1 // SPDX-License-Identifier: GPL-2.0 2 /* arch/sparc64/kernel/process.c 3 * 4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 7 */ 8 9 /* 10 * This file handles the architecture-dependent parts of process handling.. 11 */ 12 #include <linux/errno.h> 13 #include <linux/export.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/delay.h> 27 #include <linux/compat.h> 28 #include <linux/tick.h> 29 #include <linux/init.h> 30 #include <linux/cpu.h> 31 #include <linux/perf_event.h> 32 #include <linux/elfcore.h> 33 #include <linux/sysrq.h> 34 #include <linux/nmi.h> 35 #include <linux/context_tracking.h> 36 #include <linux/signal.h> 37 38 #include <linux/uaccess.h> 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/processor.h> 42 #include <asm/pstate.h> 43 #include <asm/elf.h> 44 #include <asm/fpumacro.h> 45 #include <asm/head.h> 46 #include <asm/cpudata.h> 47 #include <asm/mmu_context.h> 48 #include <asm/unistd.h> 49 #include <asm/hypervisor.h> 50 #include <asm/syscalls.h> 51 #include <asm/irq_regs.h> 52 #include <asm/smp.h> 53 #include <asm/pcr.h> 54 55 #include "kstack.h" 56 57 /* Idle loop support on sparc64. */ 58 void arch_cpu_idle(void) 59 { 60 if (tlb_type != hypervisor) { 61 touch_nmi_watchdog(); 62 raw_local_irq_enable(); 63 } else { 64 unsigned long pstate; 65 66 raw_local_irq_enable(); 67 68 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over 69 * the cpu sleep hypervisor call. 70 */ 71 __asm__ __volatile__( 72 "rdpr %%pstate, %0\n\t" 73 "andn %0, %1, %0\n\t" 74 "wrpr %0, %%g0, %%pstate" 75 : "=&r" (pstate) 76 : "i" (PSTATE_IE)); 77 78 if (!need_resched() && !cpu_is_offline(smp_processor_id())) { 79 sun4v_cpu_yield(); 80 /* If resumed by cpu_poke then we need to explicitly 81 * call scheduler_ipi(). 82 */ 83 scheduler_poke(); 84 } 85 86 /* Re-enable interrupts. */ 87 __asm__ __volatile__( 88 "rdpr %%pstate, %0\n\t" 89 "or %0, %1, %0\n\t" 90 "wrpr %0, %%g0, %%pstate" 91 : "=&r" (pstate) 92 : "i" (PSTATE_IE)); 93 } 94 } 95 96 #ifdef CONFIG_HOTPLUG_CPU 97 void arch_cpu_idle_dead(void) 98 { 99 sched_preempt_enable_no_resched(); 100 cpu_play_dead(); 101 } 102 #endif 103 104 #ifdef CONFIG_COMPAT 105 static void show_regwindow32(struct pt_regs *regs) 106 { 107 struct reg_window32 __user *rw; 108 struct reg_window32 r_w; 109 110 __asm__ __volatile__ ("flushw"); 111 rw = compat_ptr((unsigned int)regs->u_regs[14]); 112 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 113 return; 114 } 115 116 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 117 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 118 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 119 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 120 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 121 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 122 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 123 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 124 } 125 #else 126 #define show_regwindow32(regs) do { } while (0) 127 #endif 128 129 static void show_regwindow(struct pt_regs *regs) 130 { 131 struct reg_window __user *rw; 132 struct reg_window *rwk; 133 struct reg_window r_w; 134 135 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 136 __asm__ __volatile__ ("flushw"); 137 rw = (struct reg_window __user *) 138 (regs->u_regs[14] + STACK_BIAS); 139 rwk = (struct reg_window *) 140 (regs->u_regs[14] + STACK_BIAS); 141 if (!