1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/sparc64/kernel/setup.c 4 * 5 * Copyright (C) 1995,1996 David S. Miller (davem@caip.rutgers.edu) 6 * Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 */ 8 9 #include <linux/errno.h> 10 #include <linux/sched.h> 11 #include <linux/kernel.h> 12 #include <linux/mm.h> 13 #include <linux/stddef.h> 14 #include <linux/unistd.h> 15 #include <linux/ptrace.h> 16 #include <asm/smp.h> 17 #include <linux/user.h> 18 #include <linux/screen_info.h> 19 #include <linux/delay.h> 20 #include <linux/fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/syscalls.h> 23 #include <linux/kdev_t.h> 24 #include <linux/major.h> 25 #include <linux/string.h> 26 #include <linux/init.h> 27 #include <linux/inet.h> 28 #include <linux/console.h> 29 #include <linux/root_dev.h> 30 #include <linux/interrupt.h> 31 #include <linux/cpu.h> 32 #include <linux/initrd.h> 33 #include <linux/module.h> 34 #include <linux/start_kernel.h> 35 #include <linux/memblock.h> 36 #include <uapi/linux/mount.h> 37 38 #include <asm/io.h> 39 #include <asm/processor.h> 40 #include <asm/oplib.h> 41 #include <asm/page.h> 42 #include <asm/pgtable.h> 43 #include <asm/idprom.h> 44 #include <asm/head.h> 45 #include <asm/starfire.h> 46 #include <asm/mmu_context.h> 47 #include <asm/timer.h> 48 #include <asm/sections.h> 49 #include <asm/setup.h> 50 #include <asm/mmu.h> 51 #include <asm/ns87303.h> 52 #include <asm/btext.h> 53 #include <asm/elf.h> 54 #include <asm/mdesc.h> 55 #include <asm/cacheflush.h> 56 #include <asm/dma.h> 57 #include <asm/irq.h> 58 59 #ifdef CONFIG_IP_PNP 60 #include <net/ipconfig.h> 61 #endif 62 63 #include "entry.h" 64 #include "kernel.h" 65 66 /* Used to synchronize accesses to NatSemi SUPER I/O chip configure 67 * operations in asm/ns87303.h 68 */ 69 DEFINE_SPINLOCK(ns87303_lock); 70 EXPORT_SYMBOL(ns87303_lock); 71 72 struct screen_info screen_info = { 73 0, 0, /* orig-x, orig-y */ 74 0, /* unused */ 75 0, /* orig-video-page */ 76 0, /* orig-video-mode */ 77 128, /* orig-video-cols */ 78 0, 0, 0, /* unused, ega_bx, unused */ 79 54, /* orig-video-lines */ 80 0, /* orig-video-isVGA */ 81 16 /* orig-video-points */ 82 }; 83 84 static void 85 prom_console_write(struct console *con, const char *s, unsigned int n) 86 { 87 prom_write(s, n); 88 } 89 90 /* Exported for mm/init.c:paging_init. */ 91 unsigned long cmdline_memory_size = 0; 92 93 static struct console prom_early_console = { 94 .name = "earlyprom", 95 .write = prom_console_write, 96 .flags = CON_PRINTBUFFER | CON_BOOT | CON_ANYTIME, 97 .index = -1, 98 }; 99 100 /* 101 * Process kernel command line switches that are specific to the 102 * SPARC or that require special low-level processing. 103 */ 104 static void __init process_switch(char c) 105 { 106 switch (c) { 107 case 'd': 108 case 's': 109 break; 110 case 'h': 111 prom_printf("boot_flags_init: Halt!\n"); 112 prom_halt(); 113 break; 114 case 'p': 115 prom_early_console.flags &= ~CON_BOOT; 116 break; 117 case 'P': 118 /* Force UltraSPARC-III P-Cache on. */ 119 if (tlb_type != cheetah) { 120 printk("BOOT: Ignoring P-Cache force option.