1 /* arch/sparc64/kernel/process.c 2 * 3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/errno.h> 15 #include <linux/module.h> 16 #include <linux/sched.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/ptrace.h> 23 #include <linux/slab.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/compat.h> 27 #include <linux/tick.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/elfcore.h> 31 #include <linux/sysrq.h> 32 #include <linux/nmi.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/system.h> 36 #include <asm/page.h> 37 #include <asm/pgalloc.h> 38 #include <asm/pgtable.h> 39 #include <asm/processor.h> 40 #include <asm/pstate.h> 41 #include <asm/elf.h> 42 #include <asm/fpumacro.h> 43 #include <asm/head.h> 44 #include <asm/cpudata.h> 45 #include <asm/mmu_context.h> 46 #include <asm/unistd.h> 47 #include <asm/hypervisor.h> 48 #include <asm/syscalls.h> 49 #include <asm/irq_regs.h> 50 #include <asm/smp.h> 51 52 #include "kstack.h" 53 54 static void sparc64_yield(int cpu) 55 { 56 if (tlb_type != hypervisor) { 57 touch_nmi_watchdog(); 58 return; 59 } 60 61 clear_thread_flag(TIF_POLLING_NRFLAG); 62 smp_mb__after_clear_bit(); 63 64 while (!need_resched() && !cpu_is_offline(cpu)) { 65 unsigned long pstate; 66 67 /* Disable interrupts. */ 68 __asm__ __volatile__( 69 "rdpr %%pstate, %0\n\t" 70 "andn %0, %1, %0\n\t" 71 "wrpr %0, %%g0, %%pstate" 72 : "=&r" (pstate) 73 : "i" (PSTATE_IE)); 74 75 if (!need_resched() && !cpu_is_offline(cpu)) 76 sun4v_cpu_yield(); 77 78 /* Re-enable interrupts. */ 79 __asm__ __volatile__( 80 "rdpr %%pstate, %0\n\t" 81 "or %0, %1, %0\n\t" 82 "wrpr %0, %%g0, %%pstate" 83 : "=&r" (pstate) 84 : "i" (PSTATE_IE)); 85 } 86 87 set_thread_flag(TIF_POLLING_NRFLAG); 88 } 89 90 /* The idle loop on sparc64. */ 91 void cpu_idle(void) 92 { 93 int cpu = smp_processor_id(); 94 95 set_thread_flag(TIF_POLLING_NRFLAG); 96 97 while(1) { 98 tick_nohz_stop_sched_tick(1); 99 100 while (!need_resched() && !cpu_is_offline(cpu)) 101 sparc64_yield(cpu); 102 103 tick_nohz_restart_sched_tick(); 104 105 preempt_enable_no_resched(); 106 107 #ifdef CONFIG_HOTPLUG_CPU 108 if (cpu_is_offline(cpu)) 109 cpu_play_dead(); 110 #endif 111 112 schedule(); 113 preempt_disable(); 114 } 115 } 116 117 #ifdef CONFIG_COMPAT 118 static void show_regwindow32(struct pt_regs *regs) 119 { 120 struct reg_window32 __user *rw; 121 struct reg_window32 r_w; 122 mm_segment_t old_fs; 123 124 __asm__ __volatile__ ("flushw"); 125 rw = compat_ptr((unsigned)regs->u_regs[14]); 126 old_fs = get_fs(); 127 set_fs (USER_DS); 128 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 129 set_fs (old_fs); 130 return; 131 } 132 133 set_fs (old_fs); 134 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 135 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 136 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 137 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 138 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 139 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 140 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 141 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 142 } 143 #else 144 #define show_regwindow32(regs) do { } while (0) 145 #endif 146 147 static void show_regwindow(struct pt_regs *regs) 148 { 149 struct reg_window __user *rw; 150 struct reg_window *rwk; 151 struct reg_window r_w; 152 mm_segment_t old_fs; 153 154 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 155 __asm__ __volatile__ ("flushw"); 156 rw = (struct reg_window __user *) 157 (regs->u_regs[14] + STACK_BIAS); 158 rwk = (struct reg_window *) 159 (regs->u_regs[14] + STACK_BIAS); 160 if (!