(regs->tstate & TSTATE_PRIV)) { 142 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 143 return; 144 } 145 rwk = &r_w; 146 } 147 } else { 148 show_regwindow32(regs); 149 return; 150 } 151 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 152 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 153 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 154 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 155 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 156 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 157 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 158 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 159 if (regs->tstate & TSTATE_PRIV) 160 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 161 } 162 163 void show_regs(struct pt_regs *regs) 164 { 165 show_regs_print_info(KERN_DEFAULT); 166 167 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 168 regs->tpc, regs->tnpc, regs->y, print_tainted()); 169 printk("TPC: <%pS>\n", (void *) regs->tpc); 170 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 171 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 172 regs->u_regs[3]); 173 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 174 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 175 regs->u_regs[7]); 176 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 177 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 178 regs->u_regs[11]); 179 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 180 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 181 regs->u_regs[15]); 182 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 183 show_regwindow(regs); 184 show_stack(current, (unsigned long *)regs->u_regs[UREG_FP], KERN_DEFAULT); 185 } 186 187 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS]; 188 static DEFINE_SPINLOCK(global_cpu_snapshot_lock); 189 190 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 191 int this_cpu) 192 { 193 struct global_reg_snapshot *rp; 194 195 flushw_all(); 196 197 rp = &global_cpu_snapshot[this_cpu].reg; 198 199 rp->tstate = regs->tstate; 200 rp->tpc = regs->tpc; 201 rp->tnpc = regs->tnpc; 202 rp->o7 = regs->u_regs[UREG_I7]; 203 204 if (regs->tstate & TSTATE_PRIV) { 205 struct reg_window *rw; 206 207 rw = (struct reg_window *) 208 (regs->u_regs[UREG_FP] + STACK_BIAS); 209 if (kstack_valid(tp, (unsigned long) rw)) { 210 rp->i7 = rw->ins[7]; 211 rw = (struct reg_window *) 212 (rw->ins[6] + STACK_BIAS); 213 if (kstack_valid(tp, (unsigned long) rw)) 214 rp->rpc = rw->ins[7]; 215 } 216 } else { 217 rp->i7 = 0; 218 rp->rpc = 0; 219 } 220 rp->thread = tp; 221 } 222 223 /* In order to avoid hangs we do not try to synchronize with the 224 * global register dump client cpus. The last store they make is to 225 * the thread pointer, so do a short poll waiting for that to become 226 * non-NULL. 227 */ 228 static void __global_reg_poll(struct global_reg_snapshot *gp) 229 { 230 int limit = 0; 231 232 while (!gp->thread && ++limit < 100) { 233 barrier(); 234 udelay(1); 235 } 236 } 237 238 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 239 { 240 struct thread_info *tp = current_thread_info(); 241 struct pt_regs *regs = get_irq_regs(); 242 unsigned long flags; 243 int this_cpu, cpu; 244 245 if (!regs) 246 regs = tp->kregs; 247 248 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 249 250 this_cpu = raw_smp_processor_id(); 251 252 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 253 254 if (cpumask_test_cpu(this_cpu, mask) && !exclude_self) 255 __global_reg_self(tp, regs, this_cpu); 256 257 smp_fetch_global_regs(); 258 259 for_each_cpu(cpu, mask) { 260 struct global_reg_snapshot *gp; 261 262 if (exclude_self && cpu == this_cpu) 263 continue; 264 265 gp = &global_cpu_snapshot[cpu].reg; 