1 #include <linux/kernel.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/of.h> 5 #include <linux/of_platform.h> 6 7 #include <asm/oplib.h> 8 #include <asm/prom.h> 9 #include <asm/irq.h> 10 #include <asm/upa.h> 11 12 #include "prom.h" 13 14 #ifdef CONFIG_PCI 15 /* PSYCHO interrupt mapping support. */ 16 #define PSYCHO_IMAP_A_SLOT0 0x0c00UL 17 #define PSYCHO_IMAP_B_SLOT0 0x0c20UL 18 static unsigned long psycho_pcislot_imap_offset(unsigned long ino) 19 { 20 unsigned int bus = (ino & 0x10) >> 4; 21 unsigned int slot = (ino & 0x0c) >> 2; 22 23 if (bus == 0) 24 return PSYCHO_IMAP_A_SLOT0 + (slot * 8); 25 else 26 return PSYCHO_IMAP_B_SLOT0 + (slot * 8); 27 } 28 29 #define PSYCHO_OBIO_IMAP_BASE 0x1000UL 30 31 #define PSYCHO_ONBOARD_IRQ_BASE 0x20 32 #define psycho_onboard_imap_offset(__ino) \ 33 (PSYCHO_OBIO_IMAP_BASE + (((__ino) & 0x1f) << 3)) 34 35 #define PSYCHO_ICLR_A_SLOT0 0x1400UL 36 #define PSYCHO_ICLR_SCSI 0x1800UL 37 38 #define psycho_iclr_offset(ino) \ 39 ((ino & 0x20) ? (PSYCHO_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ 40 (PSYCHO_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) 41 42 static unsigned int psycho_irq_build(struct device_node *dp, 43 unsigned int ino, 44 void *_data) 45 { 46 unsigned long controller_regs = (unsigned long) _data; 47 unsigned long imap, iclr; 48 unsigned long imap_off, iclr_off; 49 int inofixup = 0; 50 51 ino &= 0x3f; 52 if (ino < PSYCHO_ONBOARD_IRQ_BASE) { 53 /* PCI slot */ 54 imap_off = psycho_pcislot_imap_offset(ino); 55 } else { 56 /* Onboard device */ 57 imap_off = psycho_onboard_imap_offset(ino); 58 } 59 60 /* Now build the IRQ bucket. */ 61 imap = controller_regs + imap_off; 62 63 iclr_off = psycho_iclr_offset(ino); 64 iclr = controller_regs + iclr_off; 65 66 if ((ino & 0x20) == 0) 67 inofixup = ino & 0x03; 68 69 return build_irq(inofixup, iclr, imap); 70 } 71 72 static void __init psycho_irq_trans_init(struct device_node *dp) 73 { 74 const struct linux_prom64_registers *regs; 75 76 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 77 dp->irq_trans->irq_build = psycho_irq_build; 78 79 regs = of_get_property(dp, "reg", NULL); 80 dp->irq_trans->data = (void *) regs[2].phys_addr; 81 } 82 83 #define sabre_read(__reg) \ 84 ({ u64 __ret; \ 85 __asm__ __volatile__("ldxa [%1] %2, %0" \ 86 : "=r" (__ret) \ 87 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ 88 : "memory"); \ 89 __ret; \ 90 }) 91 92 struct sabre_irq_data { 93 unsigned long controller_regs; 94 unsigned int pci_first_busno; 95 }; 96 #define SABRE_CONFIGSPACE 0x001000000UL 97 #define SABRE_WRSYNC 0x1c20UL 98 99 #define SABRE_CONFIG_BASE(CONFIG_SPACE) \ 100 (CONFIG_SPACE | (1UL << 24)) 101 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \ 102 (((unsigned long)(BUS) << 16) | \ 103 ((unsigned long)(DEVFN) << 8) | \ 104 ((unsigned long)(REG))) 105 106 /* When a device lives behind a bridge deeper in the PCI bus topology 107 * than APB, a special sequence must run to make sure all pending DMA 108 * transfers at the time of IRQ delivery are visible in the coherency 109 * domain by the cpu. This sequence is to perform a read on the far 110 * side of the non-APB bridge, then perform a read of Sabre's DMA 111 * write-sync register. 