1 /* arch/sparc64/kernel/process.c 2 * 3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/errno.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/ptrace.h> 23 #include <linux/slab.h> 24 #include <linux/user.h> 25 #include <linux/delay.h> 26 #include <linux/compat.h> 27 #include <linux/tick.h> 28 #include <linux/init.h> 29 #include <linux/cpu.h> 30 #include <linux/perf_event.h> 31 #include <linux/elfcore.h> 32 #include <linux/sysrq.h> 33 #include <linux/nmi.h> 34 #include <linux/context_tracking.h> 35 36 #include <asm/uaccess.h> 37 #include <asm/page.h> 38 #include <asm/pgalloc.h> 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 #include <asm/pstate.h> 42 #include <asm/elf.h> 43 #include <asm/fpumacro.h> 44 #include <asm/head.h> 45 #include <asm/cpudata.h> 46 #include <asm/mmu_context.h> 47 #include <asm/unistd.h> 48 #include <asm/hypervisor.h> 49 #include <asm/syscalls.h> 50 #include <asm/irq_regs.h> 51 #include <asm/smp.h> 52 #include <asm/pcr.h> 53 54 #include "kstack.h" 55 56 /* Idle loop support on sparc64. */ 57 void arch_cpu_idle(void) 58 { 59 if (tlb_type != hypervisor) { 60 touch_nmi_watchdog(); 61 } else { 62 unsigned long pstate; 63 64 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over 65 * the cpu sleep hypervisor call. 66 */ 67 __asm__ __volatile__( 68 "rdpr %%pstate, %0\n\t" 69 "andn %0, %1, %0\n\t" 70 "wrpr %0, %%g0, %%pstate" 71 : "=&r" (pstate) 72 : "i" (PSTATE_IE)); 73 74 if (!need_resched() && !cpu_is_offline(smp_processor_id())) 75 sun4v_cpu_yield(); 76 77 /* Re-enable interrupts. */ 78 __asm__ __volatile__( 79 "rdpr %%pstate, %0\n\t" 80 "or %0, %1, %0\n\t" 81 "wrpr %0, %%g0, %%pstate" 82 : "=&r" (pstate) 83 : "i" (PSTATE_IE)); 84 } 85 local_irq_enable(); 86 } 87 88 #ifdef CONFIG_HOTPLUG_CPU 89 void arch_cpu_idle_dead() 90 { 91 sched_preempt_enable_no_resched(); 92 cpu_play_dead(); 93 } 94 #endif 95 96 #ifdef CONFIG_COMPAT 97 static void show_regwindow32(struct pt_regs *regs) 98 { 99 struct reg_window32 __user *rw; 100 struct reg_window32 r_w; 101 mm_segment_t old_fs; 102 103 __asm__ __volatile__ ("flushw"); 104 rw = compat_ptr((unsigned)regs->u_regs[14]); 105 old_fs = get_fs(); 106 set_fs (USER_DS); 107 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 108 set_fs (old_fs); 109 return; 110 } 111 112 set_fs (old_fs); 113 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 114 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 115 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 116 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 117 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 118 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 119 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 120 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 121 } 122 #else 123 #define show_regwindow32(regs) do { } while (0) 124 #endif 125 126 static void show_regwindow(struct pt_regs *regs) 127 { 128 struct reg_window __user *rw; 129 struct reg_window *rwk; 130 struct reg_window r_w; 131 mm_segment_t old_fs; 132 133 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 134 __asm__ __volatile__ ("flushw"); 135 rw = (struct reg_window __user *) 136 (regs->u_regs[14] + STACK_BIAS); 137 rwk = (struct reg_window *) 138 (regs->u_regs[14] + STACK_BIAS); 139 if (!(regs->tstate & TSTATE_PRIV)) { 140 old_fs = get_fs(); 141 set_fs (USER_DS); 142 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 143 set_fs (old_fs); 144 return; 145 } 146 rwk = &r_w; 147 set_fs (old_fs); 148 } 149 } else { 150 show_regwindow32(regs); 151 return; 152 } 153 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 154 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 155 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 156 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 157 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 158 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 159 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 160 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 161 if (regs->tstate & TSTATE_PRIV) 162 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 163 } 164 165 void show_regs(struct pt_regs *regs) 166 { 167 show_regs_print_info(KERN_DEFAULT); 168 169 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 170 regs->tpc, regs->tnpc, regs->y, print_tainted()); 171 printk("TPC: <%pS>\n", (void *) regs->tpc); 172 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 173 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 174 regs->u_regs[3]); 