266 267 __global_reg_poll(gp); 268 269 tp = gp->thread; 270 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 271 (cpu == this_cpu ? '*' : ' '), cpu, 272 gp->tstate, gp->tpc, gp->tnpc, 273 ((tp && tp->task) ? tp->task->comm : "NULL"), 274 ((tp && tp->task) ? tp->task->pid : -1)); 275 276 if (gp->tstate & TSTATE_PRIV) { 277 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 278 (void *) gp->tpc, 279 (void *) gp->o7, 280 (void *) gp->i7, 281 (void *) gp->rpc); 282 } else { 283 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 284 gp->tpc, gp->o7, gp->i7, gp->rpc); 285 } 286 287 touch_nmi_watchdog(); 288 } 289 290 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 291 292 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 293 } 294 295 #ifdef CONFIG_MAGIC_SYSRQ 296 297 static void sysrq_handle_globreg(int key) 298 { 299 trigger_all_cpu_backtrace(); 300 } 301 302 static const struct sysrq_key_op sparc_globalreg_op = { 303 .handler = sysrq_handle_globreg, 304 .help_msg = "global-regs(y)", 305 .action_msg = "Show Global CPU Regs", 306 }; 307 308 static void __global_pmu_self(int this_cpu) 309 { 310 struct global_pmu_snapshot *pp; 311 int i, num; 312 313 if (!pcr_ops) 314 return; 315 316 pp = &global_cpu_snapshot[this_cpu].pmu; 317 318 num = 1; 319 if (tlb_type == hypervisor && 320 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 321 num = 4; 322 323 for (i = 0; i < num; i++) { 324 pp->pcr[i] = pcr_ops->read_pcr(i); 325 pp->pic[i] = pcr_ops->read_pic(i); 326 } 327 } 328 329 static void __global_pmu_poll(struct global_pmu_snapshot *pp) 330 { 331 int limit = 0; 332 333 while (!pp->pcr[0] && ++limit < 100) { 334 barrier(); 335 udelay(1); 336 } 337 } 338 339 static void pmu_snapshot_all_cpus(void) 340 { 341 unsigned long flags; 342 int this_cpu, cpu; 343 344 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 345 346 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 347 348 this_cpu = raw_smp_processor_id(); 349 350 __global_pmu_self(this_cpu); 351 352 smp_fetch_global_pmu(); 353 354 for_each_online_cpu(cpu) { 355 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu; 356 357 __global_pmu_poll(pp); 358 359 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n", 360 (cpu == this_cpu ? '*' : ' '), cpu, 361 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3], 362 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]); 363 364 touch_nmi_watchdog(); 365 } 366 367 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 368 369 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 370 } 371 372 static void sysrq_handle_globpmu(int key) 373 { 374 pmu_snapshot_all_cpus(); 375 } 376 377 static const struct sysrq_key_op sparc_globalpmu_op = { 378 .handler = sysrq_handle_globpmu, 379 .help_msg = "global-pmu(x)", 380 .action_msg = "Show Global PMU Regs", 381 }; 382 383 static int __init sparc_sysrq_init(void) 384 { 385 int ret = register_sysrq_key('y', &sparc_globalreg_op); 386 387 if (!ret) 388 ret = register_sysrq_key('x', &sparc_globalpmu_op); 389 return ret; 390 } 391 392 core_initcall(sparc_sysrq_init); 393 394 #endif 395 396 /* Free current thread data structures etc.. */ 397 void exit_thread(struct task_struct *tsk) 398 { 399 struct thread_info *t = task_thread_info(tsk); 400 401 if (t->utraps) { 402 if (t->utraps[0] < 2) 403 kfree (t->utraps); 404 else 405 t->utraps[0]--; 406 } 407 } 408 409 void flush_thread(void) 410 { 411 struct thread_info *t = current_thread_info(); 412 struct mm_struct *mm; 413 414 mm = t->task->mm; 415 if (mm) 416 tsb_context_switch(mm); 417 418 set_thread_wsaved(0); 