xref: /openbmc/linux/arch/sparc/kernel/smp_32.c (revision 7dd65feb)
1 /* smp.c: Sparc SMP support.
2  *
3  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4  * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5  * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6  */
7 
8 #include <asm/head.h>
9 
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26 
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
36 
37 #include "irq.h"
38 
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40 unsigned char boot_cpu_id = 0;
41 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
42 
43 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
44 
45 /* The only guaranteed locking primitive available on all Sparc
46  * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
47  * places the current byte at the effective address into dest_reg and
48  * places 0xff there afterwards.  Pretty lame locking primitive
49  * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
50  * instruction which is much better...
51  */
52 
53 void __cpuinit smp_store_cpu_info(int id)
54 {
55 	int cpu_node;
56 
57 	cpu_data(id).udelay_val = loops_per_jiffy;
58 
59 	cpu_find_by_mid(id, &cpu_node);
60 	cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
61 						     "clock-frequency", 0);
62 	cpu_data(id).prom_node = cpu_node;
63 	cpu_data(id).mid = cpu_get_hwmid(cpu_node);
64 
65 	if (cpu_data(id).mid < 0)
66 		panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
67 }
68 
69 void __init smp_cpus_done(unsigned int max_cpus)
70 {
71 	extern void smp4m_smp_done(void);
72 	extern void smp4d_smp_done(void);
73 	unsigned long bogosum = 0;
74 	int cpu, num = 0;
75 
76 	for_each_online_cpu(cpu) {
77 		num++;
78 		bogosum += cpu_data(cpu).udelay_val;
79 	}
80 
81 	printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
82 		num, bogosum/(500000/HZ),
83 		(bogosum/(5000/HZ))%100);
84 
85 	switch(sparc_cpu_model) {
86 	case sun4:
87 		printk("SUN4\n");
88 		BUG();
89 		break;
90 	case sun4c:
91 		printk("SUN4C\n");
92 		BUG();
93 		break;
94 	case sun4m:
95 		smp4m_smp_done();
96 		break;
97 	case sun4d:
98 		smp4d_smp_done();
99 		break;
100 	case sparc_leon:
101 		leon_smp_done();
102 		break;
103 	case sun4e:
104 		printk("SUN4E\n");
105 		BUG();
106 		break;
107 	case sun4u:
108 		printk("SUN4U\n");
109 		BUG();
110 		break;
111 	default:
112 		printk("UNKNOWN!\n");
113 		BUG();
114 		break;
115 	};
116 }
117 
118 void cpu_panic(void)
119 {
120 	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
121 	panic("SMP bolixed\n");
122 }
123 
124 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
125 
126 void smp_send_reschedule(int cpu)
127 {
128 	/* See sparc64 */
129 }
130 
131 void smp_send_stop(void)
132 {
133 }
134 
135 void smp_flush_cache_all(void)
136 {
137 	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
138 	local_flush_cache_all();
139 }
140 
141 void smp_flush_tlb_all(void)
142 {
143 	xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
144 	local_flush_tlb_all();
145 }
146 
147 void smp_flush_cache_mm(struct mm_struct *mm)
148 {
149 	if(mm->context != NO_CONTEXT) {
150 		cpumask_t cpu_mask = *mm_cpumask(mm);
151 		cpu_clear(smp_processor_id(), cpu_mask);
152 		if (!cpus_empty(cpu_mask))
153 			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
154 		local_flush_cache_mm(mm);
155 	}
156 }
157 
158 void smp_flush_tlb_mm(struct mm_struct *mm)
159 {
160 	if(mm->context != NO_CONTEXT) {
161 		cpumask_t cpu_mask = *mm_cpumask(mm);
162 		cpu_clear(smp_processor_id(), cpu_mask);
163 		if (!cpus_empty(cpu_mask)) {
164 			xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
165 			if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
166 				cpumask_copy(mm_cpumask(mm),
167 					     cpumask_of(smp_processor_id()));
168 		}
169 		local_flush_tlb_mm(mm);
170 	}
171 }
172 
173 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
174 			   unsigned long end)
175 {
176 	struct mm_struct *mm = vma->vm_mm;
177 
178 	if (mm->context != NO_CONTEXT) {
179 		cpumask_t cpu_mask = *mm_cpumask(mm);
180 		cpu_clear(smp_processor_id(), cpu_mask);
