_each_cpu(i, &cpu_core_map[cpu])
1380 		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1381 	cpumask_clear(&cpu_core_map[cpu]);
1382 
1383 	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1384 		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1385 	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1386 
1387 	c = &cpu_data(cpu);
1388 
1389 	c->core_id = 0;
1390 	c->proc_id = -1;
1391 
1392 	smp_wmb();
1393 
1394 	/* Make sure no interrupts point to this cpu.  */
1395 	fixup_irqs();
1396 
1397 	local_irq_enable();
1398 	mdelay(1);
1399 	local_irq_disable();
1400 
1401 	set_cpu_online(cpu, false);
1402 
1403 	cpu_map_rebuild();
1404 
1405 	return 0;
1406 }
1407 
1408 void __cpu_die(unsigned int cpu)
1409 {
1410 	int i;
1411 
1412 	for (i = 0; i < 100; i++) {
1413 		smp_rmb();
1414 		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1415 			break;
1416 		msleep(100);
1417 	}
1418 	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1419 		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1420 	} else {
1421 #if defined(CONFIG_SUN_LDOMS)
1422 		unsigned long hv_err;
1423 		int limit = 100;
1424 
1425 		do {
1426 			hv_err = sun4v_cpu_stop(cpu);
1427 			if (hv_err == HV_EOK) {
1428 				set_cpu_present(cpu, false);
1429 				break;
1430 			}
1431 		} while (--limit > 0);
1432 		if (limit <= 0) {
1433 			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1434 			       hv_err);
1435 		}
1436 #endif
1437 	}
1438 }
1439 #endif
1440 
1441 void __init smp_cpus_done(unsigned int max_cpus)
1442 {
1443 }
1444 
1445 static void send_cpu_ipi(int cpu)
1446 {
1447 	xcall_deliver((u64) &xcall_receive_signal,
1448 			0, 0, cpumask_of(cpu));
1449 }
1450 
1451 void scheduler_poke(void)
1452 {
1453 	if (!cpu_poke)
1454 		return;
1455 
1456 	if (!__this_cpu_read(poke))
1457 		return;
1458 
1459 	__this_cpu_write(poke, false);
1460 	set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1461 }
1462 
1463 static unsigned long send_cpu_poke(int cpu)
1464 {
1465 	unsigned long hv_err;
1466 
1467 	per_cpu(poke, cpu) = true;
1468 	hv_err = sun4v_cpu_poke(cpu);
1469 	if (hv_err != HV_EOK) {
1470 		per_cpu(poke, cpu) = false;
1471 		pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1472 				    __func__, hv_err);
1473 	}
1474 
1475 	return hv_err;
1476 }
1477 
1478 void smp_send_reschedule(int cpu)
1479 {
1480 	if (cpu == smp_processor_id()) {
1481 		WARN_ON_ONCE(preemptible());
1482 		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1483 		return;
1484 	}
1485 
1486 	/* Use cpu poke to resume idle cpu if supported. */
1487 	if (cpu_poke && idle_cpu(cpu)) {
1488 		unsigned long ret;
1489 
1490 		ret = send_cpu_poke(cpu);
1491 		if (ret == HV_EOK)
1492 			return;
1493 	}
1494 
1495 	/* Use IPI in following cases:
1496 	 * - cpu poke not supported
1497 	 * - cpu not idle
1498 	 * - send_cpu_poke() returns with error
1499 	 */
1500 	send_cpu_ipi(cpu);
1501 }
1502 
1503 void smp_init_cpu_poke(void)
1504 {
1505 	unsigned long major;
1506 	unsigned long minor;
1507 	int ret;
1508 
1509 	if (tlb_type != hypervisor)
1510 		return;
1511 
1512 	ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1513 	if (ret) {
1514 		pr_debug("HV_GRP_CORE is not registered\n");
1515 		return;
1516 	}
1517 
1518 	if (major == 1 && minor >= 6) {
1519 		/* CPU POKE is registered. */
1520 		cpu_poke = true;
1521 		return;
1522 	}
1523 
1524 	pr_debug("CPU_POKE not supported\n");
1525 }
1526 
1527 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1528 {
1529 	clear_softint(1 << irq);
1530 	scheduler_ipi();
1531 }
1532 
1533 static void stop_this_cpu(void *dummy)
1534 {
1535 	set_cpu_online(smp_processor_id(), false);
1536 	prom_stopself();
1537 }
1538 
1539 void smp_send_stop(void)
1540 {
1541 	int cpu;
1542 
1543 	if (tlb_type == hypervisor) {
1544 		int this_cpu = smp_processor_id();
1545 #ifdef CONFIG_SERIAL_SUNHV
1546 		sunhv_migrate_hvcons_irq(this_cpu);
1547 #endif
1548 		for_each_online_cpu(cpu) {
1549 			if (cpu == this_cpu)
1550 				continue;
1551 
1552 			set_cpu_online(cpu, false);
1553 #ifdef CONFIG_SUN_LDOMS
1554 			if (ldom_domaining_enabled) {
1555 				unsigned long hv_err;
1556 				hv_err = sun4v_cpu_stop(cpu);
1557 				if (hv_err)
1558 					printk(KERN_ERR "sun4v_cpu_stop() "
1559 					       "failed err=%lu\n", hv_err);
1560 			} else
1561 #endif
1562 				prom_stopcpu_cpuid(cpu);
1563 		}
1564 	} else
1565 		smp_call_function(stop_this_cpu, NULL, 0);
1566 }
1567 
1568 /**
1569  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1570  * @cpu: cpu to allocate for
1571  * @size: size allocation in bytes
1572  * @align: alignment
1573  *
1574  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1575  * does the right thing for NUMA regardless of the current
1576  * configuration.