\n"); 121 break; 122 } 123 cheetah_pcache_forced_on = 1; 124 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 125 cheetah_enable_pcache(); 126 break; 127 128 default: 129 printk("Unknown boot switch (-%c)\n", c); 130 break; 131 } 132 } 133 134 static void __init boot_flags_init(char *commands) 135 { 136 while (*commands) { 137 /* Move to the start of the next "argument". */ 138 while (*commands == ' ') 139 commands++; 140 141 /* Process any command switches, otherwise skip it. */ 142 if (*commands == '\0') 143 break; 144 if (*commands == '-') { 145 commands++; 146 while (*commands && *commands != ' ') 147 process_switch(*commands++); 148 continue; 149 } 150 if (!strncmp(commands, "mem=", 4)) 151 cmdline_memory_size = memparse(commands + 4, &commands); 152 153 while (*commands && *commands != ' ') 154 commands++; 155 } 156 } 157 158 extern unsigned short root_flags; 159 extern unsigned short root_dev; 160 extern unsigned short ram_flags; 161 #define RAMDISK_IMAGE_START_MASK 0x07FF 162 #define RAMDISK_PROMPT_FLAG 0x8000 163 #define RAMDISK_LOAD_FLAG 0x4000 164 165 extern int root_mountflags; 166 167 char reboot_command[COMMAND_LINE_SIZE]; 168 169 static struct pt_regs fake_swapper_regs = { { 0, }, 0, 0, 0, 0 }; 170 171 static void __init per_cpu_patch(void) 172 { 173 struct cpuid_patch_entry *p; 174 unsigned long ver; 175 int is_jbus; 176 177 if (tlb_type == spitfire && !this_is_starfire) 178 return; 179 180 is_jbus = 0; 181 if (tlb_type != hypervisor) { 182 __asm__ ("rdpr %%ver, %0" : "=r" (ver)); 183 is_jbus = ((ver >> 32UL) == __JALAPENO_ID || 184 (ver >> 32UL) == __SERRANO_ID); 185 } 186 187 p = &__cpuid_patch; 188 while (p < &__cpuid_patch_end) { 189 unsigned long addr = p->addr; 190 unsigned int *insns; 191 192 switch (tlb_type) { 193 case spitfire: 194 insns = &p->starfire[0]; 195 break; 196 case cheetah: 197 case cheetah_plus: 198 if (is_jbus) 199 insns = &p->cheetah_jbus[0]; 200 else 201 insns = &p->cheetah_safari[0]; 202 break; 203 case hypervisor: 204 insns = &p->sun4v[0]; 205 break; 206 default: 207 prom_printf("Unknown cpu type, halting.\n"); 208 prom_halt(); 209 } 210 211 *(unsigned int *) (addr + 0) = insns[0]; 212 wmb(); 213 __asm__ __volatile__("flush %0" : : "r" (addr + 0)); 214 215 *(unsigned int *) (addr + 4) = insns[1]; 216 wmb(); 217 __asm__ __volatile__("flush %0" : : "r" (addr + 4)); 218 219 *(unsigned int *) (addr + 8) = insns[2]; 220 wmb(); 221 __asm__ __volatile__("flush %0" : : "r" (addr + 8)); 222 223 *(unsigned int *) (addr + 12) = insns[3]; 224 wmb(); 225 __asm__ __volatile__("flush %0" : : "r" (addr + 12)); 226 227 p++; 228 } 229 } 230 231 void sun4v_patch_1insn_range(struct sun4v_1insn_patch_entry *start, 232 struct sun4v_1insn_patch_entry *end) 233 { 234 while (start < end) { 235 unsigned long addr = start->addr; 236 237 *(unsigned int *) (addr + 0) = start->insn; 238 wmb(); 239 __asm__ __volatile__("flush %0" : : "r" (addr + 0)); 240 241 start++; 242 } 243 } 244 245 void sun4v_patch_2insn_range(struct sun4v_2insn_patch_entry *start, 246 struct sun4v_2insn_patch_entry *end) 247 { 248 while (start < end) { 249 unsigned long addr = start->addr; 250 251 *(unsigned int *) (addr + 0) = start->insns[0]; 252 