181 		if (!cpus_empty(cpu_mask))
182 			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
183 		local_flush_cache_range(vma, start, end);
184 	}
185 }
186 
187 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
188 			 unsigned long end)
189 {
190 	struct mm_struct *mm = vma->vm_mm;
191 
192 	if (mm->context != NO_CONTEXT) {
193 		cpumask_t cpu_mask = *mm_cpumask(mm);
194 		cpu_clear(smp_processor_id(), cpu_mask);
195 		if (!cpus_empty(cpu_mask))
196 			xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
197 		local_flush_tlb_range(vma, start, end);
198 	}
199 }
200 
201 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
202 {
203 	struct mm_struct *mm = vma->vm_mm;
204 
205 	if(mm->context != NO_CONTEXT) {
206 		cpumask_t cpu_mask = *mm_cpumask(mm);
207 		cpu_clear(smp_processor_id(), cpu_mask);
208 		if (!cpus_empty(cpu_mask))
209 			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
210 		local_flush_cache_page(vma, page);
211 	}
212 }
213 
214 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
215 {
216 	struct mm_struct *mm = vma->vm_mm;
217 
218 	if(mm->context != NO_CONTEXT) {
219 		cpumask_t cpu_mask = *mm_cpumask(mm);
220 		cpu_clear(smp_processor_id(), cpu_mask);
221 		if (!cpus_empty(cpu_mask))
222 			xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
223 		local_flush_tlb_page(vma, page);
224 	}
225 }
226 
227 void smp_reschedule_irq(void)
228 {
229 	set_need_resched();
230 }
231 
232 void smp_flush_page_to_ram(unsigned long page)
233 {
234 	/* Current theory is that those who call this are the one's
235 	 * who have just dirtied their cache with the pages contents
236 	 * in kernel space, therefore we only run this on local cpu.
237 	 *
238 	 * XXX This experiment failed, research further... -DaveM
239 	 */
240 #if 1
241 	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
242 #endif
243 	local_flush_page_to_ram(page);
244 }
245 
246 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
247 {
248 	cpumask_t cpu_mask = *mm_cpumask(mm);
249 	cpu_clear(smp_processor_id(), cpu_mask);
250 	if (!cpus_empty(cpu_mask))
251 		xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
252 	local_flush_sig_insns(mm, insn_addr);
253 }
254 
255 extern unsigned int lvl14_resolution;
256 
257 /* /proc/profile writes can call this, don't __init it please. */
258 static DEFINE_SPINLOCK(prof_setup_lock);
259 
260 int setup_profiling_timer(unsigned int multiplier)
261 {
262 	int i;
263 	unsigned long flags;
264 
265 	/* Prevent level14 ticker IRQ flooding. */
266 	if((!multiplier) || (lvl14_resolution / multiplier) < 500)
267 		return -EINVAL;
268 
269 	spin_lock_irqsave(&prof_setup_lock, flags);
270 	for_each_possible_cpu(i) {
271 		load_profile_irq(i, lvl14_resolution / multiplier);
272 		prof_multiplier(i) = multiplier;
273 	}
274 	spin_unlock_irqrestore(&prof_setup_lock, flags);
275 
276 	return 0;
277 }
278 
279 void __init smp_prepare_cpus(unsigned int max_cpus)
280 {
281 	extern void __init smp4m_boot_cpus(void);
282 	extern void __init smp4d_boot_cpus(void);
283 	int i, cpuid, extra;
284 
285 	printk("Entering SMP Mode...\n");
286 
287 	extra = 0;
288 	for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
289 		if (cpuid >= NR_CPUS)
290 			extra++;
291 	}
292 	/* i = number of cpus */
293 	if (extra && max_cpus > i - extra)
294 		printk("Warning: NR_CPUS is too low to start all cpus\n");
295 
296 	smp_store_cpu_info(boot_cpu_id);
297 
298 	switch(sparc_cpu_model) {
299 	case sun4:
300 		printk("SUN4\n");
301 		BUG();
302 		break;
303 	case sun4c:
304 		printk("SUN4C\n");
305 		BUG();
306 		break;
307 	case sun4m:
308 		smp4m_boot_cpus();
309 		break;
310 	case sun4d:
311 		smp4d_boot_cpus();
312 		break;
313 	case sparc_leon:
314 		leon_boot_cpus();
315 		break;
316 	case sun4e:
317 		printk("SUN4E\n");
318 		BUG();
319 		break;
320 	case sun4u:
321 		printk("SUN4U\n");
322 		BUG();
323 		break;
324 	default:
325 		printk("UNKNOWN!\n");
326 		BUG();
327 		break;
328 	};
329 }
330 
331 /* Set this up early so that things like the scheduler can init
332  * properly.  We use the same cpu mask for both the present and
333  * possible cpu map.
