1 /* smp.c: Sparc64 SMP support. 2 * 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) 4 */ 5 6 #include <linux/export.h> 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/pagemap.h> 11 #include <linux/threads.h> 12 #include <linux/smp.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/delay.h> 16 #include <linux/init.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/cache.h> 21 #include <linux/jiffies.h> 22 #include <linux/profile.h> 23 #include <linux/bootmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ftrace.h> 26 #include <linux/cpu.h> 27 #include <linux/slab.h> 28 29 #include <asm/head.h> 30 #include <asm/ptrace.h> 31 #include <linux/atomic.h> 32 #include <asm/tlbflush.h> 33 #include <asm/mmu_context.h> 34 #include <asm/cpudata.h> 35 #include <asm/hvtramp.h> 36 #include <asm/io.h> 37 #include <asm/timer.h> 38 39 #include <asm/irq.h> 40 #include <asm/irq_regs.h> 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/oplib.h> 44 #include <asm/uaccess.h> 45 #include <asm/starfire.h> 46 #include <asm/tlb.h> 47 #include <asm/sections.h> 48 #include <asm/prom.h> 49 #include <asm/mdesc.h> 50 #include <asm/ldc.h> 51 #include <asm/hypervisor.h> 52 #include <asm/pcr.h> 53 54 #include "cpumap.h" 55 56 int sparc64_multi_core __read_mostly; 57 58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; 59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly = 60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; 61 62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 63 EXPORT_SYMBOL(cpu_core_map); 64 65 static cpumask_t smp_commenced_mask; 66 67 void smp_info(struct seq_file *m) 68 { 69 int i; 70 71 seq_printf(m, "State:\n"); 72 for_each_online_cpu(i) 73 seq_printf(m, "CPU%d:\t\tonline\n", i); 74 } 75 76 void smp_bogo(struct seq_file *m) 77 { 78 int i; 79 80 for_each_online_cpu(i) 81 seq_printf(m, 82 "Cpu%dClkTck\t: %016lx\n", 83 i, cpu_data(i).clock_tick); 84 } 85 86 extern void setup_sparc64_timer(void); 87 88 static volatile unsigned long callin_flag = 0; 89 90 void smp_callin(void) 91 { 92 int cpuid = hard_smp_processor_id(); 93 94 __local_per_cpu_offset = __per_cpu_offset(cpuid); 95 96 if (tlb_type == hypervisor) 97 sun4v_ktsb_register(); 98 99 __flush_tlb_all(); 100 101 setup_sparc64_timer(); 102 103 if (cheetah_pcache_forced_on) 104 cheetah_enable_pcache(); 105 106 callin_flag = 1; 107 __asm__ __volatile__("membar #Sync\n\t" 108 "flush %%g6" : : : "memory"); 109 110 /* Clear this or we will die instantly when we 111 * schedule back to this idler... 112 */ 113 current_thread_info()->new_child = 0; 114 115 /* Attach to the address space of init_task. */ 116 atomic_inc(&init_mm.mm_count); 117 current->active_mm = &init_mm; 118 119 /* inform the notifiers about the new cpu */ 120 notify_cpu_starting(cpuid); 121 122 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) 123 rmb(); 124 125 set_cpu_online(cpuid, true); 126 127 /* idle thread is expected to have preempt disabled */ 128 preempt_disable(); 129 130 local_irq_enable(); 131 132 cpu_startup_entry(CPUHP_ONLINE); 133 } 134 135 void cpu_panic(void) 136 { 137 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); 138 panic("SMP bolixed\n"); 139 } 140 141 /* This tick register synchronization scheme is taken entirely from 142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. 143 * 144 * The only change I've made is to rework it so that the master 145 * initiates the synchonization instead of the slave. -DaveM 146 */ 147 148 #define MASTER 0 149 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) 150 151 #define NUM_ROUNDS 64 /* magic value */ 152 #define NUM_ITERS 5 /* likewise */ 153 154 static DEFINE_SPINLOCK(itc_sync_lock); 155 static unsigned long go[SLAVE + 1]; 156 157 #define DEBUG_TICK_SYNC 0 158 159 static inline long get_delta (long *rt, long *master) 160 { 161 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; 162 unsigned long tcenter, t0, t1, tm; 163 unsigned long i; 164 165 for (i = 0; i < NUM_ITERS; i++) { 166 t0 = tick_ops->get_tick(); 167 go[MASTER] = 1; 168 membar_safe("#StoreLoad"); 169 while (!(tm = go[SLAVE])) 170 rmb(); 171 go[SLAVE] = 0; 172 wmb(); 173 t1 = tick_ops->get_tick(); 174 175 if (t1 - t0 < best_t1 - best_t0) 176 best_t0 = t0, best_t1 = t1, best_tm = tm; 177 } 178 179 *rt = best_t1 - best_t0; 180 *master = best_tm - best_t0; 181 182 /* average best_t0 and best_t1 without overflow: */ 183 tcenter = (best_t0/2 + best_t1/2); 184 if (best_t0 % 2 + best_t1 % 2 == 2) 185 tcenter++; 186 return tcenter - best_tm; 187 } 188 189 void smp_synchronize_tick_client(void) 190 { 191 long i, delta, adj, adjust_latency = 0, done = 0; 192 unsigned long flags, rt, master_time_stamp; 193 #if DEBUG_TICK_SYNC 194 struct { 195 long rt; /* roundtrip time */ 196 long master; /* master's timestamp */ 197 long diff; /* difference between midpoint and master's timestamp */ 198 long lat; /* estimate of itc adjustment latency */ 199 } t[NUM_ROUNDS]; 200 #endif 201 202 go[MASTER] = 1; 203 204 while (go[MASTER]) 205 rmb(); 206 207 