wmb(); 253 __asm__ __volatile__("flush %0" : : "r" (addr + 0)); 254 255 *(unsigned int *) (addr + 4) = start->insns[1]; 256 wmb(); 257 __asm__ __volatile__("flush %0" : : "r" (addr + 4)); 258 259 start++; 260 } 261 } 262 263 void sun_m7_patch_2insn_range(struct sun4v_2insn_patch_entry *start, 264 struct sun4v_2insn_patch_entry *end) 265 { 266 while (start < end) { 267 unsigned long addr = start->addr; 268 269 *(unsigned int *) (addr + 0) = start->insns[0]; 270 wmb(); 271 __asm__ __volatile__("flush %0" : : "r" (addr + 0)); 272 273 *(unsigned int *) (addr + 4) = start->insns[1]; 274 wmb(); 275 __asm__ __volatile__("flush %0" : : "r" (addr + 4)); 276 277 start++; 278 } 279 } 280 281 static void __init sun4v_patch(void) 282 { 283 extern void sun4v_hvapi_init(void); 284 285 if (tlb_type != hypervisor) 286 return; 287 288 sun4v_patch_1insn_range(&__sun4v_1insn_patch, 289 &__sun4v_1insn_patch_end); 290 291 sun4v_patch_2insn_range(&__sun4v_2insn_patch, 292 &__sun4v_2insn_patch_end); 293 294 switch (sun4v_chip_type) { 295 case SUN4V_CHIP_SPARC_M7: 296 case SUN4V_CHIP_SPARC_M8: 297 case SUN4V_CHIP_SPARC_SN: 298 sun4v_patch_1insn_range(&__sun_m7_1insn_patch, 299 &__sun_m7_1insn_patch_end); 300 sun_m7_patch_2insn_range(&__sun_m7_2insn_patch, 301 &__sun_m7_2insn_patch_end); 302 break; 303 default: 304 break; 305 } 306 307 if (sun4v_chip_type != SUN4V_CHIP_NIAGARA1) { 308 sun4v_patch_1insn_range(&__fast_win_ctrl_1insn_patch, 309 &__fast_win_ctrl_1insn_patch_end); 310 } 311 312 sun4v_hvapi_init(); 313 } 314 315 static void __init popc_patch(void) 316 { 317 struct popc_3insn_patch_entry *p3; 318 struct popc_6insn_patch_entry *p6; 319 320 p3 = &__popc_3insn_patch; 321 while (p3 < &__popc_3insn_patch_end) { 322 unsigned long i, addr = p3->addr; 323 324 for (i = 0; i < 3; i++) { 325 *(unsigned int *) (addr + (i * 4)) = p3->insns[i]; 326 wmb(); 327 __asm__ __volatile__("flush %0" 328 : : "r" (addr + (i * 4))); 329 } 330 331 p3++; 332 } 333 334 p6 = &__popc_6insn_patch; 335 while (p6 < &__popc_6insn_patch_end) { 336 unsigned long i, addr = p6->addr; 337 338 for (i = 0; i < 6; i++) { 339 *(unsigned int *) (addr + (i * 4)) = p6->insns[i]; 340 wmb(); 341 __asm__ __volatile__("flush %0" 342 : : "r" (addr + (i * 4))); 343 } 344 345 p6++; 346 } 347 } 348 349 static void __init pause_patch(void) 350 { 351 struct pause_patch_entry *p; 352 353 p = &__pause_3insn_patch; 354 while (p < &__pause_3insn_patch_end) { 355 unsigned long i, addr = p->addr; 356 357 for (i = 0; i < 3; i++) { 358 *(unsigned int *) (addr + (i * 4)) = p->insns[i]; 359 wmb(); 360 __asm__ __volatile__("flush %0" 361 : : "r" (addr + (i * 4))); 362 } 363 364 p++; 365 } 366 } 367 368 void __init start_early_boot(void) 369 { 370 int cpu; 371 372 check_if_starfire(); 373 per_cpu_patch(); 374 sun4v_patch(); 375 smp_init_cpu_poke(); 376 377 cpu = hard_smp_processor_id(); 378 if (cpu >= NR_CPUS) { 379 prom_printf("Serious problem, boot cpu id (%d) >= NR_CPUS (%d)\n", 380 cpu, NR_CPUS); 381 prom_halt(); 382 } 383 current_thread_info()->cpu = cpu; 384 385 time_init_early(); 386 prom_init_report(); 387 start_kernel(); 388 } 389 390 /* On Ultra, we support all of the v8 capabilities. */ 391 unsigned long sparc64_elf_hwcap = (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | 392 HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV | 393 HWCAP_SPARC_V9); 394 EXPORT_SYMBOL(sparc64_elf_hwcap); 395 396 static const char *hwcaps[] = { 397 "flush", "stbar", "swap", "muldiv", "v9", 398 "ultra3", "blkinit", "n2", 399 400 /* These strings are as they appear in the machine description 401 * 'hwcap-list' property for cpu nodes. 