112 */ 113 static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2) 114 { 115 unsigned int phys_hi = (unsigned int) (unsigned long) _arg1; 116 struct sabre_irq_data *irq_data = _arg2; 117 unsigned long controller_regs = irq_data->controller_regs; 118 unsigned long sync_reg = controller_regs + SABRE_WRSYNC; 119 unsigned long config_space = controller_regs + SABRE_CONFIGSPACE; 120 unsigned int bus, devfn; 121 u16 _unused; 122 123 config_space = SABRE_CONFIG_BASE(config_space); 124 125 bus = (phys_hi >> 16) & 0xff; 126 devfn = (phys_hi >> 8) & 0xff; 127 128 config_space |= SABRE_CONFIG_ENCODE(bus, devfn, 0x00); 129 130 __asm__ __volatile__("membar #Sync\n\t" 131 "lduha [%1] %2, %0\n\t" 132 "membar #Sync" 133 : "=r" (_unused) 134 : "r" ((u16 *) config_space), 135 "i" (ASI_PHYS_BYPASS_EC_E_L) 136 : "memory"); 137 138 sabre_read(sync_reg); 139 } 140 141 #define SABRE_IMAP_A_SLOT0 0x0c00UL 142 #define SABRE_IMAP_B_SLOT0 0x0c20UL 143 #define SABRE_ICLR_A_SLOT0 0x1400UL 144 #define SABRE_ICLR_B_SLOT0 0x1480UL 145 #define SABRE_ICLR_SCSI 0x1800UL 146 #define SABRE_ICLR_ETH 0x1808UL 147 #define SABRE_ICLR_BPP 0x1810UL 148 #define SABRE_ICLR_AU_REC 0x1818UL 149 #define SABRE_ICLR_AU_PLAY 0x1820UL 150 #define SABRE_ICLR_PFAIL 0x1828UL 151 #define SABRE_ICLR_KMS 0x1830UL 152 #define SABRE_ICLR_FLPY 0x1838UL 153 #define SABRE_ICLR_SHW 0x1840UL 154 #define SABRE_ICLR_KBD 0x1848UL 155 #define SABRE_ICLR_MS 0x1850UL 156 #define SABRE_ICLR_SER 0x1858UL 157 #define SABRE_ICLR_UE 0x1870UL 158 #define SABRE_ICLR_CE 0x1878UL 159 #define SABRE_ICLR_PCIERR 0x1880UL 160 161 static unsigned long sabre_pcislot_imap_offset(unsigned long ino) 162 { 163 unsigned int bus = (ino & 0x10) >> 4; 164 unsigned int slot = (ino & 0x0c) >> 2; 165 166 if (bus == 0) 167 return SABRE_IMAP_A_SLOT0 + (slot * 8); 168 else 169 return SABRE_IMAP_B_SLOT0 + (slot * 8); 170 } 171 172 #define SABRE_OBIO_IMAP_BASE 0x1000UL 173 #define SABRE_ONBOARD_IRQ_BASE 0x20 174 #define sabre_onboard_imap_offset(__ino) \ 175 (SABRE_OBIO_IMAP_BASE + (((__ino) & 0x1f) << 3)) 176 177 #define sabre_iclr_offset(ino) \ 178 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ 179 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) 180 181 static int sabre_device_needs_wsync(struct device_node *dp) 182 { 183 struct device_node *parent = dp->parent; 184 const char *parent_model, *parent_compat; 185 186 /* This traversal up towards the root is meant to 187 * handle two cases: 188 * 189 * 1) non-PCI bus sitting under PCI, such as 'ebus' 190 * 2) the PCI controller interrupts themselves, which 191 * will use the sabre_irq_build but do not need 192 * the DMA synchronization handling 193 */ 194 while (parent) { 195 if (!strcmp(parent->type, "pci")) 