419 420 /* Clear FPU register state. */ 421 t->fpsaved[0] = 0; 422 } 423 424 /* It's a bit more tricky when 64-bit tasks are involved... */ 425 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 426 { 427 bool stack_64bit = test_thread_64bit_stack(psp); 428 unsigned long fp, distance, rval; 429 430 if (stack_64bit) { 431 csp += STACK_BIAS; 432 psp += STACK_BIAS; 433 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 434 fp += STACK_BIAS; 435 if (test_thread_flag(TIF_32BIT)) 436 fp &= 0xffffffff; 437 } else 438 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 439 440 /* Now align the stack as this is mandatory in the Sparc ABI 441 * due to how register windows work. This hides the 442 * restriction from thread libraries etc. 443 */ 444 csp &= ~15UL; 445 446 distance = fp - psp; 447 rval = (csp - distance); 448 if (raw_copy_in_user((void __user *)rval, (void __user *)psp, distance)) 449 rval = 0; 450 else if (!stack_64bit) { 451 if (put_user(((u32)csp), 452 &(((struct reg_window32 __user *)rval)->ins[6]))) 453 rval = 0; 454 } else { 455 if (put_user(((u64)csp - STACK_BIAS), 456 &(((struct reg_window __user *)rval)->ins[6]))) 457 rval = 0; 458 else 459 rval = rval - STACK_BIAS; 460 } 461 462 return rval; 463 } 464 465 /* Standard stuff. */ 466 static inline void shift_window_buffer(int first_win, int last_win, 467 struct thread_info *t) 468 { 469 int i; 470 471 for (i = first_win; i < last_win; i++) { 472 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 473 memcpy(&t->reg_window[i], &t->reg_window[i+1], 474 sizeof(struct reg_window)); 475 } 476 } 477 478 void synchronize_user_stack(void) 479 { 480 struct thread_info *t = current_thread_info(); 481 unsigned long window; 482 483 flush_user_windows(); 484 if ((window = get_thread_wsaved()) != 0) { 485 window -= 1; 486 do { 487 struct reg_window *rwin = &t->reg_window[window]; 488 int winsize = sizeof(struct reg_window); 489 unsigned long sp; 490 491 sp = t->rwbuf_stkptrs[window]; 492 493 if (test_thread_64bit_stack(sp)) 494 sp += STACK_BIAS; 495 else 496 winsize = sizeof(struct reg_window32); 497 498 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 499 shift_window_buffer(window, get_thread_wsaved() - 1, t); 500 set_thread_wsaved(get_thread_wsaved() - 1); 501 } 502 } while (window--); 503 } 504 } 505 506 static void stack_unaligned(unsigned long sp) 507 { 508 force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *) sp); 509 } 510 511 static const char uwfault32[] = KERN_INFO \ 512 "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n"; 513 static const char uwfault64[] = KERN_INFO \ 514 "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n"; 515 516 void fault_in_user_windows(struct pt_regs *regs) 517 { 518 struct thread_info *t = current_thread_info(); 519 unsigned long window; 520 521 flush_user_windows(); 522 window = get_thread_wsaved(); 523 524 if (likely(window != 0)) { 525 window -= 1; 526 do { 527 struct reg_window *rwin = &t->reg_window[window]; 528 int winsize = sizeof(struct reg_window); 529 unsigned long sp, orig_sp; 530 531 orig_sp = sp = t->rwbuf_stkptrs[window]; 532 533 if (test_thread_64bit_stack(sp)) 534 sp += STACK_BIAS; 535 else 536 winsize = sizeof(struct reg_window32); 537 538 if (unlikely(sp & 0x7UL)) 539 stack_unaligned(sp); 540 541 if (unlikely(copy_to_user((char __user *)sp, 542 rwin, winsize))) { 543 if (show_unhandled_signals) 544 printk_ratelimited(is_compat_task() ? 