1 /* arch/sparc64/kernel/process.c 2 * 3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/errno.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/ptrace.h> 23 #include <linux/slab.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/compat.h> 27 #include <linux/tick.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/perf_event.h> 31 #include <linux/elfcore.h> 32 #include <linux/sysrq.h> 33 #include <linux/nmi.h> 34 #include <linux/context_tracking.h> 35 36 #include <asm/uaccess.h> 37 #include <asm/page.h> 38 #include <asm/pgalloc.h> 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 #include <asm/pstate.h> 42 #include <asm/elf.h> 43 #include <asm/fpumacro.h> 44 #include <asm/head.h> 45 #include <asm/cpudata.h> 46 #include <asm/mmu_context.h> 47 #include <asm/unistd.h> 48 #include <asm/hypervisor.h> 49 #include <asm/syscalls.h> 50 #include <asm/irq_regs.h> 51 #include <asm/smp.h> 52 #include <asm/pcr.h> 53 54 #include "kstack.h" 55 56 /* Idle loop support on sparc64. */ 57 void arch_cpu_idle(void) 58 { 59 if (tlb_type != hypervisor) { 60 touch_nmi_watchdog(); 61 local_irq_enable(); 62 } else { 63 unsigned long pstate; 64 65 local_irq_enable(); 66 67 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over 68 * the cpu sleep hypervisor call. 69 */ 70 __asm__ __volatile__( 71 "rdpr %%pstate, %0\n\t" 72 "andn %0, %1, %0\n\t" 73 "wrpr %0, %%g0, %%pstate" 74 : "=&r" (pstate) 75 : "i" (PSTATE_IE)); 76 77 if (!need_resched() && !cpu_is_offline(smp_processor_id())) 78 sun4v_cpu_yield(); 79 80 /* Re-enable interrupts. */ 81 __asm__ __volatile__( 82 "rdpr %%pstate, %0\n\t" 83 "or %0, %1, %0\n\t" 84 "wrpr %0, %%g0, %%pstate" 85 : "=&r" (pstate) 86 : "i" (PSTATE_IE)); 87 } 88 } 89 90 #ifdef CONFIG_HOTPLUG_CPU 91 void arch_cpu_idle_dead() 92 { 93 sched_preempt_enable_no_resched(); 94 cpu_play_dead(); 95 } 96 #endif 97 98 #ifdef CONFIG_COMPAT 99 static void show_regwindow32(struct pt_regs *regs) 100 { 101 struct reg_window32 __user *rw; 102 struct reg_window32 r_w; 103 mm_segment_t old_fs; 104 105 __asm__ __volatile__ ("flushw"); 106 rw = compat_ptr((unsigned)regs->u_regs[14]); 107 old_fs = get_fs(); 108 set_fs (USER_DS); 109 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 110 set_fs (old_fs); 111 return; 112 } 113 114 set_fs (old_fs); 115 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 116 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 117 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 118 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 119 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 120 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 121 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 122 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 123 } 124 #else 125 #define show_regwindow32(regs) do { } while (0) 126 #endif 127 128 static void show_regwindow(struct pt_regs *regs) 129 { 130 struct reg_window __user *rw; 131 struct reg_window *rwk; 132 struct reg_window r_w; 133 mm_segment_t old_fs; 134 135 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 136 __asm__ __volatile__ ("flushw"); 137 rw = (struct reg_window __user *) 138 (regs->u_regs[14] + STACK_BIAS); 139 rwk = (struct reg_window *) 140 (regs->u_regs[14] + STACK_BIAS); 141 if (!(regs->tstate & TSTATE_PRIV)) { 142 old_fs = get_fs(); 143 set_fs (USER_DS); 144 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 145 set_fs (old_fs); 146 return; 147 } 148 rwk = &r_w; 149 set_fs (old_fs); 150 } 151 } else { 152 show_regwindow32(regs); 153 return; 154 } 155 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 156 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 157 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 158 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 159 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 160 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 161 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 162 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 163 if (regs->tstate & TSTATE_PRIV) 164 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 165 } 166 167 void show_regs(struct pt_regs *regs) 168 { 169 show_regs_print_info(KERN_DEFAULT); 170 171 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 172 regs->tpc, regs->tnpc, regs->y, print_tainted()); 173 printk("TPC: <%pS>\n", (void *) regs->tpc); 174 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 175 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 176 regs->u_regs[3]); 177 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 178 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 179 regs->u_regs[7]); 180 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 181 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 182 regs->u_regs[11]); 183 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 184 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 185 regs->u_regs[15]); 186 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 187 show_regwindow(regs); 188 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); 189 } 190 191 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS]; 192 static DEFINE_SPINLOCK(global_cpu_snapshot_lock); 193 194 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 195 int this_cpu) 196 { 197 struct global_reg_snapshot *rp; 198 199 flushw_all(); 200 201 rp = &global_cpu_snapshot[this_cpu].reg; 202 203 rp->tstate = regs->tstate; 204 rp->tpc = regs->tpc; 205 rp->tnpc = regs->tnpc; 206 rp->o7 = regs->u_regs[UREG_I7]; 207 208 if (regs->tstate & TSTATE_PRIV) { 209 struct reg_window *rw; 210 211 rw = (struct reg_window *) 212 (regs->u_regs[UREG_FP] + STACK_BIAS); 213 if (kstack_valid(tp, (unsigned long) rw)) { 214 rp->i7 = rw->ins[7]; 215 rw = (struct reg_window *) 216 (rw->ins[6] + STACK_BIAS); 217 if (kstack_valid(tp, (unsigned long) rw)) 218 rp->rpc = rw->ins[7]; 219 } 220 } else { 221 rp->i7 = 0; 222 rp->rpc = 0; 223 } 224 rp->thread = tp; 225 } 226 227 /* In order to avoid hangs we do not try to synchronize with the 228 * global register dump client cpus. The last store they make is to 229 * the thread pointer, so do a short poll waiting for that to become 230 * non-NULL. 231 */ 232 static void __global_reg_poll(struct global_reg_snapshot *gp) 233 { 234 int limit = 0; 235 236 while (!gp->thread && ++limit < 100) { 237 barrier(); 238 udelay(1); 239 } 240 } 241 242 void arch_trigger_all_cpu_backtrace(void) 243 { 244 struct thread_info *tp = current_thread_info(); 245 struct pt_regs *regs = get_irq_regs(); 246 unsigned long flags; 247 int this_cpu, cpu; 248 249 if (!regs) 250 regs = tp->kregs; 251 252 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 253 254 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 255 256 this_cpu = raw_smp_processor_id(); 257 258 __global_reg_self(tp, regs, this_cpu); 259 260 smp_fetch_global_regs(); 261 262 for_each_online_cpu(cpu) { 263 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg; 264 265 __global_reg_poll(gp); 266 267 tp = gp->thread; 268 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 269 (cpu == this_cpu ? '*' : ' '), cpu, 270 gp->tstate, gp->tpc, gp->tnpc, 271 ((tp && tp->task) ? tp->task->comm : "NULL"), 272 ((tp && tp->task) ? tp->task->pid : -1)); 273 274 if (gp->tstate & TSTATE_PRIV) { 275 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 276 (void *) gp->tpc, 277 (void *) gp->o7, 278 (void *) gp->i7, 279 (void *) gp->rpc); 280 } else { 281 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 282 gp->tpc, gp->o7, gp->i7, gp->rpc); 283 } 284 } 285 286 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 287 288 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 289 } 290 291 #ifdef CONFIG_MAGIC_SYSRQ 292 293 static void sysrq_handle_globreg(int key) 294 { 295 arch_trigger_all_cpu_backtrace(); 296 } 297 298 static struct sysrq_key_op sparc_globalreg_op = { 299 .handler = sysrq_handle_globreg, 300 .help_msg = "global-regs(y)", 301 .action_msg = "Show Global CPU Regs", 302 }; 303 304 static void __global_pmu_self(int this_cpu) 305 { 306 struct global_pmu_snapshot *pp; 307 int i, num; 308 309 pp = &global_cpu_snapshot[this_cpu].pmu; 310 311 num = 1; 312 if (tlb_type == hypervisor && 313 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 314 num = 4; 315 316 for (i = 0; i < num; i++) { 317 pp->pcr[i] = pcr_ops->read_pcr(i); 318 pp->pic[i] = pcr_ops->read_pic(i); 319 } 320 } 321 322 static void __global_pmu_poll(struct global_pmu_snapshot *pp) 323 { 324 int limit = 0; 325 326 while (!pp->pcr[0] && ++limit < 100) { 327 barrier(); 328 udelay(1); 329 } 330 } 331 332 static void pmu_snapshot_all_cpus(void) 333 { 334 unsigned long flags; 335 int this_cpu, cpu; 336 337 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 338 339 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 340 341 this_cpu = raw_smp_processor_id(); 342 343 __global_pmu_self(this_cpu); 344 345 smp_fetch_global_pmu(); 346 347 for_each_online_cpu(cpu) { 348 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu; 349 350 __global_pmu_poll(pp); 351 352 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n", 353 (cpu == this_cpu ? '*' : ' '), cpu, 354 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3], 355 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]); 356 } 357 358 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 359 360 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 361 } 362 363 static void sysrq_handle_globpmu(int key) 364 { 365 pmu_snapshot_all_cpus(); 366 } 367 368 static struct sysrq_key_op sparc_globalpmu_op = { 369 .handler = sysrq_handle_globpmu, 370 .help_msg = "global-pmu(x)", 371 .action_msg = "Show Global PMU Regs", 372 }; 373 374 static int __init sparc_sysrq_init(void) 375 { 376 int ret = register_sysrq_key('y', &sparc_globalreg_op); 377 378 if (!ret) 379 ret = register_sysrq_key('x', &sparc_globalpmu_op); 380 return ret; 381 } 382 383 core_initcall(sparc_sysrq_init); 384 385 #endif 386 387 unsigned long thread_saved_pc(struct task_struct *tsk) 388 { 389 struct thread_info *ti = task_thread_info(tsk); 390 unsigned long ret = 0xdeadbeefUL; 391 392 if (ti && ti->ksp) { 393 unsigned long *sp; 394 sp = (unsigned long *)(ti->ksp + STACK_BIAS); 395 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && 396 sp[14]) { 397 unsigned long *fp; 398 fp = (unsigned long *)(sp[14] + STACK_BIAS); 399 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) 400 ret = fp[15]; 401 } 402 } 403 return ret; 404 } 405 406 /* Free current thread data structures etc.. */ 407 void exit_thread(void) 408 { 409 struct thread_info *t = current_thread_info(); 410 411 if (t->utraps) { 412 if (t->utraps[0] < 2) 413 kfree (t->utraps); 414 else 415 t->utraps[0]--; 416 } 417 } 418 419 void flush_thread(void) 420 { 421 struct thread_info *t = current_thread_info(); 422 struct mm_struct *mm; 423 424 mm = t->task->mm; 425 if (mm) 426 tsb_context_switch(mm); 427 428 set_thread_wsaved(0); 429 430 /* Clear FPU register state. */ 431 t->fpsaved[0] = 0; 432 } 433 434 /* It's a bit more tricky when 64-bit tasks are involved... */ 435 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 436 { 437 bool stack_64bit = test_thread_64bit_stack(psp); 438 unsigned long fp, distance, rval; 439 440 if (stack_64bit) { 441 csp += STACK_BIAS; 442 psp += STACK_BIAS; 443 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 444 fp += STACK_BIAS; 445 if (test_thread_flag(TIF_32BIT)) 446 fp &= 0xffffffff; 447 } else 448 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 449 450 /* Now align the stack as this is mandatory in the Sparc ABI 451 * due to how register windows work. This hides the 452 * restriction from thread libraries etc. 453 */ 454 csp &= ~15UL; 455 456 distance = fp - psp; 457 rval = (csp - distance); 458 if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) 459 rval = 0; 460 else if (!stack_64bit) { 461 if (put_user(((u32)csp), 462 &(((struct reg_window32 __user *)rval)->ins[6]))) 463 rval = 0; 464 } else { 465 if (put_user(((u64)csp - STACK_BIAS), 466 &(((struct reg_window __user *)rval)->ins[6]))) 