402 */ 403 "mul32", "div32", "fsmuld", "v8plus", "popc", "vis", "vis2", 404 "ASIBlkInit", "fmaf", "vis3", "hpc", "random", "trans", "fjfmau", 405 "ima", "cspare", "pause", "cbcond", NULL /*reserved for crypto */, 406 "adp", 407 }; 408 409 static const char *crypto_hwcaps[] = { 410 "aes", "des", "kasumi", "camellia", "md5", "sha1", "sha256", 411 "sha512", "mpmul", "montmul", "montsqr", "crc32c", 412 }; 413 414 void cpucap_info(struct seq_file *m) 415 { 416 unsigned long caps = sparc64_elf_hwcap; 417 int i, printed = 0; 418 419 seq_puts(m, "cpucaps\t\t: "); 420 for (i = 0; i < ARRAY_SIZE(hwcaps); i++) { 421 unsigned long bit = 1UL << i; 422 if (hwcaps[i] && (caps & bit)) { 423 seq_printf(m, "%s%s", 424 printed ? "," : "", hwcaps[i]); 425 printed++; 426 } 427 } 428 if (caps & HWCAP_SPARC_CRYPTO) { 429 unsigned long cfr; 430 431 __asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr)); 432 for (i = 0; i < ARRAY_SIZE(crypto_hwcaps); i++) { 433 unsigned long bit = 1UL << i; 434 if (cfr & bit) { 435 seq_printf(m, "%s%s", 436 printed ? "," : "", crypto_hwcaps[i]); 437 printed++; 438 } 439 } 440 } 441 seq_putc(m, '\n'); 442 } 443 444 static void __init report_one_hwcap(int *printed, const char *name) 445 { 446 if ((*printed) == 0) 447 printk(KERN_INFO "CPU CAPS: ["); 448 printk(KERN_CONT "%s%s", 449 (*printed) ? "," : "", name); 450 if (++(*printed) == 8) { 451 printk(KERN_CONT "]\n"); 452 *printed = 0; 453 } 454 } 455 456 static void __init report_crypto_hwcaps(int *printed) 457 { 458 unsigned long cfr; 459 int i; 460 461 __asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr)); 462 463 for (i = 0; i < ARRAY_SIZE(crypto_hwcaps); i++) { 464 unsigned long bit = 1UL << i; 465 if (cfr & bit) 466 report_one_hwcap(printed, crypto_hwcaps[i]); 467 } 468 } 469 470 static void __init report_hwcaps(unsigned long caps) 471 { 472 int i, printed = 0; 473 474 for (i = 0; i < ARRAY_SIZE(hwcaps); i++) { 475 unsigned long bit = 1UL << i; 476 if (hwcaps[i] && (caps & bit)) 477 report_one_hwcap(&printed, hwcaps[i]); 478 } 479 if (caps & HWCAP_SPARC_CRYPTO) 480 report_crypto_hwcaps(&printed); 481 if (printed != 0) 482 printk(KERN_CONT "]\n"); 483 } 484 485 static unsigned long __init mdesc_cpu_hwcap_list(void) 486 { 487 struct mdesc_handle *hp; 488 unsigned long caps = 0; 489 const char *prop; 490 int len; 491 u64 pn; 492 493 hp = mdesc_grab(); 494 if (!hp) 495 return 0; 496 497 pn = mdesc_node_by_name(hp, MDESC_NODE_NULL, "cpu"); 498 if (pn == MDESC_NODE_NULL) 499 goto out; 500 501 prop = mdesc_get_property(hp, pn, "hwcap-list", &len); 502 if (!prop) 503 goto out; 504 505 while (len) { 506 int i, plen; 507 508 for (i = 0; i < ARRAY_SIZE(hwcaps); i++) { 509 