1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/string.h> 4 #include <linux/init.h> 5 #include <linux/of.h> 6 #include <linux/of_platform.h> 7 8 #include <asm/oplib.h> 9 #include <asm/prom.h> 10 #include <asm/irq.h> 11 #include <asm/upa.h> 12 13 #include "prom.h" 14 15 #ifdef CONFIG_PCI 16 /* PSYCHO interrupt mapping support. */ 17 #define PSYCHO_IMAP_A_SLOT0 0x0c00UL 18 #define PSYCHO_IMAP_B_SLOT0 0x0c20UL 19 static unsigned long psycho_pcislot_imap_offset(unsigned long ino) 20 { 21 unsigned int bus = (ino & 0x10) >> 4; 22 unsigned int slot = (ino & 0x0c) >> 2; 23 24 if (bus == 0) 25 return PSYCHO_IMAP_A_SLOT0 + (slot * 8); 26 else 27 return PSYCHO_IMAP_B_SLOT0 + (slot * 8); 28 } 29 30 #define PSYCHO_OBIO_IMAP_BASE 0x1000UL 31 32 #define PSYCHO_ONBOARD_IRQ_BASE 0x20 33 #define psycho_onboard_imap_offset(__ino) \ 34 (PSYCHO_OBIO_IMAP_BASE + (((__ino) & 0x1f) << 3)) 35 36 #define PSYCHO_ICLR_A_SLOT0 0x1400UL 37 #define PSYCHO_ICLR_SCSI 0x1800UL 38 39 #define psycho_iclr_offset(ino) \ 40 ((ino & 0x20) ? (PSYCHO_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ 41 (PSYCHO_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) 42 43 static unsigned int psycho_irq_build(struct device_node *dp, 44 unsigned int ino, 45 void *_data) 46 { 47 unsigned long controller_regs = (unsigned long) _data; 48 unsigned long imap, iclr; 49 unsigned long imap_off, iclr_off; 50 int inofixup = 0; 51 52 ino &= 0x3f; 53 if (ino < PSYCHO_ONBOARD_IRQ_BASE) { 54 /* PCI slot */ 55 imap_off = psycho_pcislot_imap_offset(ino); 56 } else { 57 /* Onboard device */ 58 imap_off = psycho_onboard_imap_offset(ino); 59 } 60 61 /* Now build the IRQ bucket. */ 62 imap = controller_regs + imap_off; 63 64 iclr_off = psycho_iclr_offset(ino); 65 iclr = controller_regs + iclr_off; 66 67 if ((ino & 0x20) == 0) 68 inofixup = ino & 0x03; 69 70 return build_irq(inofixup, iclr, imap); 71 } 72 73 static void __init psycho_irq_trans_init(struct device_node *dp) 74 { 75 const struct linux_prom64_registers *regs; 76 77 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 78 dp->irq_trans->irq_build = psycho_irq_build; 79 80 regs = of_get_property(dp, "reg", NULL); 81 dp->irq_trans->data = (void *) regs[2].phys_addr; 82 } 83 84 #define sabre_read(__reg) \ 85 ({ u64 __ret; \ 86 __asm__ __volatile__("ldxa [%1] %2, %0" \ 87 : "=r" (__ret) \ 88 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ 89 : "memory"); \ 90 __ret; \ 91 }) 92 93 struct sabre_irq_data { 94 unsigned long controller_regs; 95 unsigned int pci_first_busno; 96 }; 97 #define SABRE_CONFIGSPACE 0x001000000UL 98 #define SABRE_WRSYNC 0x1c20UL 99 100 #define SABRE_CONFIG_BASE(CONFIG_SPACE) \ 101 (CONFIG_SPACE | (1UL << 24)) 102 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \ 103 (((unsigned long)(BUS) << 16) | \ 104 ((unsigned long)(DEVFN) << 8) | \ 105 ((unsigned long)(REG))) 106 107 /* When a device lives behind a bridge deeper in the PCI bus topology 108 * than APB, a special sequence must run to make sure all pending DMA 109 * transfers at the time of IRQ delivery are visible in the coherency 110 * domain by the cpu. This sequence is to perform a read on the far 111 * side of the non-APB bridge, then perform a read of Sabre's DMA 112 * write-sync register. 