196 break; 197 parent = parent->parent; 198 } 199 200 if (!parent) 201 return 0; 202 203 parent_model = of_get_property(parent, 204 "model", NULL); 205 if (parent_model && 206 (!strcmp(parent_model, "SUNW,sabre") || 207 !strcmp(parent_model, "SUNW,simba"))) 208 return 0; 209 210 parent_compat = of_get_property(parent, 211 "compatible", NULL); 212 if (parent_compat && 213 (!strcmp(parent_compat, "pci108e,a000") || 214 !strcmp(parent_compat, "pci108e,a001"))) 215 return 0; 216 217 return 1; 218 } 219 220 static unsigned int sabre_irq_build(struct device_node *dp, 221 unsigned int ino, 222 void *_data) 223 { 224 struct sabre_irq_data *irq_data = _data; 225 unsigned long controller_regs = irq_data->controller_regs; 226 const struct linux_prom_pci_registers *regs; 227 unsigned long imap, iclr; 228 unsigned long imap_off, iclr_off; 229 int inofixup = 0; 230 int virt_irq; 231 232 ino &= 0x3f; 233 if (ino < SABRE_ONBOARD_IRQ_BASE) { 234 /* PCI slot */ 235 imap_off = sabre_pcislot_imap_offset(ino); 236 } else { 237 /* onboard device */ 238 imap_off = sabre_onboard_imap_offset(ino); 239 } 240 241 /* Now build the IRQ bucket. */ 242 imap = controller_regs + imap_off; 243 244 iclr_off = sabre_iclr_offset(ino); 245 iclr = controller_regs + iclr_off; 246 247 if ((ino & 0x20) == 0) 248 inofixup = ino & 0x03; 249 250 virt_irq = build_irq(inofixup, iclr, imap); 251 252 /* If the parent device is a PCI<->PCI bridge other than 253 * APB, we have to install a pre-handler to ensure that 254 * all pending DMA is drained before the interrupt handler 255 * is run. 256 */ 257 regs = of_get_property(dp, "reg", NULL); 258 if (regs && sabre_device_needs_wsync(dp)) { 259 irq_install_pre_handler(virt_irq, 260 sabre_wsync_handler, 261 (void *) (long) regs->phys_hi, 262 (void *) irq_data); 263 } 264 265 return virt_irq; 266 } 267 268 static void __init sabre_irq_trans_init(struct device_node *dp) 269 { 270 const struct linux_prom64_registers *regs; 271 struct sabre_irq_data *irq_data; 272 const u32 *busrange; 273 274 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 275 dp->irq_trans->irq_build = sabre_irq_build; 276 277 irq_data = prom_early_alloc(sizeof(struct sabre_irq_data)); 278 279 regs = of_get_property(dp, "reg", NULL); 280 irq_data->controller_regs = regs[0].phys_addr; 281 282 busrange = of_get_property(dp, "bus-range", NULL); 283 irq_data->pci_first_busno = busrange[0]; 284 285 dp->irq_trans->data = irq_data; 286 } 287 288 /* SCHIZO interrupt mapping support. Unlike Psycho, for this controller the 289 * imap/iclr registers are per-PBM. 290 */ 291 #define SCHIZO_IMAP_BASE 0x1000UL 292 #define SCHIZO_ICLR_BASE 0x1400UL 293 294 static unsigned long schizo_imap_offset(unsigned long ino) 295 { 296 return SCHIZO_IMAP_BASE + (ino * 8UL); 297 } 298 299 static unsigned long schizo_iclr_offset(unsigned long ino) 300 { 301 return SCHIZO_ICLR_BASE + (ino * 8UL); 302 } 303 304 static unsigned long schizo_ino_to_iclr(unsigned long pbm_regs, 