unsigned long bit = 1UL << i; 510 511 if (hwcaps[i] && !strcmp(prop, hwcaps[i])) { 512 caps |= bit; 513 break; 514 } 515 } 516 for (i = 0; i < ARRAY_SIZE(crypto_hwcaps); i++) { 517 if (!strcmp(prop, crypto_hwcaps[i])) 518 caps |= HWCAP_SPARC_CRYPTO; 519 } 520 521 plen = strlen(prop) + 1; 522 prop += plen; 523 len -= plen; 524 } 525 526 out: 527 mdesc_release(hp); 528 return caps; 529 } 530 531 /* This yields a mask that user programs can use to figure out what 532 * instruction set this cpu supports. 533 */ 534 static void __init init_sparc64_elf_hwcap(void) 535 { 536 unsigned long cap = sparc64_elf_hwcap; 537 unsigned long mdesc_caps; 538 539 if (tlb_type == cheetah || tlb_type == cheetah_plus) 540 cap |= HWCAP_SPARC_ULTRA3; 541 else if (tlb_type == hypervisor) { 542 if (sun4v_chip_type == SUN4V_CHIP_NIAGARA1 || 543 sun4v_chip_type == SUN4V_CHIP_NIAGARA2 || 544 sun4v_chip_type == SUN4V_CHIP_NIAGARA3 || 545 sun4v_chip_type == SUN4V_CHIP_NIAGARA4 || 546 sun4v_chip_type == SUN4V_CHIP_NIAGARA5 || 547 sun4v_chip_type == SUN4V_CHIP_SPARC_M6 || 548 sun4v_chip_type == SUN4V_CHIP_SPARC_M7 || 549 sun4v_chip_type == SUN4V_CHIP_SPARC_M8 || 550 sun4v_chip_type == SUN4V_CHIP_SPARC_SN || 551 sun4v_chip_type == SUN4V_CHIP_SPARC64X) 552 cap |= HWCAP_SPARC_BLKINIT; 553 if (sun4v_chip_type == SUN4V_CHIP_NIAGARA2 || 554 sun4v_chip_type == SUN4V_CHIP_NIAGARA3 || 555 sun4v_chip_type == SUN4V_CHIP_NIAGARA4 || 556 sun4v_chip_type == SUN4V_CHIP_NIAGARA5 || 557 sun4v_chip_type == SUN4V_CHIP_SPARC_M6 || 558 sun4v_chip_type == SUN4V_CHIP_SPARC_M7 || 559 sun4v_chip_type == SUN4V_CHIP_SPARC_M8 || 560 sun4v_chip_type == SUN4V_CHIP_SPARC_SN || 561 sun4v_chip_type == SUN4V_CHIP_SPARC64X) 562 cap |= HWCAP_SPARC_N2; 563 } 564 565 cap |= (AV_SPARC_MUL32 | AV_SPARC_DIV32 | AV_SPARC_V8PLUS); 566 567 mdesc_caps = mdesc_cpu_hwcap_list(); 568 if (!mdesc_caps) { 569 if (tlb_type == spitfire) 570 cap |= AV_SPARC_VIS; 571 if (tlb_type == cheetah || tlb_type == cheetah_plus) 572 cap |= AV_SPARC_VIS | AV_SPARC_VIS2; 573 if (tlb_type == cheetah_plus) { 574 unsigned long impl, ver; 575 576 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); 577 impl = ((ver >> 32) & 0xffff); 578 if (impl == PANTHER_IMPL) 579 cap |= AV_SPARC_POPC; 580 } 581 if (tlb_type == hypervisor) { 582 if (sun4v_chip_type == SUN4V_CHIP_NIAGARA1) 583 cap |= AV_SPARC_ASI_BLK_INIT; 584 if (sun4v_chip_type == SUN4V_CHIP_NIAGARA2 || 585 sun4v_chip_type == SUN4V_CHIP_NIAGARA3 || 586 sun4v_chip_type == SUN4V_CHIP_NIAGARA4 || 587 sun4v_chip_type == SUN4V_CHIP_NIAGARA5 || 588 sun4v_chip_type == SUN4V_CHIP_SPARC_M6 || 589 sun4v_chip_type == SUN4V_CHIP_SPARC_M7 || 590 sun4v_chip_type == SUN4V_CHIP_SPARC_M8 || 591 sun4v_chip_type == SUN4V_CHIP_SPARC_SN || 592 sun4v_chip_type == SUN4V_CHIP_SPARC64X) 593 cap |= (AV_SPARC_VIS | AV_SPARC_VIS2 | 594 AV_SPARC_ASI_BLK_INIT | 595 AV_SPARC_POPC); 596 if (sun4v_chip_type == SUN4V_CHIP_NIAGARA3 || 597 sun4v_chip_type == SUN4V_CHIP_NIAGARA4 || 598 sun4v_chip_type == SUN4V_CHIP_NIAGARA5 || 599 sun4v_chip_type == SUN4V_CHIP_SPARC_M6 || 600 sun4v_chip_type == SUN4V_CHIP_SPARC_M7 || 601 sun4v_chip_type == SUN4V_CHIP_SPARC_M8 || 602 sun4v_chip_type == SUN4V_CHIP_SPARC_SN || 603 sun4v_chip_type == SUN4V_CHIP_SPARC64X) 604 cap |= (AV_SPARC_VIS3 | AV_SPARC_HPC | 605 AV_SPARC_FMAF); 606 } 607 } 608 sparc64_elf_hwcap = cap | mdesc_caps; 609 610 report_hwcaps(sparc64_elf_hwcap); 611 612 if (sparc64_elf_hwcap & AV_SPARC_POPC) 613 popc_patch(); 614 if (sparc64_elf_hwcap & AV_SPARC_PAUSE) 615 pause_patch(); 616 } 617 618 void __init alloc_irqstack_bootmem(void) 619 { 620 unsigned int i, node; 621 622 for_each_possible_cpu(i) { 623 node = cpu_to_node(i); 624 625 softirq_stack[i] = memblock_alloc_node(THREAD_SIZE, 626 THREAD_SIZE, node); 627 if (!softirq_stack[i]) 628 panic("%s: Failed to allocate %lu bytes align=%lx nid=%d\n", 629 __func__, THREAD_SIZE, THREAD_SIZE, node); 630 hardirq_stack[i] = memblock_alloc_node(THREAD_SIZE, 631 THREAD_SIZE, node); 632 if (!hardirq_stack[i]) 633 panic("%s: Failed to allocate %lu bytes align=%lx nid=%d\n", 634 __func__, THREAD_SIZE, THREAD_SIZE, node); 635 } 636 } 637 638 void __init setup_arch(char **cmdline_p) 639 { 640 /* Initialize PROM console and command line. */ 641 *cmdline_p = prom_getbootargs(); 642 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE); 643 parse_early_param(); 644 645 boot_flags_init(*cmdline_p); 646 #ifdef CONFIG_EARLYFB 647 if (btext_find_display()) 648 #endif 649 register_console(&prom_early_console); 650 651 if (tlb_type == hypervisor) 652 pr_info("ARCH: SUN4V\n"); 653 else 654 pr_info("ARCH: SUN4U\n"); 655 656 #ifdef CONFIG_DUMMY_CONSOLE 657 conswitchp = &dummy_con; 658 #endif 659 660 idprom_init(); 661 662 if (!root_flags) 663 root_mountflags &= ~MS_RDONLY; 664 ROOT_DEV = old_decode_dev(root_dev); 665 #ifdef CONFIG_BLK_DEV_RAM 666 rd_image_start = ram_flags & RAMDISK_IMAGE_START_MASK; 667 rd_prompt = ((ram_flags & RAMDISK_PROMPT_FLAG) != 0); 668 rd_doload = ((ram_flags & RAMDISK_LOAD_FLAG) != 0); 669 #endif 670 671 task_thread_info(&init_task)->kregs = &fake_swapper_regs; 672 673 #ifdef CONFIG_IP_PNP 674 if (!ic_set_manually) { 675 phandle chosen = prom_finddevice("/chosen"); 676 u32 cl, sv, gw; 677 678 cl = prom_getintdefault (chosen, "client-ip", 0); 679 sv = prom_getintdefault (chosen, "server-ip", 0); 680 gw = prom_getintdefault (chosen, "gateway-ip", 0); 681 if (cl && sv) { 682 ic_myaddr = cl; 683 ic_servaddr = sv; 684 if (gw) 685 ic_gateway = gw; 686 #if defined(CONFIG_IP_PNP_BOOTP) || defined(CONFIG_IP_PNP_RARP) 687 ic_proto_enabled = 0; 688 #endif 689 } 690 } 691 #endif 692 693 /* Get boot processor trap_block[] setup. */ 694 init_cur_cpu_trap(current_thread_info()); 695 696 paging_init(); 697 init_sparc64_elf_hwcap(); 698 smp_fill_in_cpu_possible_map(); 699 /* 700 * Once the OF device tree and MDESC have been setup and nr_cpus has 701 * been parsed, we know the list of possible cpus. Therefore we can 702 * allocate the IRQ stacks. 703 */ 704 alloc_irqstack_bootmem(); 705 } 706 707 extern int stop_a_enabled; 708 709 void sun_do_break(void) 710 { 711 if (!stop_a_enabled) 712 return; 713 714 prom_printf("\n"); 715 flush_user_windows(); 716 717 prom_cmdline(); 718 } 719 EXPORT_SYMBOL(sun_do_break); 720 721 int stop_a_enabled = 1; 722 EXPORT_SYMBOL(stop_a_enabled); 723