334  */
335 void __init smp_setup_cpu_possible_map(void)
336 {
337 	int instance, mid;
338 
339 	instance = 0;
340 	while (!cpu_find_by_instance(instance, NULL, &mid)) {
341 		if (mid < NR_CPUS) {
342 			set_cpu_possible(mid, true);
343 			set_cpu_present(mid, true);
344 		}
345 		instance++;
346 	}
347 }
348 
349 void __init smp_prepare_boot_cpu(void)
350 {
351 	int cpuid = hard_smp_processor_id();
352 
353 	if (cpuid >= NR_CPUS) {
354 		prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
355 		prom_halt();
356 	}
357 	if (cpuid != 0)
358 		printk("boot cpu id != 0, this could work but is untested\n");
359 
360 	current_thread_info()->cpu = cpuid;
361 	set_cpu_online(cpuid, true);
362 	set_cpu_possible(cpuid, true);
363 }
364 
365 int __cpuinit __cpu_up(unsigned int cpu)
366 {
367 	extern int __cpuinit smp4m_boot_one_cpu(int);
368 	extern int __cpuinit smp4d_boot_one_cpu(int);
369 	int ret=0;
370 
371 	switch(sparc_cpu_model) {
372 	case sun4:
373 		printk("SUN4\n");
374 		BUG();
375 		break;
376 	case sun4c:
377 		printk("SUN4C\n");
378 		BUG();
379 		break;
380 	case sun4m:
381 		ret = smp4m_boot_one_cpu(cpu);
382 		break;
383 	case sun4d:
384 		ret = smp4d_boot_one_cpu(cpu);
385 		break;
386 	case sparc_leon:
387 		ret = leon_boot_one_cpu(cpu);
388 		break;
389 	case sun4e:
390 		printk("SUN4E\n");
391 		BUG();
392 		break;
393 	case sun4u:
394 		printk("SUN4U\n");
395 		BUG();
396 		break;
397 	default:
398 		printk("UNKNOWN!\n");
399 		BUG();
400 		break;
401 	};
402 
403 	if (!ret) {
404 		cpu_set(cpu, smp_commenced_mask);
405 		while (!cpu_online(cpu))
406 			mb();
407 	}
408 	return ret;
409 }
410 
411 void smp_bogo(struct seq_file *m)
412 {
413 	int i;
414 
415 	for_each_online_cpu(i) {
416 		seq_printf(m,
417 			   "Cpu%dBogo\t: %lu.%02lu\n",
418 			   i,
419 			   cpu_data(i).udelay_val/(500000/HZ),
420 			   (cpu_data(i).udelay_val/(5000/HZ))%100);
421 	}
422 }
423 
424 void smp_info(struct seq_file *m)
425 {
426 	int i;
427 
428 	seq_printf(m, "State:\n");
429 	for_each_online_cpu(i)
430 		seq_printf(m, "CPU%d\t\t: online\n", i);
431 }
432