545 uwfault32 : uwfault64, 546 current->comm, current->pid, 547 sp, orig_sp, 548 regs->tpc, 549 regs->u_regs[UREG_I7]); 550 goto barf; 551 } 552 } while (window--); 553 } 554 set_thread_wsaved(0); 555 return; 556 557 barf: 558 set_thread_wsaved(window + 1); 559 force_sig(SIGSEGV); 560 } 561 562 /* Copy a Sparc thread. The fork() return value conventions 563 * under SunOS are nothing short of bletcherous: 564 * Parent --> %o0 == childs pid, %o1 == 0 565 * Child --> %o0 == parents pid, %o1 == 1 566 */ 567 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg, 568 struct task_struct *p, unsigned long tls) 569 { 570 struct thread_info *t = task_thread_info(p); 571 struct pt_regs *regs = current_pt_regs(); 572 struct sparc_stackf *parent_sf; 573 unsigned long child_stack_sz; 574 char *child_trap_frame; 575 576 /* Calculate offset to stack_frame & pt_regs */ 577 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ); 578 child_trap_frame = (task_stack_page(p) + 579 (THREAD_SIZE - child_stack_sz)); 580 581 t->new_child = 1; 582 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 583 t->kregs = (struct pt_regs *) (child_trap_frame + 584 sizeof(struct sparc_stackf)); 585 t->fpsaved[0] = 0; 586 587 if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) { 588 memset(child_trap_frame, 0, child_stack_sz); 589 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 590 (current_pt_regs()->tstate + 1) & TSTATE_CWP; 591 t->kregs->u_regs[UREG_G1] = sp; /* function */ 592 t->kregs->u_regs[UREG_G2] = arg; 593 return 0; 594 } 595 596 parent_sf = ((struct sparc_stackf *) regs) - 1; 597 memcpy(child_trap_frame, parent_sf, child_stack_sz); 598 if (t->flags & _TIF_32BIT) { 599 sp &= 0x00000000ffffffffUL; 600 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 601 } 602 t->kregs->u_regs[UREG_FP] = sp; 603 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 604 (regs->tstate + 1) & TSTATE_CWP; 605 if (sp != regs->u_regs[UREG_FP]) { 606 unsigned long csp; 607 608 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 609 if (!csp) 610 return -EFAULT; 611 t->kregs->u_regs[UREG_FP] = csp; 612 } 613 if (t->utraps) 614 t->utraps[0]++; 615 616 /* Set the return value for the child. */ 617 t->kregs->u_regs[UREG_I0] = current->pid; 618 t->kregs->u_regs[UREG_I1] = 1; 619 620 /* Set the second return value for the parent. */ 621 regs->u_regs[UREG_I1] = 0; 622 623 if (clone_flags & CLONE_SETTLS) 624 t->kregs->u_regs[UREG_G7] = tls; 625 626 return 0; 627 } 628 629 /* TIF_MCDPER in thread info flags for current task is updated lazily upon 630 * a context switch. Update this flag in current task's thread flags 631 * before dup so the dup'd task will inherit the current TIF_MCDPER flag. 632 */ 633 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 634 { 635 if (adi_capable()) { 636 register unsigned long tmp_mcdper; 637 638 __asm__ __volatile__( 639 ".word 0x83438000\n\t" /* rd %mcdper, %g1 */ 640 "mov %%g1, %0\n\t" 641 : "=r" (tmp_mcdper) 642 : 643 : "g1"); 644 if (tmp_mcdper) 645 set_thread_flag(TIF_MCDPER); 646 else 647 clear_thread_flag(TIF_MCDPER); 648 } 649 650 *dst = *src; 651 return 0; 652 } 653 654 unsigned long __get_wchan(struct task_struct *task) 655 { 656 unsigned long pc, fp, bias = 0; 657 struct thread_info *tp; 658 struct reg_window *rw; 659 unsigned long ret = 0; 660 int count = 0; 661 662 tp = task_thread_info(task); 663 bias = STACK_BIAS; 664 fp = task_thread_info(task)->ksp + bias; 665 666 do { 667 if (!kstack_valid(tp, fp)) 668 break; 669 rw = (struct reg_window *) fp; 670 pc = rw->ins[7]; 671 if (!in_sched_functions(pc)) { 672 ret = pc; 673 goto out; 674 } 675 fp = rw->ins[6] + bias; 676 } while (++count < 16); 677 678 out: 679 return ret; 680 } 681