1577  *
1578  * RETURNS:
1579  * Pointer to the allocated area on success, NULL on failure.
1580  */
1581 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1582 					size_t align)
1583 {
1584 	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1585 #ifdef CONFIG_NEED_MULTIPLE_NODES
1586 	int node = cpu_to_node(cpu);
1587 	void *ptr;
1588 
1589 	if (!node_online(node) || !NODE_DATA(node)) {
1590 		ptr = memblock_alloc_from(size, align, goal);
1591 		pr_info("cpu %d has no node %d or node-local memory\n",
1592 			cpu, node);
1593 		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1594 			 cpu, size, __pa(ptr));
1595 	} else {
1596 		ptr = memblock_alloc_try_nid(size, align, goal,
1597 					     MEMBLOCK_ALLOC_ACCESSIBLE, node);
1598 		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1599 			 "%016lx\n", cpu, size, node, __pa(ptr));
1600 	}
1601 	return ptr;
1602 #else
1603 	return memblock_alloc_from(size, align, goal);
1604 #endif
1605 }
1606 
1607 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1608 {
1609 	memblock_free(__pa(ptr), size);
1610 }
1611 
1612 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1613 {
1614 	if (cpu_to_node(from) == cpu_to_node(to))
1615 		return LOCAL_DISTANCE;
1616 	else
1617 		return REMOTE_DISTANCE;
1618 }
1619 
1620 static void __init pcpu_populate_pte(unsigned long addr)
1621 {
1622 	pgd_t *pgd = pgd_offset_k(addr);
1623 	p4d_t *p4d;
1624 	pud_t *pud;
1625 	pmd_t *pmd;
1626 
1627 	if (pgd_none(*pgd)) {
1628 		pud_t *new;
1629 
1630 		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1631 		if (!new)
1632 			goto err_alloc;
1633 		pgd_populate(&init_mm, pgd, new);
1634 	}
1635 
1636 	p4d = p4d_offset(pgd, addr);
1637 	if (p4d_none(*p4d)) {
1638 		pud_t *new;
1639 
1640 		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1641 		if (!new)
1642 			goto err_alloc;
1643 		p4d_populate(&init_mm, p4d, new);
1644 	}
1645 
1646 	pud = pud_offset(p4d, addr);
1647 	if (pud_none(*pud)) {
1648 		pmd_t *new;
1649 
1650 		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1651 		if (!new)
1652 			goto err_alloc;
1653 		pud_populate(&init_mm, pud, new);
1654 	}
1655 
1656 	pmd = pmd_offset(pud, addr);
1657 	if (!pmd_present(*pmd)) {
1658 		pte_t *new;
1659 
1660 		new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1661 		if (!new)
1662 			goto err_alloc;
1663 		pmd_populate_kernel(&init_mm, pmd, new);
1664 	}
1665 
1666 	return;
1667 
1668 err_alloc:
1669 	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1670 	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1671 }
1672 
1673 void __init setup_per_cpu_areas(void)
1674 {
1675 	unsigned long delta;
1676 	unsigned int cpu;
1677 	int rc = -EINVAL;
1678 
1679 	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1680 		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1681 					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1682 					    pcpu_cpu_distance,
1683 					    pcpu_alloc_bootmem,
1684 					    pcpu_free_bootmem);
1685 		if (rc)
1686 			pr_warn("PERCPU: %s allocator failed (%d), "
1687 				"falling back to page size\n",
1688 				pcpu_fc_names[pcpu_chosen_fc], rc);
1689 	}
1690 	if (rc < 0)
1691 		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1692 					   pcpu_alloc_bootmem,
1693 					   pcpu_free_bootmem,
1694 					   pcpu_populate_pte);
1695 	if (rc < 0)
1696 		panic("cannot initialize percpu area (err=%d)", rc);
1697 
1698 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1699 	for_each_possible_cpu(cpu)
1700 		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1701 
1702 	/* Setup %g5 for the boot cpu.  */
1703 	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1704 
1705 	of_fill_in_cpu_data();
1706 	if (tlb_type == hypervisor)
1707 		mdesc_fill_in_cpu_data(cpu_all_mask);
1708 }
1709