113 */ 114 static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2) 115 { 116 unsigned int phys_hi = (unsigned int) (unsigned long) _arg1; 117 struct sabre_irq_data *irq_data = _arg2; 118 unsigned long controller_regs = irq_data->controller_regs; 119 unsigned long sync_reg = controller_regs + SABRE_WRSYNC; 120 unsigned long config_space = controller_regs + SABRE_CONFIGSPACE; 121 unsigned int bus, devfn; 122 u16 _unused; 123 124 config_space = SABRE_CONFIG_BASE(config_space); 125 126 bus = (phys_hi >> 16) & 0xff; 127 devfn = (phys_hi >> 8) & 0xff; 128 129 config_space |= SABRE_CONFIG_ENCODE(bus, devfn, 0x00); 130 131 __asm__ __volatile__("membar #Sync\n\t" 132 "lduha [%1] %2, %0\n\t" 133 "membar #Sync" 134 : "=r" (_unused) 135 : "r" ((u16 *) config_space), 136 "i" (ASI_PHYS_BYPASS_EC_E_L) 137 : "memory"); 138 139 sabre_read(sync_reg); 140 } 141 142 #define SABRE_IMAP_A_SLOT0 0x0c00UL 143 #define SABRE_IMAP_B_SLOT0 0x0c20UL 144 #define SABRE_ICLR_A_SLOT0 0x1400UL 145 #define SABRE_ICLR_B_SLOT0 0x1480UL 146 #define SABRE_ICLR_SCSI 0x1800UL 147 #define SABRE_ICLR_ETH 0x1808UL 148 #define SABRE_ICLR_BPP 0x1810UL 149 #define SABRE_ICLR_AU_REC 0x1818UL 150 #define SABRE_ICLR_AU_PLAY 0x1820UL 151 #define SABRE_ICLR_PFAIL 0x1828UL 152 #define SABRE_ICLR_KMS 0x1830UL 153 #define SABRE_ICLR_FLPY 0x1838UL 154 #define SABRE_ICLR_SHW 0x1840UL 155 #define SABRE_ICLR_KBD 0x1848UL 156 #define SABRE_ICLR_MS 0x1850UL 157 #define SABRE_ICLR_SER 0x1858UL 158 #define SABRE_ICLR_UE 0x1870UL 159 #define SABRE_ICLR_CE 0x1878UL 160 #define SABRE_ICLR_PCIERR 0x1880UL 161 162 static unsigned long sabre_pcislot_imap_offset(unsigned long ino) 163 { 164 unsigned int bus = (ino & 0x10) >> 4; 165 unsigned int slot = (ino & 0x0c) >> 2; 166 167 if (bus == 0) 168 return SABRE_IMAP_A_SLOT0 + (slot * 8); 169 else 170 return SABRE_IMAP_B_SLOT0 + (slot * 8); 171 } 172 173 #define SABRE_OBIO_IMAP_BASE 0x1000UL 174 #define SABRE_ONBOARD_IRQ_BASE 0x20 175 #define sabre_onboard_imap_offset(__ino) \ 176 (SABRE_OBIO_IMAP_BASE + (((__ino) & 0x1f) << 3)) 177 178 #define sabre_iclr_offset(ino) \ 179 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ 180 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) 181 182 static int sabre_device_needs_wsync(struct device_node *dp) 183 { 184 struct device_node *parent = dp->parent; 185 const char *parent_model, *parent_compat; 186 187 /* This traversal up towards the root is meant to 188 * handle two cases: 189 * 190 * 1) non-PCI bus sitting under PCI, such as 'ebus' 191 * 2) the PCI controller interrupts themselves, which 192 * will use the sabre_irq_build but do not need 193 * the DMA synchronization handling 194 */ 195 while (parent) { 196 if (of_node_is_type(parent, "pci")) 197 break; 198 parent = parent->parent; 199 } 200 201 if (!parent) 202 return 0; 203 204 parent_model = of_get_property(parent, 205 "model", NULL); 206 if (parent_model && 207 (!strcmp(parent_model, "SUNW,sabre") || 208 !strcmp(parent_model, "SUNW,simba"))) 209 return 0; 210 211 parent_compat = of_get_property(parent, 212 "compatible", NULL); 213 if (parent_compat && 214 (!strcmp(parent_compat, "pci108e,a000") || 215 !strcmp(parent_compat, "pci108e,a001"))) 216 return 0; 217 218 return 1; 219 } 220 221 static unsigned int sabre_irq_build(struct device_node *dp, 222 unsigned int ino, 223 void *_data) 224 { 225 struct sabre_irq_data *irq_data = _data; 226 unsigned long controller_regs = irq_data->controller_regs; 227 const struct linux_prom_pci_registers *regs; 228 unsigned long imap, iclr; 229 unsigned long imap_off, iclr_off; 230 int inofixup = 0; 231 int irq; 232 233 ino &= 0x3f; 234 if (ino < SABRE_ONBOARD_IRQ_BASE) { 235 /* PCI slot */ 236 imap_off = sabre_pcislot_imap_offset(ino); 237 } else { 238 /* onboard device */ 239 imap_off = sabre_onboard_imap_offset(ino); 240 } 241 242 /* Now build the IRQ bucket. */ 243 imap = controller_regs + imap_off; 244 245 iclr_off = sabre_iclr_offset(ino); 246 iclr = controller_regs + iclr_off; 247 248 if ((ino & 0x20) == 0) 249 inofixup = ino & 0x03; 250 251 irq = build_irq(inofixup, iclr, imap); 252 253 /* If the parent device is a PCI<->PCI bridge other than 254 * APB, we have to install a pre-handler to ensure that 255 * all pending DMA is drained before the interrupt handler 256 * is run. 257 */ 258 regs = of_get_property(dp, "reg", NULL); 259 if (regs && sabre_device_needs_wsync(dp)) { 260 irq_install_pre_handler(irq, 261 sabre_wsync_handler, 262 (void *) (long) regs->phys_hi, 263 (void *) irq_data); 264 } 265 266 return irq; 267 } 268 269 static void __init sabre_irq_trans_init(struct device_node *dp) 270 { 271 const struct linux_prom64_registers *regs; 272 struct sabre_irq_data *irq_data; 273 const u32 *busrange; 274 275 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 276 dp->irq_trans->irq_build = sabre_irq_build; 277 278 irq_data = prom_early_alloc(sizeof(struct sabre_irq_data)); 279 280 regs = of_get_property(dp, "reg", NULL); 281 irq_data->controller_regs = regs[0].phys_addr; 282 283 busrange = of_get_property(dp, "bus-range", NULL); 284 irq_data->pci_first_busno = busrange[0]; 285 286 dp->irq_trans->data = irq_data; 287 } 288 289 /* SCHIZO interrupt mapping support. Unlike Psycho, for this controller the 290 * imap/iclr registers are per-PBM. 291 */ 292 #define SCHIZO_IMAP_BASE 0x1000UL 293 #define SCHIZO_ICLR_BASE 0x1400UL 294 295 static unsigned long schizo_imap_offset(unsigned long ino) 296 { 297 return SCHIZO_IMAP_BASE + (ino * 8UL); 298 } 299 300 static unsigned long schizo_iclr_offset(unsigned long ino) 301 { 302 return SCHIZO_ICLR_BASE + (ino * 8UL); 303 } 304 305 static unsigned long schizo_ino_to_iclr(unsigned long