local_irq_save(flags); 208 { 209 for (i = 0; i < NUM_ROUNDS; i++) { 210 delta = get_delta(&rt, &master_time_stamp); 211 if (delta == 0) 212 done = 1; /* let's lock on to this... */ 213 214 if (!done) { 215 if (i > 0) { 216 adjust_latency += -delta; 217 adj = -delta + adjust_latency/4; 218 } else 219 adj = -delta; 220 221 tick_ops->add_tick(adj); 222 } 223 #if DEBUG_TICK_SYNC 224 t[i].rt = rt; 225 t[i].master = master_time_stamp; 226 t[i].diff = delta; 227 t[i].lat = adjust_latency/4; 228 #endif 229 } 230 } 231 local_irq_restore(flags); 232 233 #if DEBUG_TICK_SYNC 234 for (i = 0; i < NUM_ROUNDS; i++) 235 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", 236 t[i].rt, t[i].master, t[i].diff, t[i].lat); 237 #endif 238 239 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " 240 "(last diff %ld cycles, maxerr %lu cycles)\n", 241 smp_processor_id(), delta, rt); 242 } 243 244 static void smp_start_sync_tick_client(int cpu); 245 246 static void smp_synchronize_one_tick(int cpu) 247 { 248 unsigned long flags, i; 249 250 go[MASTER] = 0; 251 252 smp_start_sync_tick_client(cpu); 253 254 /* wait for client to be ready */ 255 while (!go[MASTER]) 256 rmb(); 257 258 /* now let the client proceed into his loop */ 259 go[MASTER] = 0; 260 membar_safe("#StoreLoad"); 261 262 spin_lock_irqsave(&itc_sync_lock, flags); 263 { 264 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { 265 while (!go[MASTER]) 266 rmb(); 267 go[MASTER] = 0; 268 wmb(); 269 go[SLAVE] = tick_ops->get_tick(); 270 membar_safe("#StoreLoad"); 271 } 272 } 273 spin_unlock_irqrestore(&itc_sync_lock, flags); 274 } 275 276 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 277 /* XXX Put this in some common place. XXX */ 278 static unsigned long kimage_addr_to_ra(void *p) 279 { 280 unsigned long val = (unsigned long) p; 281 282 return kern_base + (val - KERNBASE); 283 } 284 285 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, 286 void **descrp) 287 { 288 extern unsigned long sparc64_ttable_tl0; 289 extern unsigned long kern_locked_tte_data; 290 struct hvtramp_descr *hdesc; 291 unsigned long trampoline_ra; 292 struct trap_per_cpu *tb; 293 u64 tte_vaddr, tte_data; 294 unsigned long hv_err; 295 int i; 296 297 hdesc = kzalloc(sizeof(*hdesc) + 298 (sizeof(struct hvtramp_mapping) * 299 num_kernel_image_mappings - 1), 300 GFP_KERNEL); 301 if (!hdesc) { 302 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " 303 "hvtramp_descr.\n"); 304 return; 305 } 306 *descrp = hdesc; 307 308 hdesc->cpu = cpu; 309 hdesc->num_mappings = num_kernel_image_mappings; 310 311 tb = &trap_block[cpu]; 312 313 hdesc->fault_info_va = (unsigned long) &tb->fault_info; 314 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); 315 316 hdesc->thread_reg = thread_reg; 317 318 tte_vaddr = (unsigned long) KERNBASE; 319 tte_data = kern_locked_tte_data; 320 321 for (i = 0; i < hdesc->num_mappings; i++) { 322 hdesc->maps[i].vaddr = tte_vaddr; 323 hdesc->maps[i].tte = tte_data; 324 tte_vaddr += 0x400000; 325 tte_data += 0x400000; 326 } 327 328 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); 329 330 hv_err = sun4v_cpu_start(cpu, trampoline_ra, 331 kimage_addr_to_ra(&sparc64_ttable_tl0), 332 __pa(hdesc)); 333 if (hv_err) 334 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " 335 "gives error %lu\n", hv_err); 336 } 337 #endif 338 339 extern unsigned long sparc64_cpu_startup; 340 341 /* The OBP cpu startup callback truncates the 3rd arg cookie to 342 * 32-bits (I think) so to be safe we have it read the pointer 343 * contained here so we work on >4GB machines. -DaveM 344 */ 345 static struct thread_info *cpu_new_thread = NULL; 346 347 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle) 348 { 349 unsigned long entry = 350 (unsigned long)(&sparc64_cpu_startup); 351 unsigned long cookie = 352 (unsigned long)(&cpu_new_thread); 353 void *descr = NULL; 354 int timeout, ret; 355 356 callin_flag = 0; 357 cpu_new_thread = task_thread_info(idle); 358 359 if (tlb_type == hypervisor) { 360 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) 361 if (ldom_domaining_enabled) 362 ldom_startcpu_cpuid(cpu, 363 (unsigned long) cpu_new_thread, 364 &descr); 365 else 366 #endif 367 prom_startcpu_cpuid(cpu, entry, cookie); 368 } else { 369 struct device_node *dp = of_find_node_by_cpuid(cpu); 370 371 prom_startcpu(dp->phandle, entry, cookie); 372 } 373 374 for (timeout = 0; timeout < 50000; timeout++) { 375 if (callin_flag) 376 break; 377 udelay(100); 378 } 379 380 if (callin_flag) { 381 ret = 0; 382 } else { 383 printk("Processor %d is stuck.\n", cpu); 384 ret = -ENODEV; 385 } 386 cpu_new_thread = NULL; 387 388 kfree(descr); 389 390 return ret; 391 } 392 393 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) 394 { 395 u64 result, target; 396 int stuck, tmp; 397 398 if (this_is_starfire) { 399 /* map to real upaid */ 400 cpu = (((cpu & 0x3c) << 1) | 401 ((cpu & 0x40) >> 4) | 402 (cpu & 0x3)); 403 } 404 405 target = (cpu << 14) | 0x70; 406 again: 407 /* Ok, this is the real Spitfire Errata #54. 