xref: /openbmc/linux/arch/sparc/kernel/smp_32.c (revision 82ced6fd)
1 /* smp.c: Sparc SMP support.
2  *
3  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4  * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5  * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6  */
7 
8 #include <asm/head.h>
9 
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26 
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 
36 #include "irq.h"
37 
38 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
39 unsigned char boot_cpu_id = 0;
40 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
41 
42 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
43 
44 /* The only guaranteed locking primitive available on all Sparc
45  * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
46  * places the current byte at the effective address into dest_reg and
47  * places 0xff there afterwards.  Pretty lame locking primitive
48  * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
49  * instruction which is much better...
50  */
51 
52 void __cpuinit smp_store_cpu_info(int id)
53 {
54 	int cpu_node;
55 
56 	cpu_data(id).udelay_val = loops_per_jiffy;
57 
58 	cpu_find_by_mid(id, &cpu_node);
59 	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
60 						     "clock-frequency", 0);
61 	cpu_data(id).prom_node = cpu_node;
62 	cpu_data(id).mid = cpu_get_hwmid(cpu_node);
63 
64 	if (cpu_data(id).mid < 0)
65 		panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
66 }
67 
68 void __init smp_cpus_done(unsigned int max_cpus)
69 {
70 	extern void smp4m_smp_done(void);
71 	extern void smp4d_smp_done(void);
72 	unsigned long bogosum = 0;
73 	int cpu, num = 0;
74 
75 	for_each_online_cpu(cpu) {
76 		num++;
77 		bogosum += cpu_data(cpu).udelay_val;
78 	}
79 
80 	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
81 		num, bogosum/(500000/HZ),
82 		(bogosum/(5000/HZ))%100);
83 
84 	switch(sparc_cpu_model) {
85 	case sun4:
86 		printk("SUN4\n");
87 		BUG();
88 		break;
89 	case sun4c:
90 		printk("SUN4C\n");
91 		BUG();
92 		break;
93 	case sun4m:
94 		smp4m_smp_done();
95 		break;
96 	case sun4d:
97 		smp4d_smp_done();
98 		break;
99 	case sun4e:
100 		printk("SUN4E\n");
101 		BUG();
102 		break;
103 	case sun4u:
104 		printk("SUN4U\n");
105 		BUG();
106 		break;
107 	default:
108 		printk("UNKNOWN!\n");
109 		BUG();
110 		break;
111 	};
112 }
113 
114 void cpu_panic(void)
115 {
116 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
117 	panic("SMP bolixed\n");
118 }
119 
120 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
121 
122 void smp_send_reschedule(int cpu)
123 {
124 	/* See sparc64 */
125 }
126 
127 void smp_send_stop(void)
128 {
129 }
130 
131 void smp_flush_cache_all(void)
132 {
133 	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
134 	local_flush_cache_all();
135 }
136 
137 void smp_flush_tlb_all(void)
138 {
139 	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
140 	local_flush_tlb_all();
141 }
142 
143 void smp_flush_cache_mm(struct mm_struct *mm)
144 {
145 	if(mm->context != NO_CONTEXT) {
146 		cpumask_t cpu_mask = *mm_cpumask(mm);
147 		cpu_clear(smp_processor_id(), cpu_mask);
148 		if (!cpus_empty(cpu_mask))
149 			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
150 		local_flush_cache_mm(mm);
151 	}
152 }
153 
154 void smp_flush_tlb_mm(struct mm_struct *mm)
155 {
156 	if(mm->context != NO_CONTEXT) {
157 		cpumask_t cpu_mask = *mm_cpumask(mm);
158 		cpu_clear(smp_processor_id(), cpu_mask);
159 		if (!cpus_empty(cpu_mask)) {
160 			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
161 			if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
162 				cpumask_copy(mm_cpumask(mm),
163 					     cpumask_of(smp_processor_id()));
164 		}
165 		local_flush_tlb_mm(mm);
166 	}
167 }
168 
169 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
170 			   unsigned long end)
171 {
172 	struct mm_struct *mm = vma->vm_mm;
173 
174 	if (mm->context != NO_CONTEXT) {
175 		cpumask_t cpu_mask = *mm_cpumask(mm);
176 		cpu_clear(smp_processor_id(), cpu_mask);
177 		if (!cpus_empty(cpu_mask))