pbm_regs, 306 unsigned int ino) 307 { 308 309 return pbm_regs + schizo_iclr_offset(ino); 310 } 311 312 static unsigned long schizo_ino_to_imap(unsigned long pbm_regs, 313 unsigned int ino) 314 { 315 return pbm_regs + schizo_imap_offset(ino); 316 } 317 318 #define schizo_read(__reg) \ 319 ({ u64 __ret; \ 320 __asm__ __volatile__("ldxa [%1] %2, %0" \ 321 : "=r" (__ret) \ 322 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ 323 : "memory"); \ 324 __ret; \ 325 }) 326 #define schizo_write(__reg, __val) \ 327 __asm__ __volatile__("stxa %0, [%1] %2" \ 328 : /* no outputs */ \ 329 : "r" (__val), "r" (__reg), \ 330 "i" (ASI_PHYS_BYPASS_EC_E) \ 331 : "memory") 332 333 static void tomatillo_wsync_handler(unsigned int ino, void *_arg1, void *_arg2) 334 { 335 unsigned long sync_reg = (unsigned long) _arg2; 336 u64 mask = 1UL << (ino & IMAP_INO); 337 u64 val; 338 int limit; 339 340 schizo_write(sync_reg, mask); 341 342 limit = 100000; 343 val = 0; 344 while (--limit) { 345 val = schizo_read(sync_reg); 346 if (!(val & mask)) 347 break; 348 } 349 if (limit <= 0) { 350 printk("tomatillo_wsync_handler: DMA won't sync [%llx:%llx]\n", 351 val, mask); 352 } 353 354 if (_arg1) { 355 static unsigned char cacheline[64] 356 __attribute__ ((aligned (64))); 357 358 __asm__ __volatile__("rd %%fprs, %0\n\t" 359 "or %0, %4, %1\n\t" 360 "wr %1, 0x0, %%fprs\n\t" 361 "stda %%f0, [%5] %6\n\t" 362 "wr %0, 0x0, %%fprs\n\t" 363 "membar #Sync" 364 : "=&r" (mask), "=&r" (val) 365 : "0" (mask), "1" (val), 366 "i" (FPRS_FEF), "r" (&cacheline[0]), 367 "i" (ASI_BLK_COMMIT_P)); 368 } 369 } 370 371 struct schizo_irq_data { 372 unsigned long pbm_regs; 373 unsigned long sync_reg; 374 u32 portid; 375 int chip_version; 376 }; 377 378 static unsigned int schizo_irq_build(struct device_node *dp, 379 unsigned int ino, 380 void *_data) 381 { 382 struct schizo_irq_data *irq_data = _data; 383 unsigned long pbm_regs = irq_data->pbm_regs; 384 unsigned long imap, iclr; 385 int ign_fixup; 386 int irq; 387 int is_tomatillo; 388 389 ino &= 0x3f; 390 391 /* Now build the IRQ bucket. */ 392 imap = schizo_ino_to_imap(pbm_regs, ino); 393 iclr = schizo_ino_to_iclr(pbm_regs, ino); 394 395 /* On Schizo, no inofixup occurs. This is because each 396 * INO has it's own IMAP register. On Psycho and Sabre 397 * there is only one IMAP register for each PCI slot even 398 * though four different INOs can be generated by each 399 * PCI slot. 400 * 401 * But, for JBUS variants (essentially, Tomatillo), we have 402 * to fixup the lowest bit of the interrupt group number. 403 */ 404 ign_fixup = 0; 405 406 is_tomatillo = (irq_data->sync_reg != 0UL); 407 408 if (is_tomatillo) { 409 if (irq_data->portid & 1) 410 ign_fixup = (1 << 6); 411 } 412 413 irq = build_irq(ign_fixup, iclr, imap); 414 415 if (is_tomatillo) { 416 irq_install_pre_handler(irq, 417 tomatillo_wsync_handler, 418 ((irq_data->chip_version <= 4) ? 