305 unsigned int ino) 306 { 307 308 return pbm_regs + schizo_iclr_offset(ino); 309 } 310 311 static unsigned long schizo_ino_to_imap(unsigned long pbm_regs, 312 unsigned int ino) 313 { 314 return pbm_regs + schizo_imap_offset(ino); 315 } 316 317 #define schizo_read(__reg) \ 318 ({ u64 __ret; \ 319 __asm__ __volatile__("ldxa [%1] %2, %0" \ 320 : "=r" (__ret) \ 321 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ 322 : "memory"); \ 323 __ret; \ 324 }) 325 #define schizo_write(__reg, __val) \ 326 __asm__ __volatile__("stxa %0, [%1] %2" \ 327 : /* no outputs */ \ 328 : "r" (__val), "r" (__reg), \ 329 "i" (ASI_PHYS_BYPASS_EC_E) \ 330 : "memory") 331 332 static void tomatillo_wsync_handler(unsigned int ino, void *_arg1, void *_arg2) 333 { 334 unsigned long sync_reg = (unsigned long) _arg2; 335 u64 mask = 1UL << (ino & IMAP_INO); 336 u64 val; 337 int limit; 338 339 schizo_write(sync_reg, mask); 340 341 limit = 100000; 342 val = 0; 343 while (--limit) { 344 val = schizo_read(sync_reg); 345 if (!(val & mask)) 346 break; 347 } 348 if (limit <= 0) { 349 printk("tomatillo_wsync_handler: DMA won't sync [%llx:%llx]\n", 350 val, mask); 351 } 352 353 if (_arg1) { 354 static unsigned char cacheline[64] 355 __attribute__ ((aligned (64))); 356 357 __asm__ __volatile__("rd %%fprs, %0\n\t" 358 "or %0, %4, %1\n\t" 359 "wr %1, 0x0, %%fprs\n\t" 360 "stda %%f0, [%5] %6\n\t" 361 "wr %0, 0x0, %%fprs\n\t" 362 "membar #Sync" 363 : "=&r" (mask), "=&r" (val) 364 : "0" (mask), "1" (val), 365 "i" (FPRS_FEF), "r" (&cacheline[0]), 366 "i" (ASI_BLK_COMMIT_P)); 367 } 368 } 369 370 struct schizo_irq_data { 371 unsigned long pbm_regs; 372 unsigned long sync_reg; 373 u32 portid; 374 int chip_version; 375 }; 376 377 static unsigned int schizo_irq_build(struct device_node *dp, 378 unsigned int ino, 379 void *_data) 380 { 381 struct schizo_irq_data *irq_data = _data; 382 unsigned long pbm_regs = irq_data->pbm_regs; 383 unsigned long imap, iclr; 384 int ign_fixup; 385 int virt_irq; 386 int is_tomatillo; 387 388 ino &= 0x3f; 389 390 /* Now build the IRQ bucket. */ 391 imap = schizo_ino_to_imap(pbm_regs, ino); 392 iclr = schizo_ino_to_iclr(pbm_regs, ino); 393 394 /* On Schizo, no inofixup occurs. This is because each 395 * INO has it's own IMAP register. On Psycho and Sabre 396 * there is only one IMAP register for each PCI slot even 397 * though four different INOs can be generated by each 398 * PCI slot. 399 * 400 * But, for JBUS variants (essentially, Tomatillo), we have 401 * to fixup the lowest bit of the interrupt group number. 402 */ 403 ign_fixup = 0; 404 405 is_tomatillo = (irq_data->sync_reg != 0UL); 406 407 if (is_tomatillo) { 408 if (irq_data->portid & 1) 409 ign_fixup = (1 << 6); 410 } 411 412 virt_irq = build_irq(ign_fixup, iclr, imap); 413 414 if (is_tomatillo) { 415 irq_install_pre_handler(virt_irq, 416 tomatillo_wsync_handler, 417 ((irq_data->chip_version <= 4) ? 