(regs->tstate & TSTATE_PRIV)) { 161 old_fs = get_fs(); 162 set_fs (USER_DS); 163 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 164 set_fs (old_fs); 165 return; 166 } 167 rwk = &r_w; 168 set_fs (old_fs); 169 } 170 } else { 171 show_regwindow32(regs); 172 return; 173 } 174 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 175 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 176 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 177 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 178 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 179 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 180 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 181 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 182 if (regs->tstate & TSTATE_PRIV) 183 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 184 } 185 186 void show_regs(struct pt_regs *regs) 187 { 188 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 189 regs->tpc, regs->tnpc, regs->y, print_tainted()); 190 printk("TPC: <%pS>\n", (void *) regs->tpc); 191 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 192 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 193 regs->u_regs[3]); 194 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 195 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 196 regs->u_regs[7]); 197 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 198 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 199 regs->u_regs[11]); 200 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 201 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 202 regs->u_regs[15]); 203 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 204 show_regwindow(regs); 205 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); 206 } 207 208 struct global_reg_snapshot global_reg_snapshot[NR_CPUS]; 209 static DEFINE_SPINLOCK(global_reg_snapshot_lock); 210 211 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 212 int this_cpu) 213 { 214 flushw_all(); 215 216 global_reg_snapshot[this_cpu].tstate = regs->tstate; 217 global_reg_snapshot[this_cpu].tpc = regs->tpc; 218 global_reg_snapshot[this_cpu].tnpc = regs->tnpc; 219 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7]; 220 221 if (regs->tstate & TSTATE_PRIV) { 222 struct reg_window *rw; 223 224 rw = (struct reg_window *) 225 (regs->u_regs[UREG_FP] + STACK_BIAS); 226 if (kstack_valid(tp, (unsigned long) rw)) { 227 global_reg_snapshot[this_cpu].i7 = rw->ins[7]; 228 rw = (struct reg_window *) 229 (rw->ins[6] + STACK_BIAS); 230 if (kstack_valid(tp, (unsigned long) rw)) 231 global_reg_snapshot[this_cpu].rpc = rw->ins[7]; 232 } 233 } else { 234 global_reg_snapshot[this_cpu].i7 = 0; 235 global_reg_snapshot[this_cpu].rpc = 0; 236 } 237 global_reg_snapshot[this_cpu].thread = tp; 238 } 239 240 /* In order to avoid hangs we do not try to synchronize with the 241 * global register dump client cpus. The last store they make is to 242 * the thread pointer, so do a short poll waiting for that to become 243 * non-NULL. 244 */ 245 static void __global_reg_poll(struct global_reg_snapshot *gp) 246 { 247 int limit = 0; 248 249 while (!gp->thread && ++limit < 100) { 250 barrier(); 251 udelay(1); 252 } 253 } 254 255 void arch_trigger_all_cpu_backtrace(void) 256 { 257 struct thread_info *tp = current_thread_info(); 258 struct pt_regs *regs = get_irq_regs(); 259 unsigned long flags; 260 int this_cpu, cpu; 261 262 if (!regs) 263 regs = tp->kregs; 264 265 spin_lock_irqsave(&global_reg_snapshot_lock, flags); 266 267 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); 268 269 this_cpu = raw_smp_processor_id(); 270 271 __global_reg_self(tp, regs, this_cpu); 272 273 smp_fetch_global_regs(); 274 275 for_each_online_cpu(cpu) { 276 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu]; 277 278 __global_reg_poll(gp); 279 280 tp = gp->thread; 281 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 282 (cpu == this_cpu ? '*' : ' '), cpu, 283 gp->tstate, gp->tpc, gp->tnpc, 284 ((tp && tp->task) ? tp->task->comm : "NULL"), 285 ((tp && tp->task) ? tp->task->pid : -1)); 286 287 if (gp->tstate & TSTATE_PRIV) { 288 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 289 (void *) gp->tpc, 290 (void *) gp->o7, 291 (void *) gp->i7, 292 (void *) gp->rpc); 293 } else { 294 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 295 gp->tpc, gp->o7, gp->i7, gp->rpc); 296 } 297 } 298 299 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot)); 300 301 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags); 302 } 303 304 #ifdef CONFIG_MAGIC_SYSRQ 305 306 static void sysrq_handle_globreg(int key) 307 { 308 arch_trigger_all_cpu_backtrace(); 309 } 310 311 static struct sysrq_key_op sparc_globalreg_op = { 312 .handler = sysrq_handle_globreg, 313 .help_msg = "Globalregs", 314 .action_msg = "Show Global CPU Regs", 315 }; 316 317 static int __init sparc_globreg_init(void) 318 { 319 return register_sysrq_key('y', &sparc_globalreg_op); 320 } 321 322 core_initcall(sparc_globreg_init); 323 324 #endif 325 326 unsigned long thread_saved_pc(struct task_struct *tsk) 327 { 328 struct thread_info *ti = task_thread_info(tsk); 329 unsigned long ret = 0xdeadbeefUL; 330 331 if (ti && ti->ksp) { 332 unsigned long *sp; 333 sp = (unsigned long *)(ti->ksp + STACK_BIAS); 334 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && 335 sp[14]) { 336 unsigned long *fp; 337 fp = (unsigned long *)(sp[14] + STACK_BIAS); 338 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) 339 ret = fp[15]; 340 } 341 } 342 return ret; 343 } 344 345 /* Free current thread data structures etc.. */ 346 void exit_thread(void) 347 { 348 struct thread_info *t = current_thread_info(); 349 350 if (t->utraps) { 351 if (t->utraps[0] < 2) 352 kfree (t->utraps); 353 else 354 t->utraps[0]--; 355 } 356 } 357 358 void flush_thread(void) 359 { 360 struct thread_info *t = current_thread_info(); 361 struct mm_struct *mm; 362 363 mm = t->task->mm; 364 if (mm) 365 tsb_context_switch(mm); 366 367 set_thread_wsaved(0); 368 369 /* Clear FPU register state. */ 370 t->fpsaved[0] = 0; 371 372 if (get_thread_current_ds() != ASI_AIUS) 373 set_fs(USER_DS); 374 } 375 376 /* It's a bit more tricky when 64-bit tasks are involved... */ 377 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 378 { 379 unsigned long fp, distance, rval; 380 381 if (!(test_thread_flag(TIF_32BIT))) { 382 csp += STACK_BIAS; 383 psp += STACK_BIAS; 384 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 385 fp += STACK_BIAS; 386 } else 387 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 388 389 /* Now align the stack as this is mandatory in the Sparc ABI 390 * due to how register windows work. This hides the 391 * restriction from thread libraries etc. 392 */ 393 csp &= ~15UL; 394 395 distance = fp - psp; 396 rval = (csp - distance); 397 if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) 398 rval = 0; 399 else if (test_thread_flag(TIF_32BIT)) { 400 if (put_user(((u32)csp), 401 &(((struct reg_window32 __user *)rval)->ins[6]))) 402 rval = 0; 403 } else { 404 if (put_user(((u64)csp - STACK_BIAS), 405 &(((struct reg_window __user *)rval)->ins[6]))) 406 rval = 0; 407 else 408 rval = rval - STACK_BIAS; 409 } 410 411 return rval; 412 } 413 414 /* Standard stuff. */ 415 static inline void shift_window_buffer(int first_win, int last_win, 416 struct thread_info *t) 417 { 418 int i; 419 420 for (i = first_win; i < last_win; i++) { 421 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 422 memcpy(&t->reg_window[i], &t->reg_window[i+1], 423 sizeof(struct reg_window)); 424 } 425 } 426 427 void synchronize_user_stack(void) 428 { 429 struct thread_info *t = current_thread_info(); 430 unsigned long window; 431 432 flush_user_windows(); 433 if ((window = get_thread_wsaved()) != 0) { 434 int winsize = sizeof(struct reg_window); 435 int bias = 0; 436 437 if (test_thread_flag(TIF_32BIT)) 438 winsize = sizeof(struct reg_window32); 439 else 440 bias = STACK_BIAS; 441 442 window -= 1; 443 do { 444 unsigned long sp = (t->rwbuf_stkptrs[window] + bias); 445 struct reg_window *rwin = &t->reg_window[window]; 446 447 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 448 shift_window_buffer(window, get_thread_wsaved() - 1, t); 449 set_thread_wsaved(get_thread_wsaved() - 1); 450 } 451 } while (window--); 452 } 453 } 454 455 static void stack_unaligned(unsigned long sp) 456 { 457 siginfo_t info; 458 459 info.si_signo = SIGBUS; 460 info.si_errno = 0; 461 info.si_code = BUS_ADRALN; 462 info.si_addr = (void __user *) sp; 463 info.si_trapno = 0; 464 force_sig_info(SIGBUS, &info, current); 465 } 466 467 void fault_in_user_windows(void) 468 { 469 struct thread_info *t = current_thread_info(); 470 unsigned long window; 471 int winsize = sizeof(struct reg_window); 472 int bias = 0; 473 474 if (test_thread_flag(TIF_32BIT)) 475 winsize = sizeof(struct reg_window32); 476 else 477 bias = STACK_BIAS; 478 479 flush_user_windows(); 480 window = get_thread_wsaved(); 481 482 if (likely(window != 0)) { 483 window -= 1; 484 do { 485 unsigned long sp = (t->rwbuf_stkptrs[window] + bias); 486 struct reg_window *rwin = &t->reg_window[window]; 487 488 if (unlikely(sp & 0x7UL)) 489 stack_unaligned(sp); 490 491 if (unlikely(copy_to_user((char __user *)sp, 492 rwin, winsize))) 493 goto barf; 494 } while (window--); 495 } 496 set_thread_wsaved(0); 497 return; 498 499 barf: 500 set_thread_wsaved(window + 1); 501 do_exit(SIGILL); 502 } 503 504 asmlinkage long sparc_do_fork(unsigned long clone_flags, 505 unsigned long stack_start, 506 struct pt_regs *regs, 507 unsigned long stack_size) 508 { 509 int __user *parent_tid_ptr, *child_tid_ptr; 510 unsigned long orig_i1 = regs->u_regs[UREG_I1]; 511 long ret; 512 513 #ifdef CONFIG_COMPAT 514 if (test_thread_flag(TIF_32BIT)) { 515 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); 516 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); 517 } else 518 #endif 519 { 520 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; 521 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; 522 } 523 524 ret = do_fork(clone_flags, stack_start, 525 regs, stack_size, 526 parent_tid_ptr, child_tid_ptr); 527 528 /* If we get an error and potentially restart the system 529 * call, we're screwed because copy_thread() clobbered 530 * the parent's %o1. So detect that case and restore it 531 * here. 532 */ 533 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) 534 regs->u_regs[UREG_I1] = orig_i1; 535 536 return ret; 537 } 538 539 /* Copy a Sparc thread. The fork() return value conventions 540 * under SunOS are nothing short of bletcherous: 541 * Parent --> %o0 == childs pid, %o1 == 0 542 * Child --> %o0 == parents pid, %o1 == 1 543 */ 544 int copy_thread(unsigned long clone_flags, unsigned long sp, 545 unsigned long unused, 546 struct task_struct *p, struct pt_regs *regs) 547 { 548 