419 (void *) 1 : (void *) 0), 420 (void *) irq_data->sync_reg); 421 } 422 423 return irq; 424 } 425 426 static void __init __schizo_irq_trans_init(struct device_node *dp, 427 int is_tomatillo) 428 { 429 const struct linux_prom64_registers *regs; 430 struct schizo_irq_data *irq_data; 431 432 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 433 dp->irq_trans->irq_build = schizo_irq_build; 434 435 irq_data = prom_early_alloc(sizeof(struct schizo_irq_data)); 436 437 regs = of_get_property(dp, "reg", NULL); 438 dp->irq_trans->data = irq_data; 439 440 irq_data->pbm_regs = regs[0].phys_addr; 441 if (is_tomatillo) 442 irq_data->sync_reg = regs[3].phys_addr + 0x1a18UL; 443 else 444 irq_data->sync_reg = 0UL; 445 irq_data->portid = of_getintprop_default(dp, "portid", 0); 446 irq_data->chip_version = of_getintprop_default(dp, "version#", 0); 447 } 448 449 static void __init schizo_irq_trans_init(struct device_node *dp) 450 { 451 __schizo_irq_trans_init(dp, 0); 452 } 453 454 static void __init tomatillo_irq_trans_init(struct device_node *dp) 455 { 456 __schizo_irq_trans_init(dp, 1); 457 } 458 459 static unsigned int pci_sun4v_irq_build(struct device_node *dp, 460 unsigned int devino, 461 void *_data) 462 { 463 u32 devhandle = (u32) (unsigned long) _data; 464 465 return sun4v_build_irq(devhandle, devino); 466 } 467 468 static void __init pci_sun4v_irq_trans_init(struct device_node *dp) 469 { 470 const struct linux_prom64_registers *regs; 471 472 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 473 dp->irq_trans->irq_build = pci_sun4v_irq_build; 474 475 regs = of_get_property(dp, "reg", NULL); 476 dp->irq_trans->data = (void *) (unsigned long) 477 ((regs->phys_addr >> 32UL) & 0x0fffffff); 478 } 479 480 struct fire_irq_data { 481 unsigned long pbm_regs; 482 u32 portid; 483 }; 484 485 #define FIRE_IMAP_BASE 0x001000 486 #define FIRE_ICLR_BASE 0x001400 487 488 static unsigned long fire_imap_offset(unsigned long ino) 489 { 490 return FIRE_IMAP_BASE + (ino * 8UL); 491 } 492 493 static unsigned long fire_iclr_offset(unsigned long ino) 494 { 495 return FIRE_ICLR_BASE + (ino * 8UL); 496 } 497 498 static unsigned long fire_ino_to_iclr(unsigned long pbm_regs, 499 unsigned int ino) 500 { 501 return pbm_regs + fire_iclr_offset(ino); 502 } 503 504 static unsigned long fire_ino_to_imap(unsigned long pbm_regs, 505 unsigned int ino) 506 { 507 return pbm_regs + fire_imap_offset(ino); 508 } 509 510 static unsigned int fire_irq_build(struct device_node *dp, 511 unsigned int ino, 512 void *_data) 513 { 514 struct fire_irq_data *irq_data = _data; 515 unsigned long pbm_regs = irq_data->pbm_regs; 516 unsigned long imap, iclr; 517 unsigned long int_ctrlr; 518 519 ino &= 0x3f; 520 521 /* Now build the IRQ bucket. */ 522 imap = fire_ino_to_imap(pbm_regs, ino); 523 iclr = fire_ino_to_iclr(pbm_regs, ino); 524 525 /* Set the interrupt controller number. */ 526 int_ctrlr = 1 << 6; 527 upa_writeq(int_ctrlr, imap); 528 529 /* The interrupt map registers do not have an INO field 530 * like other chips do. They return zero in the INO 531 * field, and the interrupt controller number is controlled 532 * in bits 6 to 9. So in order for build_irq() to get 533 * the INO right we pass it in as part of the fixup 534 * which will get added to the map register zero value 535 * read by build_irq(). 