418 (void *) 1 : (void *) 0), 419 (void *) irq_data->sync_reg); 420 } 421 422 return virt_irq; 423 } 424 425 static void __init __schizo_irq_trans_init(struct device_node *dp, 426 int is_tomatillo) 427 { 428 const struct linux_prom64_registers *regs; 429 struct schizo_irq_data *irq_data; 430 431 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 432 dp->irq_trans->irq_build = schizo_irq_build; 433 434 irq_data = prom_early_alloc(sizeof(struct schizo_irq_data)); 435 436 regs = of_get_property(dp, "reg", NULL); 437 dp->irq_trans->data = irq_data; 438 439 irq_data->pbm_regs = regs[0].phys_addr; 440 if (is_tomatillo) 441 irq_data->sync_reg = regs[3].phys_addr + 0x1a18UL; 442 else 443 irq_data->sync_reg = 0UL; 444 irq_data->portid = of_getintprop_default(dp, "portid", 0); 445 irq_data->chip_version = of_getintprop_default(dp, "version#", 0); 446 } 447 448 static void __init schizo_irq_trans_init(struct device_node *dp) 449 { 450 __schizo_irq_trans_init(dp, 0); 451 } 452 453 static void __init tomatillo_irq_trans_init(struct device_node *dp) 454 { 455 __schizo_irq_trans_init(dp, 1); 456 } 457 458 static unsigned int pci_sun4v_irq_build(struct device_node *dp, 459 unsigned int devino, 460 void *_data) 461 { 462 u32 devhandle = (u32) (unsigned long) _data; 463 464 return sun4v_build_irq(devhandle, devino); 465 } 466 467 static void __init pci_sun4v_irq_trans_init(struct device_node *dp) 468 { 469 const struct linux_prom64_registers *regs; 470 471 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 472 dp->irq_trans->irq_build = pci_sun4v_irq_build; 473 474 regs = of_get_property(dp, "reg", NULL); 475 dp->irq_trans->data = (void *) (unsigned long) 476 ((regs->phys_addr >> 32UL) & 0x0fffffff); 477 } 478 479 struct fire_irq_data { 480 unsigned long pbm_regs; 481 u32 portid; 482 }; 483 484 #define FIRE_IMAP_BASE 0x001000 485 #define FIRE_ICLR_BASE 0x001400 486 487 static unsigned long fire_imap_offset(unsigned long ino) 488 { 489 return FIRE_IMAP_BASE + (ino * 8UL); 490 } 491 492 static unsigned long fire_iclr_offset(unsigned long ino) 493 { 494 return FIRE_ICLR_BASE + (ino * 8UL); 495 } 496 497 static unsigned long fire_ino_to_iclr(unsigned long pbm_regs, 498 unsigned int ino) 499 { 500 return pbm_regs + fire_iclr_offset(ino); 501 } 502 503 static unsigned long fire_ino_to_imap(unsigned long pbm_regs, 504 unsigned int ino) 505 { 506 return pbm_regs + fire_imap_offset(ino); 507 } 508 509 static unsigned int fire_irq_build(struct device_node *dp, 510 unsigned int ino, 511 void *_data) 512 { 513 struct fire_irq_data *irq_data = _data; 514 unsigned long pbm_regs = irq_data->pbm_regs; 515 unsigned long imap, iclr; 516 unsigned long int_ctrlr; 517 518 ino &= 0x3f; 519 520 /* Now build the IRQ bucket. */ 521 imap = fire_ino_to_imap(pbm_regs, ino); 522 iclr = fire_ino_to_iclr(pbm_regs, ino); 523 524 /* Set the interrupt controller number. */ 525 int_ctrlr = 1 << 6; 526 upa_writeq(int_ctrlr, imap); 527 528 /* The interrupt map registers do not have an INO field 529 * like other chips do. They return zero in the INO 530 * field, and the interrupt controller number is controlled 531 * in bits 6 to 9. So in order for build_irq() to get 532 * the INO right we pass it in as part of the fixup 533 * which will get added to the map register zero value 534 * read by build_irq(). 