struct thread_info *t = task_thread_info(p); 549 struct sparc_stackf *parent_sf; 550 unsigned long child_stack_sz; 551 char *child_trap_frame; 552 int kernel_thread; 553 554 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0; 555 parent_sf = ((struct sparc_stackf *) regs) - 1; 556 557 /* Calculate offset to stack_frame & pt_regs */ 558 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) + 559 (kernel_thread ? STACKFRAME_SZ : 0)); 560 child_trap_frame = (task_stack_page(p) + 561 (THREAD_SIZE - child_stack_sz)); 562 memcpy(child_trap_frame, parent_sf, child_stack_sz); 563 564 t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | 565 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) | 566 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT); 567 t->new_child = 1; 568 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 569 t->kregs = (struct pt_regs *) (child_trap_frame + 570 sizeof(struct sparc_stackf)); 571 t->fpsaved[0] = 0; 572 573 if (kernel_thread) { 574 struct sparc_stackf *child_sf = (struct sparc_stackf *) 575 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ)); 576 577 /* Zero terminate the stack backtrace. */ 578 child_sf->fp = NULL; 579 t->kregs->u_regs[UREG_FP] = 580 ((unsigned long) child_sf) - STACK_BIAS; 581 582 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT); 583 t->kregs->u_regs[UREG_G6] = (unsigned long) t; 584 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task; 585 } else { 586 if (t->flags & _TIF_32BIT) { 587 sp &= 0x00000000ffffffffUL; 588 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 589 } 590 t->kregs->u_regs[UREG_FP] = sp; 591 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT); 592 if (sp != regs->u_regs[UREG_FP]) { 593 unsigned long csp; 594 595 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 596 if (!csp) 597 return -EFAULT; 598 t->kregs->u_regs[UREG_FP] = csp; 599 } 600 if (t->utraps) 601 t->utraps[0]++; 602 } 603 604 /* Set the return value for the child. */ 605 t->kregs->u_regs[UREG_I0] = current->pid; 606 t->kregs->u_regs[UREG_I1] = 1; 607 608 /* Set the second return value for the parent. */ 609 regs->u_regs[UREG_I1] = 0; 610 611 if (clone_flags & CLONE_SETTLS) 612 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; 613 614 return 0; 615 } 616 617 /* 618 * This is the mechanism for creating a new kernel thread. 619 * 620 * NOTE! Only a kernel-only process(ie the swapper or direct descendants 621 * who haven't done an "execve()") should use this: it will work within 622 * a system call from a "real" process, but the process memory space will 623 * not be freed until both the parent and the child have exited. 624 */ 625 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) 626 { 627 long retval; 628 629 /* If the parent runs before fn(arg) is called by the child, 630 * the input registers of this function can be clobbered. 631 * So we stash 'fn' and 'arg' into global registers which 632 * will not be modified by the parent. 633 */ 634 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */ 635 "mov %5, %%g3\n\t" /* Save ARG into global */ 636 "mov %1, %%g1\n\t" /* Clone syscall nr. */ 637 "mov %2, %%o0\n\t" /* Clone flags. */ 638 "mov 0, %%o1\n\t" /* usp arg == 0 */ 639 "t 0x6d\n\t" /* Linux/Sparc clone(). */ 640 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */ 641 " mov %%o0, %0\n\t" 642 "jmpl %%g2, %%o7\n\t" /* Call the function. */ 643 " mov %%g3, %%o0\n\t" /* Set arg in delay. */ 644 "mov %3, %%g1\n\t" 645 "t 0x6d\n\t" /* Linux/Sparc exit(). */ 646 /* Notreached by child. */ 647 "1:" : 648 "=r" (retval) : 649 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), 