408 * One must read back from a UDB internal register 409 * after writes to the UDB interrupt dispatch, but 410 * before the membar Sync for that write. 411 * So we use the high UDB control register (ASI 0x7f, 412 * ADDR 0x20) for the dummy read. -DaveM 413 */ 414 tmp = 0x40; 415 __asm__ __volatile__( 416 "wrpr %1, %2, %%pstate\n\t" 417 "stxa %4, [%0] %3\n\t" 418 "stxa %5, [%0+%8] %3\n\t" 419 "add %0, %8, %0\n\t" 420 "stxa %6, [%0+%8] %3\n\t" 421 "membar #Sync\n\t" 422 "stxa %%g0, [%7] %3\n\t" 423 "membar #Sync\n\t" 424 "mov 0x20, %%g1\n\t" 425 "ldxa [%%g1] 0x7f, %%g0\n\t" 426 "membar #Sync" 427 : "=r" (tmp) 428 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), 429 "r" (data0), "r" (data1), "r" (data2), "r" (target), 430 "r" (0x10), "0" (tmp) 431 : "g1"); 432 433 /* NOTE: PSTATE_IE is still clear. */ 434 stuck = 100000; 435 do { 436 __asm__ __volatile__("ldxa [%%g0] %1, %0" 437 : "=r" (result) 438 : "i" (ASI_INTR_DISPATCH_STAT)); 439 if (result == 0) { 440 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 441 : : "r" (pstate)); 442 return; 443 } 444 stuck -= 1; 445 if (stuck == 0) 446 break; 447 } while (result & 0x1); 448 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 449 : : "r" (pstate)); 450 if (stuck == 0) { 451 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 452 smp_processor_id(), result); 453 } else { 454 udelay(2); 455 goto again; 456 } 457 } 458 459 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) 460 { 461 u64 *mondo, data0, data1, data2; 462 u16 *cpu_list; 463 u64 pstate; 464 int i; 465 466 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 467 cpu_list = __va(tb->cpu_list_pa); 468 mondo = __va(tb->cpu_mondo_block_pa); 469 data0 = mondo[0]; 470 data1 = mondo[1]; 471 data2 = mondo[2]; 472 for (i = 0; i < cnt; i++) 473 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); 474 } 475 476 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt 477 * packet, but we have no use for that. However we do take advantage of 478 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). 479 */ 480 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) 481 { 482 int nack_busy_id, is_jbus, need_more; 483 u64 *mondo, pstate, ver, busy_mask; 484 u16 *cpu_list; 485 486 cpu_list = __va(tb->cpu_list_pa); 487 mondo = __va(tb->cpu_mondo_block_pa); 488 489 /* Unfortunately, someone at Sun had the brilliant idea to make the 490 * busy/nack fields hard-coded by ITID number for this Ultra-III 491 * derivative processor. 492 */ 493 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 494 is_jbus = ((ver >> 32) == __JALAPENO_ID || 495 (ver >> 32) == __SERRANO_ID); 496 497 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); 498 499 retry: 500 need_more = 0; 501 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" 502 : : "r" (pstate), "i" (PSTATE_IE)); 503 504 /* Setup the dispatch data registers. */ 505 __asm__ __volatile__("stxa %0, [%3] %6\n\t" 506 "stxa %1, [%4] %6\n\t" 507 "stxa %2, [%5] %6\n\t" 508 "membar #Sync\n\t" 509 : /* no outputs */ 510 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), 511 "r" (0x40), "r" (0x50), "r" (0x60), 512 "i" (ASI_INTR_W)); 513 514 nack_busy_id = 0; 515 busy_mask = 0; 516 { 517 int i; 518 519 for (i = 0; i < cnt; i++) { 520 u64 target, nr; 521 522 nr = cpu_list[i]; 523 if (nr == 0xffff) 524 continue; 525 526 target = (nr << 14) | 0x70; 527 if (is_jbus) { 528 busy_mask |= (0x1UL << (nr * 2)); 529 } else { 530 target |= (nack_busy_id << 24); 531 busy_mask |= (0x1UL << 532 (nack_busy_id * 2)); 533 } 534 __asm__ __volatile__( 535 "stxa %%g0, [%0] %1\n\t" 536 "membar #Sync\n\t" 537 : /* no outputs */ 538 : "r" (target), "i" (ASI_INTR_W)); 539 nack_busy_id++; 540 if (nack_busy_id == 32) { 541 need_more = 1; 542 break; 543 } 544 } 545 } 546 547 /* Now, poll for completion. */ 548 { 549 u64 dispatch_stat, nack_mask; 550 long stuck; 551 552 stuck = 100000 * nack_busy_id; 553 nack_mask = busy_mask << 1; 554 do { 555 __asm__ __volatile__("ldxa [%%g0] %1, %0" 556 : "=r" (dispatch_stat) 557 : "i" (ASI_INTR_DISPATCH_STAT)); 558 if (!(dispatch_stat & (busy_mask | nack_mask))) { 559 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 560 : : "r" (pstate)); 561 if (unlikely(need_more)) { 562 int i, this_cnt = 0; 563 for (i = 0; i < cnt; i++) { 564 if (cpu_list[i] == 0xffff) 565 continue; 566 cpu_list[i] = 0xffff; 567 this_cnt++; 568 if (this_cnt == 32) 569 break; 570 } 571 goto retry; 572 } 573 return; 574 } 575 if (!--stuck) 576 break; 577 } while (dispatch_stat & busy_mask); 578 579 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" 580 : : "r" (pstate)); 581 582 if (dispatch_stat & busy_mask) { 583 /* Busy bits will not clear, continue instead 584 * of freezing up on this cpu. 585 */ 586 printk("CPU[%d]: mondo stuckage result[%016llx]\n", 587 smp_processor_id(), dispatch_stat); 588 } else { 589 int i, this_busy_nack = 0; 590 591 /* Delay some random time with interrupts enabled 592 * to prevent deadlock. 