467 rval = 0; 468 else 469 rval = rval - STACK_BIAS; 470 } 471 472 return rval; 473 } 474 475 /* Standard stuff. */ 476 static inline void shift_window_buffer(int first_win, int last_win, 477 struct thread_info *t) 478 { 479 int i; 480 481 for (i = first_win; i < last_win; i++) { 482 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 483 memcpy(&t->reg_window[i], &t->reg_window[i+1], 484 sizeof(struct reg_window)); 485 } 486 } 487 488 void synchronize_user_stack(void) 489 { 490 struct thread_info *t = current_thread_info(); 491 unsigned long window; 492 493 flush_user_windows(); 494 if ((window = get_thread_wsaved()) != 0) { 495 window -= 1; 496 do { 497 struct reg_window *rwin = &t->reg_window[window]; 498 int winsize = sizeof(struct reg_window); 499 unsigned long sp; 500 501 sp = t->rwbuf_stkptrs[window]; 502 503 if (test_thread_64bit_stack(sp)) 504 sp += STACK_BIAS; 505 else 506 winsize = sizeof(struct reg_window32); 507 508 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 509 shift_window_buffer(window, get_thread_wsaved() - 1, t); 510 set_thread_wsaved(get_thread_wsaved() - 1); 511 } 512 } while (window--); 513 } 514 } 515 516 static void stack_unaligned(unsigned long sp) 517 { 518 siginfo_t info; 519 520 info.si_signo = SIGBUS; 521 info.si_errno = 0; 522 info.si_code = BUS_ADRALN; 523 info.si_addr = (void __user *) sp; 524 info.si_trapno = 0; 525 force_sig_info(SIGBUS, &info, current); 526 } 527 528 void fault_in_user_windows(void) 529 { 530 struct thread_info *t = current_thread_info(); 531 unsigned long window; 532 533 flush_user_windows(); 534 window = get_thread_wsaved(); 535 536 if (likely(window != 0)) { 537 window -= 1; 538 do { 539 struct reg_window *rwin = &t->reg_window[window]; 540 int winsize = sizeof(struct reg_window); 541 unsigned long sp; 542 543 sp = t->rwbuf_stkptrs[window]; 544 545 if (test_thread_64bit_stack(sp)) 546 sp += STACK_BIAS; 547 else 548 winsize = sizeof(struct reg_window32); 549 550 if (unlikely(sp & 0x7UL)) 551 stack_unaligned(sp); 552 553 if (unlikely(copy_to_user((char __user *)sp, 554 rwin, winsize))) 555 goto barf; 556 } while (window--); 557 } 558 set_thread_wsaved(0); 559 return; 560 561 barf: 562 set_thread_wsaved(window + 1); 563 user_exit(); 564 do_exit(SIGILL); 565 } 566 567 asmlinkage long sparc_do_fork(unsigned long clone_flags, 568 unsigned long stack_start, 569 struct pt_regs *regs, 570 unsigned long stack_size) 571 { 572 int __user *parent_tid_ptr, *child_tid_ptr; 573 unsigned long orig_i1 = regs->u_regs[UREG_I1]; 574 long ret; 575 576 #ifdef CONFIG_COMPAT 577 if (test_thread_flag(TIF_32BIT)) { 578 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); 579 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); 580 } else 581 #endif 582 { 583 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; 584 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; 585 } 586 587 ret = do_fork(clone_flags, stack_start, stack_size, 588 parent_tid_ptr, child_tid_ptr); 589 590 /* If we get an error and potentially restart the system 591 * call, we're screwed because copy_thread() clobbered 592 * the parent's %o1. So detect that case and restore it 593 * here. 594 */ 595 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) 596 regs->u_regs[UREG_I1] = orig_i1; 597 598 return ret; 599 } 600 601 /* Copy a Sparc thread. The fork() return value conventions 602 * under SunOS are nothing short of bletcherous: 603 * Parent --> %o0 == childs pid, %o1 == 0 604 * Child --> %o0 == parents pid, %o1 == 1 605 */ 606 int copy_thread(unsigned long clone_flags, unsigned long sp, 607 unsigned long arg, struct task_struct *p) 608 { 609 struct thread_info *t = task_thread_info(p); 610 struct pt_regs *regs = current_pt_regs(); 611 struct sparc_stackf *parent_sf; 612 unsigned long child_stack_sz; 613 char *child_trap_frame; 614 615 /* Calculate offset to stack_frame & pt_regs */ 616 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ); 617 child_trap_frame = (task_stack_page(p) + 618 (THREAD_SIZE - child_stack_sz)); 619 620 t->new_child = 1; 621 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 622 t->kregs = (struct pt_regs *) (child_trap_frame + 623 sizeof(struct sparc_stackf)); 624 t->fpsaved[0] = 0; 625 626 if (unlikely(p->flags & PF_KTHREAD)) { 627 memset(child_trap_frame, 0, child_stack_sz); 628 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 629 (current_pt_regs()->tstate + 1) & TSTATE_CWP; 630 t->current_ds = ASI_P; 631 t->kregs->u_regs[UREG_G1] = sp; /* function */ 632 t->kregs->u_regs[UREG_G2] = arg; 633 return 0; 634 } 635 636 parent_sf = ((struct sparc_stackf *) regs) - 1; 637 memcpy(child_trap_frame, parent_sf, child_stack_sz); 638 if (t->flags & _TIF_32BIT) { 639 sp &= 0x00000000ffffffffUL; 640 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 641 } 642 t->kregs->u_regs[UREG_FP] = sp; 643 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 644 (regs->tstate + 1) & TSTATE_CWP; 645 t->current_ds = ASI_AIUS; 646 if (sp != regs->u_regs[UREG_FP]) { 647 unsigned long csp; 648 649 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 650 if (!csp) 651 return -EFAULT; 652 t->kregs->u_regs[UREG_FP] = csp; 653 } 654 if (t->utraps) 655 t->utraps[0]++; 656 657 /* Set the return value for the child. */ 658 t->kregs->u_regs[UREG_I0] = current->pid; 659 t->kregs->u_regs[UREG_I1] = 1; 660 661 /* Set the second return value for the parent. */ 662 regs->u_regs[UREG_I1] = 0; 663 664 if (clone_flags & CLONE_SETTLS) 665 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; 666 667 return 0; 668 } 669 670 typedef struct { 671 union { 672 unsigned int pr_regs[32]; 673 unsigned long pr_dregs[16]; 674 } pr_fr; 675 unsigned int __unused; 676 unsigned int pr_fsr; 677 unsigned char pr_qcnt; 678 unsigned char pr_q_entrysize; 679 unsigned char pr_en; 680 unsigned int pr_q[64]; 681 } elf_fpregset_t32; 682 683 /* 684 * fill in the fpu structure for a core dump. 685 */ 686 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) 687 { 688 unsigned long *kfpregs = current_thread_info()->fpregs; 689 unsigned long fprs = current_thread_info()->fpsaved[0]; 690 691 if (test_thread_flag(TIF_32BIT)) { 692 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; 693 694 if (fprs & FPRS_DL) 695 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, 696 sizeof(unsigned int) * 32); 697 else 698 memset(&fpregs32->pr_fr.pr_regs[0], 0, 699 sizeof(unsigned int) * 32); 700 fpregs32->pr_qcnt = 0; 701 fpregs32->pr_q_entrysize = 8; 702 memset(&fpregs32->pr_q[0], 0, 703 (sizeof(unsigned int) * 64)); 704 if (fprs & FPRS_FEF) { 705 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; 706 fpregs32->pr_en = 1; 707 } else { 708 fpregs32->pr_fsr = 0; 709 fpregs32->pr_en = 0; 710 } 711 } else { 712 if(fprs & FPRS_DL) 713 memcpy(&fpregs->pr_regs[0], kfpregs, 714 sizeof(unsigned int) * 32); 715 else 716 memset(&fpregs->pr_regs[0], 0, 717 sizeof(unsigned int) * 32); 718 if(fprs & FPRS_DU) 719 memcpy(&fpregs->pr_regs[16], kfpregs+16, 720 sizeof(unsigned int) * 32); 721 else 722 memset(&fpregs->pr_regs[16], 0, 723 sizeof(unsigned int) * 32); 724 if(fprs & FPRS_FEF) { 725 fpregs->pr_fsr = current_thread_info()->xfsr[0]; 726 fpregs->pr_gsr = current_thread_info()->gsr[0]; 727 } else { 728 fpregs->pr_fsr = fpregs->pr_gsr = 0; 729 } 730 fpregs->pr_fprs = fprs; 731 } 732 return 1; 733 } 734 EXPORT_SYMBOL(dump_fpu); 735 736 unsigned long get_wchan(struct task_struct *task) 737 { 738 unsigned long pc, fp, bias = 0; 739 struct thread_info *tp; 740 struct reg_window *rw; 741 unsigned long ret = 0; 742 int count = 0; 743 744 if (!task || task == current || 745 task->state == TASK_RUNNING) 746 goto out; 747 748 tp = task_thread_info(task); 749 bias = STACK_BIAS; 750 fp = task_thread_info(task)->ksp + bias; 751 752 do { 753 if (!kstack_valid(tp, fp)) 754 break; 755 rw = (struct reg_window *) fp; 756 pc = rw->ins[7]; 757 if (!in_sched_functions(pc)) { 758 ret = pc; 759 goto out; 760 } 761 fp = rw->ins[6] + bias; 762 } while (++count < 16); 763 764 out: 765 return ret; 766 } 767