535 */ 536 ino |= (irq_data->portid << 6); 537 ino -= int_ctrlr; 538 return build_irq(ino, iclr, imap); 539 } 540 541 static void __init fire_irq_trans_init(struct device_node *dp) 542 { 543 const struct linux_prom64_registers *regs; 544 struct fire_irq_data *irq_data; 545 546 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 547 dp->irq_trans->irq_build = fire_irq_build; 548 549 irq_data = prom_early_alloc(sizeof(struct fire_irq_data)); 550 551 regs = of_get_property(dp, "reg", NULL); 552 dp->irq_trans->data = irq_data; 553 554 irq_data->pbm_regs = regs[0].phys_addr; 555 irq_data->portid = of_getintprop_default(dp, "portid", 0); 556 } 557 #endif /* CONFIG_PCI */ 558 559 #ifdef CONFIG_SBUS 560 /* INO number to IMAP register offset for SYSIO external IRQ's. 561 * This should conform to both Sunfire/Wildfire server and Fusion 562 * desktop designs. 563 */ 564 #define SYSIO_IMAP_SLOT0 0x2c00UL 565 #define SYSIO_IMAP_SLOT1 0x2c08UL 566 #define SYSIO_IMAP_SLOT2 0x2c10UL 567 #define SYSIO_IMAP_SLOT3 0x2c18UL 568 #define SYSIO_IMAP_SCSI 0x3000UL 569 #define SYSIO_IMAP_ETH 0x3008UL 570 #define SYSIO_IMAP_BPP 0x3010UL 571 #define SYSIO_IMAP_AUDIO 0x3018UL 572 #define SYSIO_IMAP_PFAIL 0x3020UL 573 #define SYSIO_IMAP_KMS 0x3028UL 574 #define SYSIO_IMAP_FLPY 0x3030UL 575 #define SYSIO_IMAP_SHW 0x3038UL 576 #define SYSIO_IMAP_KBD 0x3040UL 577 #define SYSIO_IMAP_MS 0x3048UL 578 #define SYSIO_IMAP_SER 0x3050UL 579 #define SYSIO_IMAP_TIM0 0x3060UL 580 #define SYSIO_IMAP_TIM1 0x3068UL 581 #define SYSIO_IMAP_UE 0x3070UL 582 #define SYSIO_IMAP_CE 0x3078UL 583 #define SYSIO_IMAP_SBERR 0x3080UL 584 #define SYSIO_IMAP_PMGMT 0x3088UL 585 #define SYSIO_IMAP_GFX 0x3090UL 586 #define SYSIO_IMAP_EUPA 0x3098UL 587 588 #define bogon ((unsigned long) -1) 589 static unsigned long sysio_irq_offsets[] = { 590 /* SBUS Slot 0 --> 3, level 1 --> 7 */ 591 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, 592 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, 593 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, 594 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, 595 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, 596 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, 597 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, 598 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, 599 600 /* Onboard devices (not relevant/used on SunFire). */ 601 SYSIO_IMAP_SCSI, 602 SYSIO_IMAP_ETH, 603 SYSIO_IMAP_BPP, 604 bogon, 605 SYSIO_IMAP_AUDIO, 606 SYSIO_IMAP_PFAIL, 607 bogon, 608 bogon, 609 SYSIO_IMAP_KMS, 610 SYSIO_IMAP_FLPY, 611 SYSIO_IMAP_SHW, 612 SYSIO_IMAP_KBD, 613 SYSIO_IMAP_MS, 614 SYSIO_IMAP_SER, 615 bogon, 616 bogon, 617 SYSIO_IMAP_TIM0, 618 SYSIO_IMAP_TIM1, 619 bogon, 620 bogon, 621 SYSIO_IMAP_UE, 622 SYSIO_IMAP_CE, 623 SYSIO_IMAP_SBERR, 624 SYSIO_IMAP_PMGMT, 625 SYSIO_IMAP_GFX, 626 SYSIO_IMAP_EUPA, 627 }; 628 629 #undef bogon 630 631 #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets) 632 633 /* Convert Interrupt Mapping register pointer to associated 634 * Interrupt Clear register pointer, SYSIO specific version. 