593 */ 594 udelay(2 * nack_busy_id); 595 596 /* Clear out the mask bits for cpus which did not 597 * NACK us. 598 */ 599 for (i = 0; i < cnt; i++) { 600 u64 check_mask, nr; 601 602 nr = cpu_list[i]; 603 if (nr == 0xffff) 604 continue; 605 606 if (is_jbus) 607 check_mask = (0x2UL << (2*nr)); 608 else 609 check_mask = (0x2UL << 610 this_busy_nack); 611 if ((dispatch_stat & check_mask) == 0) 612 cpu_list[i] = 0xffff; 613 this_busy_nack += 2; 614 if (this_busy_nack == 64) 615 break; 616 } 617 618 goto retry; 619 } 620 } 621 } 622 623 /* Multi-cpu list version. */ 624 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) 625 { 626 int retries, this_cpu, prev_sent, i, saw_cpu_error; 627 unsigned long status; 628 u16 *cpu_list; 629 630 this_cpu = smp_processor_id(); 631 632 cpu_list = __va(tb->cpu_list_pa); 633 634 saw_cpu_error = 0; 635 retries = 0; 636 prev_sent = 0; 637 do { 638 int forward_progress, n_sent; 639 640 status = sun4v_cpu_mondo_send(cnt, 641 tb->cpu_list_pa, 642 tb->cpu_mondo_block_pa); 643 644 /* HV_EOK means all cpus received the xcall, we're done. */ 645 if (likely(status == HV_EOK)) 646 break; 647 648 /* First, see if we made any forward progress. 649 * 650 * The hypervisor indicates successful sends by setting 651 * cpu list entries to the value 0xffff. 652 */ 653 n_sent = 0; 654 for (i = 0; i < cnt; i++) { 655 if (likely(cpu_list[i] == 0xffff)) 656 n_sent++; 657 } 658 659 forward_progress = 0; 660 if (n_sent > prev_sent) 661 forward_progress = 1; 662 663 prev_sent = n_sent; 664 665 /* If we get a HV_ECPUERROR, then one or more of the cpus 666 * in the list are in error state. Use the cpu_state() 667 * hypervisor call to find out which cpus are in error state. 668 */ 669 if (unlikely(status == HV_ECPUERROR)) { 670 for (i = 0; i < cnt; i++) { 671 long err; 672 u16 cpu; 673 674 cpu = cpu_list[i]; 675 if (cpu == 0xffff) 676 continue; 677 678 err = sun4v_cpu_state(cpu); 679 if (err == HV_CPU_STATE_ERROR) { 680 saw_cpu_error = (cpu + 1); 681 cpu_list[i] = 0xffff; 682 } 683 } 684 } else if (unlikely(status != HV_EWOULDBLOCK)) 685 goto fatal_mondo_error; 686 687 /* Don't bother rewriting the CPU list, just leave the 688 * 0xffff and non-0xffff entries in there and the 689 * hypervisor will do the right thing. 690 * 691 * Only advance timeout state if we didn't make any 692 * forward progress. 693 */ 694 if (unlikely(!forward_progress)) { 695 if (unlikely(++retries > 10000)) 696 goto fatal_mondo_timeout; 697 698 /* Delay a little bit to let other cpus catch up 699 * on their cpu mondo queue work. 700 */ 701 udelay(2 * cnt); 702 } 703 } while (1); 704 705 if (unlikely(saw_cpu_error)) 706 goto fatal_mondo_cpu_error; 707 708 return; 709 710 fatal_mondo_cpu_error: 711 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " 712 "(including %d) were in error state\n", 713 this_cpu, saw_cpu_error - 1); 714 return; 715 716 fatal_mondo_timeout: 717 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " 718 " progress after %d retries.\n", 719 this_cpu, retries); 720 goto dump_cpu_list_and_out; 721 722 fatal_mondo_error: 723 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", 724 this_cpu, status); 725 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " 726 "mondo_block_pa(%lx)\n", 727 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); 728 729 dump_cpu_list_and_out: 730 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); 731 for (i = 0; i < cnt; i++) 732 printk("%u ", cpu_list[i]); 733 printk("]\n"); 734 } 735 736 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); 737 738 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) 739 { 740 struct trap_per_cpu *tb; 741 int this_cpu, i, cnt; 742 unsigned long flags; 743 u16 *cpu_list; 744 u64 *mondo; 745 746 /* We have to do this whole thing with interrupts fully disabled. 747 * Otherwise if we send an xcall from interrupt context it will 748 * corrupt both our mondo block and cpu list state. 749 * 750 * One consequence of this is that we cannot use timeout mechanisms 751 * that depend upon interrupts being delivered locally. So, for 752 * example, we cannot sample jiffies and expect it to advance. 753 * 754 * Fortunately, udelay() uses %stick/%tick so we can use that. 755 */ 756 local_irq_save(flags); 757 758 this_cpu = smp_processor_id(); 759 tb = &trap_block[this_cpu]; 760 761 mondo = __va(tb->cpu_mondo_block_pa); 762 mondo[0] = data0; 763 mondo[1] = data1; 764 mondo[2] = data2; 765 wmb(); 766 767 cpu_list = __va(tb->cpu_list_pa); 768 769 /* Setup the initial cpu list. */ 770 cnt = 0; 771 for_each_cpu(i, mask) { 772 if (i == this_cpu || !cpu_online(i)) 773 continue; 774 cpu_list[cnt++] = i; 775 } 776 777 if (cnt) 778 xcall_deliver_impl(tb, cnt); 779 780 local_irq_restore(flags); 781 } 782 783 /* Send cross call to all processors mentioned in MASK_P 784 * except self. Really, there are only two cases currently, 785 * "cpu_online_mask" and "mm_cpumask(mm)". 