650 "i" (__NR_exit), "r" (fn), "r" (arg) : 651 "g1", "g2", "g3", "o0", "o1", "memory", "cc"); 652 return retval; 653 } 654 EXPORT_SYMBOL(kernel_thread); 655 656 typedef struct { 657 union { 658 unsigned int pr_regs[32]; 659 unsigned long pr_dregs[16]; 660 } pr_fr; 661 unsigned int __unused; 662 unsigned int pr_fsr; 663 unsigned char pr_qcnt; 664 unsigned char pr_q_entrysize; 665 unsigned char pr_en; 666 unsigned int pr_q[64]; 667 } elf_fpregset_t32; 668 669 /* 670 * fill in the fpu structure for a core dump. 671 */ 672 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) 673 { 674 unsigned long *kfpregs = current_thread_info()->fpregs; 675 unsigned long fprs = current_thread_info()->fpsaved[0]; 676 677 if (test_thread_flag(TIF_32BIT)) { 678 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; 679 680 if (fprs & FPRS_DL) 681 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, 682 sizeof(unsigned int) * 32); 683 else 684 memset(&fpregs32->pr_fr.pr_regs[0], 0, 685 sizeof(unsigned int) * 32); 686 fpregs32->pr_qcnt = 0; 687 fpregs32->pr_q_entrysize = 8; 688 memset(&fpregs32->pr_q[0], 0, 689 (sizeof(unsigned int) * 64)); 690 if (fprs & FPRS_FEF) { 691 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; 692 fpregs32->pr_en = 1; 693 } else { 694 fpregs32->pr_fsr = 0; 695 fpregs32->pr_en = 0; 696 } 697 } else { 698 if(fprs & FPRS_DL) 699 memcpy(&fpregs->pr_regs[0], kfpregs, 700 sizeof(unsigned int) * 32); 701 else 702 memset(&fpregs->pr_regs[0], 0, 703 sizeof(unsigned int) * 32); 704 if(fprs & FPRS_DU) 705 memcpy(&fpregs->pr_regs[16], kfpregs+16, 706 sizeof(unsigned int) * 32); 707 else 708 memset(&fpregs->pr_regs[16], 0, 709 sizeof(unsigned int) * 32); 710 if(fprs & FPRS_FEF) { 711 fpregs->pr_fsr = current_thread_info()->xfsr[0]; 712 fpregs->pr_gsr = current_thread_info()->gsr[0]; 713 } else { 714 fpregs->pr_fsr = fpregs->pr_gsr = 0; 715 } 716 fpregs->pr_fprs = fprs; 717 } 718 return 1; 719 } 720 EXPORT_SYMBOL(dump_fpu); 721 722 /* 723 * sparc_execve() executes a new program after the asm stub has set 724 * things up for us. This should basically do what I want it to. 725 */ 726 asmlinkage int sparc_execve(struct pt_regs *regs) 727 { 728 int error, base = 0; 729 char *filename; 730 731 /* User register window flush is done by entry.S */ 732 733 /* Check for indirect call. */ 734 if (regs->u_regs[UREG_G1] == 0) 735 base = 1; 736 737 filename = getname((char __user *)regs->u_regs[base + UREG_I0]); 738 error = PTR_ERR(filename); 739 if (IS_ERR(filename)) 740 goto out; 741 error = do_execve(filename, 742 (const char __user *const __user *) 743 regs->u_regs[base + UREG_I1], 744 (const char __user *const __user *) 745 regs->u_regs[base + UREG_I2], regs); 746 putname(filename); 747 if (!error) { 748 fprs_write(0); 749 current_thread_info()->xfsr[0] = 0; 750 current_thread_info()->fpsaved[0] = 0; 751 regs->tstate &= ~TSTATE_PEF; 752 } 753 out: 754 return error; 755 } 756 757 unsigned long get_wchan(struct task_struct *task) 758 { 759 unsigned long pc, fp, bias = 0; 760 struct thread_info *tp; 761 struct reg_window *rw; 762 unsigned long ret = 0; 763 int count = 0; 764 765 if (!task || task == current || 766 task->state == TASK_RUNNING) 767 goto out; 768 769 tp = task_thread_info(task); 770 bias = STACK_BIAS; 771 fp = task_thread_info(task)->ksp + bias; 772 773 do { 774 if (!kstack_valid(tp, fp)) 775 break; 776 rw = (struct reg_window *) fp; 777 pc = rw->ins[7]; 778 if (!in_sched_functions(pc)) { 779 ret = pc; 780 goto out; 781 } 782 fp = rw->ins[6] + bias; 783 } while (++count < 16); 784 785 out: 786 return ret; 787 } 788