635 */ 636 #define SYSIO_ICLR_UNUSED0 0x3400UL 637 #define SYSIO_ICLR_SLOT0 0x3408UL 638 #define SYSIO_ICLR_SLOT1 0x3448UL 639 #define SYSIO_ICLR_SLOT2 0x3488UL 640 #define SYSIO_ICLR_SLOT3 0x34c8UL 641 static unsigned long sysio_imap_to_iclr(unsigned long imap) 642 { 643 unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0; 644 return imap + diff; 645 } 646 647 static unsigned int sbus_of_build_irq(struct device_node *dp, 648 unsigned int ino, 649 void *_data) 650 { 651 unsigned long reg_base = (unsigned long) _data; 652 const struct linux_prom_registers *regs; 653 unsigned long imap, iclr; 654 int sbus_slot = 0; 655 int sbus_level = 0; 656 657 ino &= 0x3f; 658 659 regs = of_get_property(dp, "reg", NULL); 660 if (regs) 661 sbus_slot = regs->which_io; 662 663 if (ino < 0x20) 664 ino += (sbus_slot * 8); 665 666 imap = sysio_irq_offsets[ino]; 667 if (imap == ((unsigned long)-1)) { 668 prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n", 669 ino); 670 prom_halt(); 671 } 672 imap += reg_base; 673 674 /* SYSIO inconsistency. For external SLOTS, we have to select 675 * the right ICLR register based upon the lower SBUS irq level 676 * bits. 677 */ 678 if (ino >= 0x20) { 679 iclr = sysio_imap_to_iclr(imap); 680 } else { 681 sbus_level = ino & 0x7; 682 683 switch(sbus_slot) { 684 case 0: 685 iclr = reg_base + SYSIO_ICLR_SLOT0; 686 break; 687 case 1: 688 iclr = reg_base + SYSIO_ICLR_SLOT1; 689 break; 690 case 2: 691 iclr = reg_base + SYSIO_ICLR_SLOT2; 692 break; 693 default: 694 case 3: 695 iclr = reg_base + SYSIO_ICLR_SLOT3; 696 break; 697 }; 698 699 iclr += ((unsigned long)sbus_level - 1UL) * 8UL; 700 } 701 return build_irq(sbus_level, iclr, imap); 702 } 703 704 static void __init sbus_irq_trans_init(struct device_node *dp) 705 { 706 const struct linux_prom64_registers *regs; 707 708 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 709 dp->irq_trans->irq_build = sbus_of_build_irq; 710 711 regs = of_get_property(dp, "reg", NULL); 712 dp->irq_trans->data = (void *) (unsigned long) regs->phys_addr; 713 } 714 #endif /* CONFIG_SBUS */ 715 716 717 static unsigned int central_build_irq(struct device_node *dp, 718 unsigned int ino, 719 void *_data) 720 { 721 struct device_node *central_dp = _data; 722 struct platform_device *central_op = of_find_device_by_node(central_dp); 723 struct resource *res; 724 unsigned long imap, iclr; 725 u32 tmp; 726 727 if (!strcmp(dp->name, "eeprom")) { 728 res = ¢ral_op->resource[5]; 729 } else if (!strcmp(dp->name, "zs")) { 730 res = ¢ral_op->resource[4]; 731 } else if (!strcmp(dp->name, "clock-board")) { 