786 */ 787 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) 788 { 789 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); 790 791 xcall_deliver(data0, data1, data2, mask); 792 } 793 794 /* Send cross call to all processors except self. */ 795 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) 796 { 797 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask); 798 } 799 800 extern unsigned long xcall_sync_tick; 801 802 static void smp_start_sync_tick_client(int cpu) 803 { 804 xcall_deliver((u64) &xcall_sync_tick, 0, 0, 805 cpumask_of(cpu)); 806 } 807 808 extern unsigned long xcall_call_function; 809 810 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 811 { 812 xcall_deliver((u64) &xcall_call_function, 0, 0, mask); 813 } 814 815 extern unsigned long xcall_call_function_single; 816 817 void arch_send_call_function_single_ipi(int cpu) 818 { 819 xcall_deliver((u64) &xcall_call_function_single, 0, 0, 820 cpumask_of(cpu)); 821 } 822 823 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs) 824 { 825 clear_softint(1 << irq); 826 generic_smp_call_function_interrupt(); 827 } 828 829 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs) 830 { 831 clear_softint(1 << irq); 832 generic_smp_call_function_single_interrupt(); 833 } 834 835 static void tsb_sync(void *info) 836 { 837 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; 838 struct mm_struct *mm = info; 839 840 /* It is not valid to test "current->active_mm == mm" here. 841 * 842 * The value of "current" is not changed atomically with 843 * switch_mm(). But that's OK, we just need to check the 844 * current cpu's trap block PGD physical address. 845 */ 846 if (tp->pgd_paddr == __pa(mm->pgd)) 847 tsb_context_switch(mm); 848 } 849 850 void smp_tsb_sync(struct mm_struct *mm) 851 { 852 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1); 853 } 854 855 extern unsigned long xcall_flush_tlb_mm; 856 extern unsigned long xcall_flush_tlb_page; 857 extern unsigned long xcall_flush_tlb_kernel_range; 858 extern unsigned long xcall_fetch_glob_regs; 859 extern unsigned long xcall_fetch_glob_pmu; 860 extern unsigned long xcall_fetch_glob_pmu_n4; 861 extern unsigned long xcall_receive_signal; 862 extern unsigned long xcall_new_mmu_context_version; 863 #ifdef CONFIG_KGDB 864 extern unsigned long xcall_kgdb_capture; 865 #endif 866 867 #ifdef DCACHE_ALIASING_POSSIBLE 868 extern unsigned long xcall_flush_dcache_page_cheetah; 869 #endif 870 extern unsigned long xcall_flush_dcache_page_spitfire; 871 872 #ifdef CONFIG_DEBUG_DCFLUSH 873 extern atomic_t dcpage_flushes; 874 extern atomic_t dcpage_flushes_xcall; 875 #endif 876 877 static inline void __local_flush_dcache_page(struct page *page) 878 { 879 #ifdef DCACHE_ALIASING_POSSIBLE 880 __flush_dcache_page(page_address(page), 881 ((tlb_type == spitfire) && 882 page_mapping(page) != NULL)); 883 #else 884 if (page_mapping(page) != NULL && 885 tlb_type == spitfire) 886 __flush_icache_page(__pa(page_address(page))); 887 #endif 888 } 889 890 void smp_flush_dcache_page_impl(struct page *page, int cpu) 891 { 892 int this_cpu; 893 894 if (tlb_type == hypervisor) 895 return; 896 897 #ifdef CONFIG_DEBUG_DCFLUSH 898 atomic_inc(&dcpage_flushes); 899 #endif 900 901 this_cpu = get_cpu(); 902 903 if (cpu == this_cpu) { 904 __local_flush_dcache_page(page); 905 } else if (cpu_online(cpu)) { 906 void *pg_addr = page_address(page); 907 u64 data0 = 0; 908 909 if (tlb_type == spitfire) { 910 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 911 if (page_mapping(page) != NULL) 912 data0 |= ((u64)1 << 32); 913 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 914 #ifdef DCACHE_ALIASING_POSSIBLE 915 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 916 #endif 917 } 918 if (data0) { 919 xcall_deliver(data0, __pa(pg_addr), 920 (u64) pg_addr, cpumask_of(cpu)); 921 #ifdef CONFIG_DEBUG_DCFLUSH 922 atomic_inc(&dcpage_flushes_xcall); 923 #endif 924 } 925 } 926 927 put_cpu(); 928 } 929 930 void flush_dcache_page_all(struct mm_struct *mm, struct page *page) 931 { 932 void *pg_addr; 933 u64 data0; 934 935 if (tlb_type == hypervisor) 936 return; 937 938 preempt_disable(); 939 940 #ifdef CONFIG_DEBUG_DCFLUSH 941 atomic_inc(&dcpage_flushes); 942 #endif 943 data0 = 0; 944 pg_addr = page_address(page); 945 if (tlb_type == spitfire) { 946 data0 = ((u64)&xcall_flush_dcache_page_spitfire); 947 if (page_mapping(page) != NULL) 948 data0 |= ((u64)1 << 32); 949 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { 950 #ifdef DCACHE_ALIASING_POSSIBLE 951 data0 = ((u64)&xcall_flush_dcache_page_cheetah); 952 #endif 953 } 954 if (data0) { 955 xcall_deliver(data0, __pa(pg_addr), 956 (u64) pg_addr, cpu_online_mask); 957 #ifdef CONFIG_DEBUG_DCFLUSH 958 atomic_inc(&dcpage_flushes_xcall); 959 #endif 960 } 961 __local_flush_dcache_page(page); 962 963 preempt_enable(); 964 } 965 966 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) 967 { 968 struct mm_struct *mm; 969 unsigned long flags; 970 971 clear_softint(1 << irq); 972 973 /* See if we need to allocate a new TLB context because 974 * the version of the one we are using is now out of date. 975 */ 976 mm = current->active_mm; 977 if (unlikely(!mm || (mm == &init_mm))) 978 