536 */ 537 ino |= (irq_data->portid << 6); 538 ino -= int_ctrlr; 539 return build_irq(ino, iclr, imap); 540 } 541 542 static void __init fire_irq_trans_init(struct device_node *dp) 543 { 544 const struct linux_prom64_registers *regs; 545 struct fire_irq_data *irq_data; 546 547 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 548 dp->irq_trans->irq_build = fire_irq_build; 549 550 irq_data = prom_early_alloc(sizeof(struct fire_irq_data)); 551 552 regs = of_get_property(dp, "reg", NULL); 553 dp->irq_trans->data = irq_data; 554 555 irq_data->pbm_regs = regs[0].phys_addr; 556 irq_data->portid = of_getintprop_default(dp, "portid", 0); 557 } 558 #endif /* CONFIG_PCI */ 559 560 #ifdef CONFIG_SBUS 561 /* INO number to IMAP register offset for SYSIO external IRQ's. 562 * This should conform to both Sunfire/Wildfire server and Fusion 563 * desktop designs. 564 */ 565 #define SYSIO_IMAP_SLOT0 0x2c00UL 566 #define SYSIO_IMAP_SLOT1 0x2c08UL 567 #define SYSIO_IMAP_SLOT2 0x2c10UL 568 #define SYSIO_IMAP_SLOT3 0x2c18UL 569 #define SYSIO_IMAP_SCSI 0x3000UL 570 #define SYSIO_IMAP_ETH 0x3008UL 571 #define SYSIO_IMAP_BPP 0x3010UL 572 #define SYSIO_IMAP_AUDIO 0x3018UL 573 #define SYSIO_IMAP_PFAIL 0x3020UL 574 #define SYSIO_IMAP_KMS 0x3028UL 575 #define SYSIO_IMAP_FLPY 0x3030UL 576 #define SYSIO_IMAP_SHW 0x3038UL 577 #define SYSIO_IMAP_KBD 0x3040UL 578 #define SYSIO_IMAP_MS 0x3048UL 579 #define SYSIO_IMAP_SER 0x3050UL 580 #define SYSIO_IMAP_TIM0 0x3060UL 581 #define SYSIO_IMAP_TIM1 0x3068UL 582 #define SYSIO_IMAP_UE 0x3070UL 583 #define SYSIO_IMAP_CE 0x3078UL 584 #define SYSIO_IMAP_SBERR 0x3080UL 585 #define SYSIO_IMAP_PMGMT 0x3088UL 586 #define SYSIO_IMAP_GFX 0x3090UL 587 #define SYSIO_IMAP_EUPA 0x3098UL 588 589 #define bogon ((unsigned long) -1) 590 static unsigned long sysio_irq_offsets[] = { 591 /* SBUS Slot 0 --> 3, level 1 --> 7 */ 592 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, 593 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, 594 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, 595 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, 596 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, 597 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, 598 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, 599 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, 600 601 /* Onboard devices (not relevant/used on SunFire). */ 602 SYSIO_IMAP_SCSI, 603 SYSIO_IMAP_ETH, 604 SYSIO_IMAP_BPP, 605 bogon, 606 SYSIO_IMAP_AUDIO, 607 SYSIO_IMAP_PFAIL, 608 bogon, 609 bogon, 610 SYSIO_IMAP_KMS, 611 SYSIO_IMAP_FLPY, 612 SYSIO_IMAP_SHW, 613 SYSIO_IMAP_KBD, 614 SYSIO_IMAP_MS, 615 SYSIO_IMAP_SER, 616 bogon, 617 bogon, 618 SYSIO_IMAP_TIM0, 619 SYSIO_IMAP_TIM1, 620 bogon, 621 bogon, 622 SYSIO_IMAP_UE, 623 SYSIO_IMAP_CE, 624 SYSIO_IMAP_SBERR, 625 SYSIO_IMAP_PMGMT, 626 SYSIO_IMAP_GFX, 627 SYSIO_IMAP_EUPA, 628 }; 629 630 #undef bogon 631 632 #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets) 633 634 /* Convert Interrupt Mapping register pointer to associated 635 * Interrupt Clear register pointer, SYSIO specific version. 