732 res = ¢ral_op->resource[3]; 733 } else { 734 return ino; 735 } 736 737 imap = res->start + 0x00UL; 738 iclr = res->start + 0x10UL; 739 740 /* Set the INO state to idle, and disable. */ 741 upa_writel(0, iclr); 742 upa_readl(iclr); 743 744 tmp = upa_readl(imap); 745 tmp &= ~0x80000000; 746 upa_writel(tmp, imap); 747 748 return build_irq(0, iclr, imap); 749 } 750 751 static void __init central_irq_trans_init(struct device_node *dp) 752 { 753 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 754 dp->irq_trans->irq_build = central_build_irq; 755 756 dp->irq_trans->data = dp; 757 } 758 759 struct irq_trans { 760 const char *name; 761 void (*init)(struct device_node *); 762 }; 763 764 #ifdef CONFIG_PCI 765 static struct irq_trans __initdata pci_irq_trans_table[] = { 766 { "SUNW,sabre", sabre_irq_trans_init }, 767 { "pci108e,a000", sabre_irq_trans_init }, 768 { "pci108e,a001", sabre_irq_trans_init }, 769 { "SUNW,psycho", psycho_irq_trans_init }, 770 { "pci108e,8000", psycho_irq_trans_init }, 771 { "SUNW,schizo", schizo_irq_trans_init }, 772 { "pci108e,8001", schizo_irq_trans_init }, 773 { "SUNW,schizo+", schizo_irq_trans_init }, 774 { "pci108e,8002", schizo_irq_trans_init }, 775 { "SUNW,tomatillo", tomatillo_irq_trans_init }, 776 { "pci108e,a801", tomatillo_irq_trans_init }, 777 { "SUNW,sun4v-pci", pci_sun4v_irq_trans_init }, 778 { "pciex108e,80f0", fire_irq_trans_init }, 779 }; 780 #endif 781 782 static unsigned int sun4v_vdev_irq_build(struct device_node *dp, 783 unsigned int devino, 784 void *_data) 785 { 786 u32 devhandle = (u32) (unsigned long) _data; 787 788 return sun4v_build_irq(devhandle, devino); 789 } 790 791 static void __init sun4v_vdev_irq_trans_init(struct device_node *dp) 792 { 793 const struct linux_prom64_registers *regs; 794 795 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 796 dp->irq_trans->irq_build = sun4v_vdev_irq_build; 797 798 regs = of_get_property(dp, "reg", NULL); 799 dp->irq_trans->data = (void *) (unsigned long) 800 ((regs->phys_addr >> 32UL) & 0x0fffffff); 801 } 802 803 void __init irq_trans_init(struct device_node *dp) 804 { 805 #ifdef CONFIG_PCI 806 const char *model; 807 int i; 808 #endif 809 810 #ifdef CONFIG_PCI 811 model = of_get_property(dp, "model", NULL); 812 if (!model) 813 model = of_get_property(dp, "compatible", NULL); 814 if (model) { 815 for (i = 0; i < ARRAY_SIZE(pci_irq_trans_table); i++) { 816 struct irq_trans *t = &pci_irq_trans_table[i]; 817 818 if (!strcmp(model, t->name)) { 819 t->init(dp); 820 return; 821 } 822 } 823 } 824 #endif 825 #ifdef CONFIG_SBUS 826 if (!strcmp(dp->name, "sbus") || 827 !strcmp(dp->name, "sbi")) { 828 sbus_irq_trans_init(dp); 829 return; 830 } 831 #endif 832 if (!strcmp(dp->name, "fhc") && 833 !strcmp(dp->parent->name, "central")) { 834 central_irq_trans_init(dp); 835 return; 836 } 837 if (!strcmp(dp->name, "virtual-devices") || 838 !strcmp(dp->name, "niu")) { 839 sun4v_vdev_irq_trans_init(dp); 840 return; 841 } 842 } 843