178 			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
179 		local_flush_cache_range(vma, start, end);
180 	}
181 }
182 
183 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
184 			 unsigned long end)
185 {
186 	struct mm_struct *mm = vma->vm_mm;
187 
188 	if (mm->context != NO_CONTEXT) {
189 		cpumask_t cpu_mask = *mm_cpumask(mm);
190 		cpu_clear(smp_processor_id(), cpu_mask);
191 		if (!cpus_empty(cpu_mask))
192 			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
193 		local_flush_tlb_range(vma, start, end);
194 	}
195 }
196 
197 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
198 {
199 	struct mm_struct *mm = vma->vm_mm;
200 
201 	if(mm->context != NO_CONTEXT) {
202 		cpumask_t cpu_mask = *mm_cpumask(mm);
203 		cpu_clear(smp_processor_id(), cpu_mask);
204 		if (!cpus_empty(cpu_mask))
205 			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
206 		local_flush_cache_page(vma, page);
207 	}
208 }
209 
210 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
211 {
212 	struct mm_struct *mm = vma->vm_mm;
213 
214 	if(mm->context != NO_CONTEXT) {
215 		cpumask_t cpu_mask = *mm_cpumask(mm);
216 		cpu_clear(smp_processor_id(), cpu_mask);
217 		if (!cpus_empty(cpu_mask))
218 			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
219 		local_flush_tlb_page(vma, page);
220 	}
221 }
222 
223 void smp_reschedule_irq(void)
224 {
225 	set_need_resched();
226 }
227 
228 void smp_flush_page_to_ram(unsigned long page)
229 {
230 	/* Current theory is that those who call this are the one's
231 	 * who have just dirtied their cache with the pages contents
232 	 * in kernel space, therefore we only run this on local cpu.
233 	 *
234 	 * XXX This experiment failed, research further... -DaveM
235 	 */
236 #if 1
237 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
238 #endif
239 	local_flush_page_to_ram(page);
240 }
241 
242 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
243 {
244 	cpumask_t cpu_mask = *mm_cpumask(mm);
245 	cpu_clear(smp_processor_id(), cpu_mask);
246 	if (!cpus_empty(cpu_mask))
247 		xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
248 	local_flush_sig_insns(mm, insn_addr);
249 }
250 
251 extern unsigned int lvl14_resolution;
252 
253 /* /proc/profile writes can call this, don't __init it please. */
254 static DEFINE_SPINLOCK(prof_setup_lock);
255 
256 int setup_profiling_timer(unsigned int multiplier)
257 {
258 	int i;
259 	unsigned long flags;
260 
261 	/* Prevent level14 ticker IRQ flooding. */
262 	if((!multiplier) || (lvl14_resolution / multiplier) < 500)
263 		return -EINVAL;
264 
265 	spin_lock_irqsave(&prof_setup_lock, flags);
266 	for_each_possible_cpu(i) {
267 		load_profile_irq(i, lvl14_resolution / multiplier);
268 		prof_multiplier(i) = multiplier;
269 	}
270 	spin_unlock_irqrestore(&prof_setup_lock, flags);
271 
272 	return 0;
273 }
274 
275 void __init smp_prepare_cpus(unsigned int max_cpus)
276 {
277 	extern void __init smp4m_boot_cpus(void);
278 	extern void __init smp4d_boot_cpus(void);
279 	int i, cpuid, extra;
280 
281 	printk("Entering SMP Mode...\n");
282 
283 	extra = 0;
284 	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
285 		if (cpuid >= NR_CPUS)
286 			extra++;
287 	}
288 	/* i = number of cpus */
289 	if (extra && max_cpus > i - extra)
290 		printk("Warning: NR_CPUS is too low to start all cpus\n");
291 
292 	smp_store_cpu_info(boot_cpu_id);
293 
294 	switch(sparc_cpu_model) {
295 	case sun4:
296 		printk("SUN4\n");
297 		BUG();
298 		break;
299 	case sun4c:
300 		printk("SUN4C\n");
301 		BUG();
302 		break;
303 	case sun4m:
304 		smp4m_boot_cpus();
305 		break;
306 	case sun4d:
307 		smp4d_boot_cpus();
308 		break;
309 	case sun4e:
310 		printk("SUN4E\n");
311 		BUG();
312 		break;
313 	case sun4u:
314 		printk("SUN4U\n");
315 		BUG();
316 		break;
317 	default:
318 		printk("UNKNOWN!\n");
319 		BUG();
320 		break;
321 	};
322 }
323 
324 /* Set this up early so that things like the scheduler can init
325  * properly.  We use the same cpu mask for both the present and
326  * possible cpu map.