return; 979 980 spin_lock_irqsave(&mm->context.lock, flags); 981 982 if (unlikely(!CTX_VALID(mm->context))) 983 get_new_mmu_context(mm); 984 985 spin_unlock_irqrestore(&mm->context.lock, flags); 986 987 load_secondary_context(mm); 988 __flush_tlb_mm(CTX_HWBITS(mm->context), 989 SECONDARY_CONTEXT); 990 } 991 992 void smp_new_mmu_context_version(void) 993 { 994 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); 995 } 996 997 #ifdef CONFIG_KGDB 998 void kgdb_roundup_cpus(unsigned long flags) 999 { 1000 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); 1001 } 1002 #endif 1003 1004 void smp_fetch_global_regs(void) 1005 { 1006 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); 1007 } 1008 1009 void smp_fetch_global_pmu(void) 1010 { 1011 if (tlb_type == hypervisor && 1012 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 1013 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0); 1014 else 1015 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0); 1016 } 1017 1018 /* We know that the window frames of the user have been flushed 1019 * to the stack before we get here because all callers of us 1020 * are flush_tlb_*() routines, and these run after flush_cache_*() 1021 * which performs the flushw. 1022 * 1023 * The SMP TLB coherency scheme we use works as follows: 1024 * 1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address 1026 * space has (potentially) executed on, this is the heuristic 1027 * we use to avoid doing cross calls. 1028 * 1029 * Also, for flushing from kswapd and also for clones, we 1030 * use cpu_vm_mask as the list of cpus to make run the TLB. 1031 * 1032 * 2) TLB context numbers are shared globally across all processors 1033 * in the system, this allows us to play several games to avoid 1034 * cross calls. 1035 * 1036 * One invariant is that when a cpu switches to a process, and 1037 * that processes tsk->active_mm->cpu_vm_mask does not have the 1038 * current cpu's bit set, that tlb context is flushed locally. 1039 * 1040 * If the address space is non-shared (ie. mm->count == 1) we avoid 1041 * cross calls when we want to flush the currently running process's 1042 * tlb state. This is done by clearing all cpu bits except the current 1043 * processor's in current->mm->cpu_vm_mask and performing the 1044 * flush locally only. This will force any subsequent cpus which run 1045 * this task to flush the context from the local tlb if the process 1046 * migrates to another cpu (again). 1047 * 1048 * 3) For shared address spaces (threads) and swapping we bite the 1049 * bullet for most cases and perform the cross call (but only to 1050 * the cpus listed in cpu_vm_mask). 1051 * 1052 * The performance gain from "optimizing" away the cross call for threads is 1053 * questionable (in theory the big win for threads is the massive sharing of 1054 * address space state across processors). 1055 */ 1056 1057 /* This currently is only used by the hugetlb arch pre-fault 1058 * hook on UltraSPARC-III+ and later when changing the pagesize 1059 * bits of the context register for an address space. 1060 */ 1061 void smp_flush_tlb_mm(struct mm_struct *mm) 1062 { 1063 u32 ctx = CTX_HWBITS(mm->context); 1064 int cpu = get_cpu(); 1065 1066 if (atomic_read(&mm->mm_users) == 1) { 1067 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1068 goto local_flush_and_out; 1069 } 1070 1071 smp_cross_call_masked(&xcall_flush_tlb_mm, 1072 ctx, 0, 0, 1073 mm_cpumask(mm)); 1074 1075 local_flush_and_out: 1076 __flush_tlb_mm(ctx, SECONDARY_CONTEXT); 1077 1078 put_cpu(); 1079 } 1080 1081 struct tlb_pending_info { 1082 unsigned long ctx; 1083 unsigned long nr; 1084 unsigned long *vaddrs; 1085 }; 1086 1087 static void tlb_pending_func(void *info) 1088 { 1089 struct tlb_pending_info *t = info; 1090 1091 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs); 1092 } 1093 1094 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) 1095 { 1096 u32 ctx = CTX_HWBITS(mm->context); 1097 struct tlb_pending_info info; 1098 int cpu = get_cpu(); 1099 1100 info.ctx = ctx; 1101 info.nr = nr; 1102 info.vaddrs = vaddrs; 1103 1104 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1105 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1106 else 1107 smp_call_function_many(mm_cpumask(mm), tlb_pending_func, 1108 &info, 1); 1109 1110 __flush_tlb_pending(ctx, nr, vaddrs); 1111 1112 put_cpu(); 1113 } 1114 1115 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr) 1116 { 1117 unsigned long context = CTX_HWBITS(mm->context); 1118 int cpu = get_cpu(); 1119 1120 if (mm == current->mm && atomic_read(&mm->mm_users) == 1) 1121 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); 1122 else 1123 smp_cross_call_masked(&xcall_flush_tlb_page, 1124 context, vaddr, 0, 1125 mm_cpumask(mm)); 1126 __flush_tlb_page(context, vaddr); 1127 1128 put_cpu(); 1129 } 1130 1131 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) 1132 { 1133 start &= PAGE_MASK; 1134 end = PAGE_ALIGN(end); 1135 if (start != end) { 1136 smp_cross_call(&xcall_flush_tlb_kernel_range, 