636 */ 637 #define SYSIO_ICLR_UNUSED0 0x3400UL 638 #define SYSIO_ICLR_SLOT0 0x3408UL 639 #define SYSIO_ICLR_SLOT1 0x3448UL 640 #define SYSIO_ICLR_SLOT2 0x3488UL 641 #define SYSIO_ICLR_SLOT3 0x34c8UL 642 static unsigned long sysio_imap_to_iclr(unsigned long imap) 643 { 644 unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0; 645 return imap + diff; 646 } 647 648 static unsigned int sbus_of_build_irq(struct device_node *dp, 649 unsigned int ino, 650 void *_data) 651 { 652 unsigned long reg_base = (unsigned long) _data; 653 const struct linux_prom_registers *regs; 654 unsigned long imap, iclr; 655 int sbus_slot = 0; 656 int sbus_level = 0; 657 658 ino &= 0x3f; 659 660 regs = of_get_property(dp, "reg", NULL); 661 if (regs) 662 sbus_slot = regs->which_io; 663 664 if (ino < 0x20) 665 ino += (sbus_slot * 8); 666 667 imap = sysio_irq_offsets[ino]; 668 if (imap == ((unsigned long)-1)) { 669 prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n", 670 ino); 671 prom_halt(); 672 } 673 imap += reg_base; 674 675 /* SYSIO inconsistency. For external SLOTS, we have to select 676 * the right ICLR register based upon the lower SBUS irq level 677 * bits. 678 */ 679 if (ino >= 0x20) { 680 iclr = sysio_imap_to_iclr(imap); 681 } else { 682 sbus_level = ino & 0x7; 683 684 switch(sbus_slot) { 685 case 0: 686 iclr = reg_base + SYSIO_ICLR_SLOT0; 687 break; 688 case 1: 689 iclr = reg_base + SYSIO_ICLR_SLOT1; 690 break; 691 case 2: 692 iclr = reg_base + SYSIO_ICLR_SLOT2; 693 break; 694 default: 695 case 3: 696 iclr = reg_base + SYSIO_ICLR_SLOT3; 697 break; 698 } 699 700 iclr += ((unsigned long)sbus_level - 1UL) * 8UL; 701 } 702 return build_irq(sbus_level, iclr, imap); 703 } 704 705 static void __init sbus_irq_trans_init(struct device_node *dp) 706 { 707 const struct linux_prom64_registers *regs; 708 709 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 710 dp->irq_trans->irq_build = sbus_of_build_irq; 711 712 regs = of_get_property(dp, "reg", NULL); 713 dp->irq_trans->data = (void *) (unsigned long) regs->phys_addr; 714 } 715 #endif /* CONFIG_SBUS */ 716 717 718 static unsigned int central_build_irq(struct device_node *dp, 719 unsigned int ino, 720 void *_data) 721 { 722 struct device_node *central_dp = _data; 723 struct platform_device *central_op = of_find_device_by_node(central_dp); 724 struct resource *res; 725 unsigned long imap, iclr; 726 u32 tmp; 727 728 if (of_node_name_eq(dp, "eeprom")) { 729 res = ¢ral_op->resource[5]; 730 } else if (of_node_name_eq(dp, "zs")) { 731 res = ¢ral_op->resource[4]; 732 } else if (of_node_name_eq(dp, "clock-board")) { 733 res = ¢ral_op->resource[3]; 734 } else { 735 return ino; 736 } 737 738 imap = res->start + 0x00UL; 739 iclr = res->start + 0x10UL; 740 741 /* Set the INO state to idle, and disable. */ 742 upa_writel(0, iclr); 743 upa_readl(iclr); 744 745 tmp = upa_readl(imap); 746 tmp &= ~0x80000000; 747 upa_writel(tmp, imap); 748 749 return build_irq(0, iclr, imap); 750 } 751 752 static void __init central_irq_trans_init(struct device_node *dp) 753 { 754 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 755 dp->irq_trans->irq_build = central_build_irq; 756 757 dp->irq_trans->data = dp; 758 } 759 760 struct irq_trans { 761 const char *name; 762 void (*init)(struct device_node *); 763 }; 764 765 #ifdef CONFIG_PCI 766 static struct irq_trans __initdata pci_irq_trans_table[] = { 767 { "SUNW,sabre", sabre_irq_trans_init }, 768 { "pci108e,a000", sabre_irq_trans_init }, 769 { "pci108e,a001", sabre_irq_trans_init }, 770 { "SUNW,psycho", psycho_irq_trans_init }, 771 { "pci108e,8000", psycho_irq_trans_init }, 772 { "SUNW,schizo", schizo_irq_trans_init }, 773 { "pci108e,8001", schizo_irq_trans_init }, 774 { "SUNW,schizo+", schizo_irq_trans_init }, 775 { "pci108e,8002", schizo_irq_trans_init }, 776 { "SUNW,tomatillo", tomatillo_irq_trans_init }, 777 { "pci108e,a801", tomatillo_irq_trans_init }, 778 { "SUNW,sun4v-pci", pci_sun4v_irq_trans_init }, 779 { "pciex108e,80f0", fire_irq_trans_init }, 780 }; 781 #endif 782 783 static unsigned int sun4v_vdev_irq_build(struct device_node *dp, 784 unsigned int devino, 785 void *_data) 786 { 787 u32 devhandle = (u32) (unsigned long) _data; 788 789 return sun4v_build_irq(devhandle, devino); 790 } 791 792 static void __init sun4v_vdev_irq_trans_init(struct device_node *dp) 793 { 794 const struct linux_prom64_registers *regs; 795 796 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller)); 797 dp->irq_trans->irq_build = sun4v_vdev_irq_build; 798 799 regs = of_get_property(dp, "reg", NULL); 800 dp->irq_trans->data = (void *) (unsigned long) 801 ((regs->phys_addr >> 32UL) & 0x0fffffff); 802 } 803 804 void __init irq_trans_init(struct device_node *dp) 805 { 806 #ifdef CONFIG_PCI 807 const char *model; 808 int i; 809 #endif 810 811 #ifdef CONFIG_PCI 812 model = of_get_property(dp, "model", NULL); 813 if (!model) 814 model = of_get_property(dp, "compatible", NULL); 815 if (model) { 816 for (i = 0; i < ARRAY_SIZE(pci_irq_trans_table); i++) { 817 struct irq_trans *t = &pci_irq_trans_table[i]; 818 819 if (!strcmp(model, t->name)) { 820 t->init(dp); 821 return; 822 } 823 } 824 } 825 #endif 826 #ifdef CONFIG_SBUS 827 if (of_node_name_eq(dp, "sbus") || 828 of_node_name_eq(dp, "sbi")) { 829 sbus_irq_trans_init(dp); 830 return; 831 } 832 #endif 833 if (of_node_name_eq(dp, "fhc") && 834 of_node_name_eq(dp->parent, "central")) { 835 central_irq_trans_init(dp); 836 return; 837 } 838 if (of_node_name_eq(dp, "virtual-devices") || 839 of_node_name_eq(dp, "niu")) { 840 sun4v_vdev_irq_trans_init(dp); 841 return; 842 } 843 } 844