327  */
328 void __init smp_setup_cpu_possible_map(void)
329 {
330 	int instance, mid;
331 
332 	instance = 0;
333 	while (!cpu_find_by_instance(instance, NULL, &mid)) {
334 		if (mid < NR_CPUS) {
335 			set_cpu_possible(mid, true);
336 			set_cpu_present(mid, true);
337 		}
338 		instance++;
339 	}
340 }
341 
342 void __init smp_prepare_boot_cpu(void)
343 {
344 	int cpuid = hard_smp_processor_id();
345 
346 	if (cpuid >= NR_CPUS) {
347 		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
348 		prom_halt();
349 	}
350 	if (cpuid != 0)
351 		printk("boot cpu id != 0, this could work but is untested\n");
352 
353 	current_thread_info()->cpu = cpuid;
354 	set_cpu_online(cpuid, true);
355 	set_cpu_possible(cpuid, true);
356 }
357 
358 int __cpuinit __cpu_up(unsigned int cpu)
359 {
360 	extern int __cpuinit smp4m_boot_one_cpu(int);
361 	extern int __cpuinit smp4d_boot_one_cpu(int);
362 	int ret=0;
363 
364 	switch(sparc_cpu_model) {
365 	case sun4:
366 		printk("SUN4\n");
367 		BUG();
368 		break;
369 	case sun4c:
370 		printk("SUN4C\n");
371 		BUG();
372 		break;
373 	case sun4m:
374 		ret = smp4m_boot_one_cpu(cpu);
375 		break;
376 	case sun4d:
377 		ret = smp4d_boot_one_cpu(cpu);
378 		break;
379 	case sun4e:
380 		printk("SUN4E\n");
381 		BUG();
382 		break;
383 	case sun4u:
384 		printk("SUN4U\n");
385 		BUG();
386 		break;
387 	default:
388 		printk("UNKNOWN!\n");
389 		BUG();
390 		break;
391 	};
392 
393 	if (!ret) {
394 		cpu_set(cpu, smp_commenced_mask);
395 		while (!cpu_online(cpu))
396 			mb();
397 	}
398 	return ret;
399 }
400 
401 void smp_bogo(struct seq_file *m)
402 {
403 	int i;
404 
405 	for_each_online_cpu(i) {
406 		seq_printf(m,
407 			   "Cpu%dBogo\t: %lu.%02lu\n",
408 			   i,
409 			   cpu_data(i).udelay_val/(500000/HZ),
410 			   (cpu_data(i).udelay_val/(5000/HZ))%100);
411 	}
412 }
413 
414 void smp_info(struct seq_file *m)
415 {
416 	int i;
417 
418 	seq_printf(m, "State:\n");
419 	for_each_online_cpu(i)
420 		seq_printf(m, "CPU%d\t\t: online\n", i);
421 }
422