1137 0, start, end); 1138 1139 __flush_tlb_kernel_range(start, end); 1140 } 1141 } 1142 1143 /* CPU capture. */ 1144 /* #define CAPTURE_DEBUG */ 1145 extern unsigned long xcall_capture; 1146 1147 static atomic_t smp_capture_depth = ATOMIC_INIT(0); 1148 static atomic_t smp_capture_registry = ATOMIC_INIT(0); 1149 static unsigned long penguins_are_doing_time; 1150 1151 void smp_capture(void) 1152 { 1153 int result = atomic_add_ret(1, &smp_capture_depth); 1154 1155 if (result == 1) { 1156 int ncpus = num_online_cpus(); 1157 1158 #ifdef CAPTURE_DEBUG 1159 printk("CPU[%d]: Sending penguins to jail...", 1160 smp_processor_id()); 1161 #endif 1162 penguins_are_doing_time = 1; 1163 atomic_inc(&smp_capture_registry); 1164 smp_cross_call(&xcall_capture, 0, 0, 0); 1165 while (atomic_read(&smp_capture_registry) != ncpus) 1166 rmb(); 1167 #ifdef CAPTURE_DEBUG 1168 printk("done\n"); 1169 #endif 1170 } 1171 } 1172 1173 void smp_release(void) 1174 { 1175 if (atomic_dec_and_test(&smp_capture_depth)) { 1176 #ifdef CAPTURE_DEBUG 1177 printk("CPU[%d]: Giving pardon to " 1178 "imprisoned penguins\n", 1179 smp_processor_id()); 1180 #endif 1181 penguins_are_doing_time = 0; 1182 membar_safe("#StoreLoad"); 1183 atomic_dec(&smp_capture_registry); 1184 } 1185 } 1186 1187 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE 1188 * set, so they can service tlb flush xcalls... 1189 */ 1190 extern void prom_world(int); 1191 1192 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs) 1193 { 1194 clear_softint(1 << irq); 1195 1196 preempt_disable(); 1197 1198 __asm__ __volatile__("flushw"); 1199 prom_world(1); 1200 atomic_inc(&smp_capture_registry); 1201 membar_safe("#StoreLoad"); 1202 while (penguins_are_doing_time) 1203 rmb(); 1204 atomic_dec(&smp_capture_registry); 1205 prom_world(0); 1206 1207 preempt_enable(); 1208 } 1209 1210 /* /proc/profile writes can call this, don't __init it please. */ 1211 int setup_profiling_timer(unsigned int multiplier) 1212 { 1213 return -EINVAL; 1214 } 1215 1216 void __init smp_prepare_cpus(unsigned int max_cpus) 1217 { 1218 } 1219 1220 void smp_prepare_boot_cpu(void) 1221 { 1222 } 1223 1224 void __init smp_setup_processor_id(void) 1225 { 1226 if (tlb_type == spitfire) 1227 xcall_deliver_impl = spitfire_xcall_deliver; 1228 else if (tlb_type == cheetah || tlb_type == cheetah_plus) 1229 xcall_deliver_impl = cheetah_xcall_deliver; 1230 else 1231 xcall_deliver_impl = hypervisor_xcall_deliver; 1232 } 1233 1234 void smp_fill_in_sib_core_maps(void) 1235 { 1236 unsigned int i; 1237 1238 for_each_present_cpu(i) { 1239 unsigned int j; 1240 1241 cpumask_clear(&cpu_core_map[i]); 1242 if (cpu_data(i).core_id == 0) { 1243 cpumask_set_cpu(i, &cpu_core_map[i]); 1244 continue; 1245 } 1246 1247 for_each_present_cpu(j) { 1248 if (cpu_data(i).core_id == 1249 cpu_data(j).core_id) 1250 cpumask_set_cpu(j, &cpu_core_map[i]); 1251 } 1252 } 1253 1254 for_each_present_cpu(i) { 1255 unsigned int j; 1256 1257 cpumask_clear(&per_cpu(cpu_sibling_map, i)); 1258 if (cpu_data(i).proc_id == -1) { 1259 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i)); 1260 continue; 1261 } 1262 1263 for_each_present_cpu(j) { 1264 if (cpu_data(i).proc_id == 1265 cpu_data(j).proc_id) 1266 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i)); 1267 } 1268 } 1269 } 1270 1271 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 1272 { 1273 int ret = smp_boot_one_cpu(cpu, tidle); 1274 1275 if (!ret) { 1276 cpumask_set_cpu(cpu, &smp_commenced_mask); 1277 while (!cpu_online(cpu)) 1278 mb(); 1279 if (!cpu_online(cpu)) { 1280 ret = -ENODEV; 1281 } else { 1282 /* On SUN4V, writes to %tick and %stick are 1283 * not allowed. 1284 */ 1285 if (tlb_type != hypervisor) 1286 smp_synchronize_one_tick(cpu); 1287 } 1288 } 1289 return ret; 1290 } 1291 1292 #ifdef CONFIG_HOTPLUG_CPU 1293 void cpu_play_dead(void) 1294 { 1295 int cpu = smp_processor_id(); 1296 unsigned long pstate; 1297 1298 idle_task_exit(); 1299 1300 if (tlb_type == hypervisor) { 1301 struct trap_per_cpu *tb = &trap_block[cpu]; 1302 1303 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, 1304 tb->cpu_mondo_pa, 0); 1305 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, 1306 tb->dev_mondo_pa, 0); 1307 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, 1308 tb->resum_mondo_pa, 0); 1309 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, 1310 tb->nonresum_mondo_pa, 0); 1311 } 1312 1313 cpumask_clear_cpu(cpu, &smp_commenced_mask); 1314 membar_safe("#Sync"); 1315 1316 local_irq_disable(); 1317 1318 __asm__ __volatile__( 1319 "rdpr %%pstate, %0\n\t" 1320 "wrpr %0, %1, %%pstate" 1321 : "=r" (pstate) 1322 : "i" (PSTATE_IE)); 1323 1324 while (1) 1325 barrier(); 1326 } 1327 1328 int __cpu_disable(void) 1329 { 1330 int cpu = smp_processor_id(); 1331 cpuinfo_sparc *c; 1332 int i; 1333 1334 for_each_cpu(i, &cpu_core_map[cpu]) 1335 cpumask_clear_cpu(cpu, &cpu_core_map[i]); 1336 cpumask_clear(&cpu_core_map[cpu]); 1337 1338 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) 1339 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); 1340 cpumask_clear(&per_cpu(cpu_sibling_map, cpu)); 1341 1342 c = &cpu_data(cpu); 1343 1344 c->core_id = 0; 1345 c->proc_id = -1; 1346 1347 smp_wmb(); 1348 1349 /* Make sure no interrupts point to this cpu. */ 1350 fixup_irqs(); 1351 1352 local_irq_enable(); 1353 mdelay(1); 1354 local_irq_disable(); 1355 1356 set_cpu_online(cpu, false); 1357 1358 cpu_map_rebuild(); 1359 1360 return 0; 1361 } 1362 1363 void __cpu_die(unsigned int cpu) 1364 { 1365 int i; 1366 1367 for (i = 0; i < 100; i++) { 1368 smp_rmb(); 1369 if (!cpumask_test_cpu(cpu, &smp_commenced_mask)) 1370 break; 1371 msleep(100); 1372 } 1373 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) { 1374 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 1375 } else { 1376 #if defined(CONFIG_SUN_LDOMS) 1377 unsigned long hv_err; 1378 int limit = 100; 1379 1380 do { 1381 hv_err = sun4v_cpu_stop(cpu); 1382 if (hv_err == HV_EOK) { 1383 set_cpu_present(cpu, false); 1384 break; 1385 } 1386 } while (--limit > 0); 1387 if (limit <= 0) { 1388 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", 1389 hv_err); 1390 } 1391 #endif 1392 } 1393 } 1394 #endif 1395 1396 void __init smp_cpus_done(unsigned int max_cpus) 1397 { 1398 pcr_arch_init(); 1399 } 1400 1401 void smp_send_reschedule(int cpu) 1402 { 1403 if (cpu == smp_processor_id()) { 1404 WARN_ON_ONCE(preemptible()); 1405 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL); 1406 } else { 1407 xcall_deliver((u64) &xcall_receive_signal, 1408 0, 0, cpumask_of(cpu)); 1409 } 1410 } 1411 1412 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs) 1413 { 1414 clear_softint(1 << irq); 1415 scheduler_ipi(); 1416 } 1417 1418 /* This is a nop because we capture all other cpus 1419 * anyways when making the PROM active. 1420 */ 1421 void smp_send_stop(void) 1422 { 1423 } 1424 1425 /** 1426 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu 1427 * @cpu: cpu to allocate for 1428 * @size: size allocation in bytes 1429 * @align: alignment 1430 * 1431 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper 1432 * does the right thing for NUMA regardless of the current 1433 * configuration. 1434 * 1435 * RETURNS: 1436 * Pointer to the allocated area on success, NULL on failure. 1437 */ 1438 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, 1439 size_t align) 1440 { 1441 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 1442 #ifdef CONFIG_NEED_MULTIPLE_NODES 1443 int node = cpu_to_node(cpu); 1444 void *ptr; 1445 1446 if (!node_online(node) || !NODE_DATA(node)) { 1447 ptr = __alloc_bootmem(size, align, goal); 1448 pr_info("cpu %d has no node %d or node-local memory\n", 1449 cpu, node); 1450 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", 1451 cpu, size, __pa(ptr)); 1452 } else { 1453 ptr = __alloc_bootmem_node(NODE_DATA(node), 1454 size, align, goal); 1455 pr_debug("per cpu data for cpu%d %lu bytes on node%d at " 1456 "%016lx\n", cpu, size, node, __pa(ptr)); 1457 } 1458 return ptr; 1459 #else 1460 return __alloc_bootmem(size, align, goal); 1461 #endif 1462 } 1463 1464 static void __init pcpu_free_bootmem(void *ptr, size_t size) 1465 { 1466 free_bootmem(__pa(ptr), size); 1467 } 1468 1469 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 1470 { 1471 if (cpu_to_node(from) == cpu_to_node(to)) 1472 return LOCAL_DISTANCE; 1473 else 1474 return REMOTE_DISTANCE; 1475 } 1476 1477 static void __init pcpu_populate_pte(unsigned long addr) 1478 { 1479 pgd_t *pgd = pgd_offset_k(addr); 1480 pud_t *pud; 1481 pmd_t *pmd; 1482 1483 pud = pud_offset(pgd, addr); 1484 if (pud_none(*pud)) { 1485 pmd_t *new; 1486 1487 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1488 pud_populate(&init_mm, pud, new); 1489 } 1490 1491 pmd = pmd_offset(pud, addr); 1492 if (!pmd_present(*pmd)) { 1493 pte_t *new; 1494 1495 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); 1496 pmd_populate_kernel(&init_mm, pmd, new); 1497 } 1498 } 1499 1500 void __init setup_per_cpu_areas(void) 1501 { 1502 unsigned long delta; 1503 unsigned int cpu; 1504 int rc = -EINVAL; 1505 1506 if (pcpu_chosen_fc != PCPU_FC_PAGE) { 1507 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1508 PERCPU_DYNAMIC_RESERVE, 4 << 20, 1509 pcpu_cpu_distance, 1510 pcpu_alloc_bootmem, 1511 pcpu_free_bootmem); 1512 if (rc) 1513 pr_warning("PERCPU: %s allocator failed (%d), " 1514 "falling back to page size\n", 1515 pcpu_fc_names[pcpu_chosen_fc], rc); 1516 } 1517 if (rc < 0) 1518 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, 1519 pcpu_alloc_bootmem, 1520 pcpu_free_bootmem, 1521 pcpu_populate_pte); 1522 if (rc < 0) 1523 panic("cannot initialize percpu area (err=%d)", rc); 1524 1525 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1526 for_each_possible_cpu(cpu) 1527 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; 1528 1529 /* Setup %g5 for the boot cpu. */ 1530 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); 1531 1532 of_fill_in_cpu_data(); 1533 if (tlb_type == hypervisor) 1534 mdesc_fill_in_cpu_data(cpu_all_mask); 1535 } 1536