175 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 176 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 177 regs->u_regs[7]); 178 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 179 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 180 regs->u_regs[11]); 181 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 182 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 183 regs->u_regs[15]); 184 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 185 show_regwindow(regs); 186 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); 187 } 188 189 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS]; 190 static DEFINE_SPINLOCK(global_cpu_snapshot_lock); 191 192 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 193 int this_cpu) 194 { 195 struct global_reg_snapshot *rp; 196 197 flushw_all(); 198 199 rp = &global_cpu_snapshot[this_cpu].reg; 200 201 rp->tstate = regs->tstate; 202 rp->tpc = regs->tpc; 203 rp->tnpc = regs->tnpc; 204 rp->o7 = regs->u_regs[UREG_I7]; 205 206 if (regs->tstate & TSTATE_PRIV) { 207 struct reg_window *rw; 208 209 rw = (struct reg_window *) 210 (regs->u_regs[UREG_FP] + STACK_BIAS); 211 if (kstack_valid(tp, (unsigned long) rw)) { 212 rp->i7 = rw->ins[7]; 213 rw = (struct reg_window *) 214 (rw->ins[6] + STACK_BIAS); 215 if (kstack_valid(tp, (unsigned long) rw)) 216 rp->rpc = rw->ins[7]; 217 } 218 } else { 219 rp->i7 = 0; 220 rp->rpc = 0; 221 } 222 rp->thread = tp; 223 } 224 225 /* In order to avoid hangs we do not try to synchronize with the 226 * global register dump client cpus. The last store they make is to 227 * the thread pointer, so do a short poll waiting for that to become 228 * non-NULL. 229 */ 230 static void __global_reg_poll(struct global_reg_snapshot *gp) 231 { 232 int limit = 0; 233 234 while (!gp->thread && ++limit < 100) { 235 barrier(); 236 udelay(1); 237 } 238 } 239 240 void arch_trigger_all_cpu_backtrace(void) 241 { 242 struct thread_info *tp = current_thread_info(); 243 struct pt_regs *regs = get_irq_regs(); 244 unsigned long flags; 245 int this_cpu, cpu; 246 247 if (!regs) 248 regs = tp->kregs; 249 250 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 251 252 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 253 254 this_cpu = raw_smp_processor_id(); 255 256 __global_reg_self(tp, regs, this_cpu); 257 258 smp_fetch_global_regs(); 259 260 for_each_online_cpu(cpu) { 261 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg; 262 263 __global_reg_poll(gp); 264 265 tp = gp->thread; 266 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 267 (cpu == this_cpu ? '*' : ' '), cpu, 268 gp->tstate, gp->tpc, gp->tnpc, 269 ((tp && tp->task) ? tp->task->comm : "NULL"), 270 ((tp && tp->task) ? tp->task->pid : -1)); 271 272 if (gp->tstate & TSTATE_PRIV) { 273 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 274 (void *) gp->tpc, 275 (void *) gp->o7, 276 (void *) gp->i7, 277 (void *) gp->rpc); 278 } else { 279 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 280 gp->tpc, gp->o7, gp->i7, gp->rpc); 281 } 282 } 283 284 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 285 286 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 287 } 288 289 #ifdef CONFIG_MAGIC_SYSRQ 290 291 static void sysrq_handle_globreg(int key) 292 { 293 arch_trigger_all_cpu_backtrace(); 294 } 295 296 static struct sysrq_key_op sparc_globalreg_op = { 297 .handler = sysrq_handle_globreg, 298 .help_msg = "global-regs(y)", 299 .action_msg = "Show Global CPU Regs", 300 }; 301 302 static void __global_pmu_self(int this_cpu) 303 { 304 struct global_pmu_snapshot *pp; 305 int i, num; 306 307 pp = &global_cpu_snapshot[this_cpu].pmu; 308 309 num = 1; 310 if (tlb_type == hypervisor && 311 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 312 num = 4; 313 314 for (i = 0; i < num; i++) { 315 pp->pcr[i] = pcr_ops->read_pcr(i); 316 pp->pic[i] = pcr_ops->read_pic(i); 317 } 318 } 319 320 static void __global_pmu_poll(struct global_pmu_snapshot *pp) 321 { 322 int limit = 0; 323 324 while (!pp->pcr[0] && ++limit < 100) { 325 barrier(); 326 udelay(1); 327 } 328 } 329 330 static void pmu_snapshot_all_cpus(void) 331 { 332 unsigned long flags; 333 int this_cpu, cpu; 334 335 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 336 337 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 338 339 this_cpu = raw_smp_processor_id(); 340 341 __global_pmu_self(this_cpu); 342 343 smp_fetch_global_pmu(); 344 345 for_each_online_cpu(cpu) { 346 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu; 347 348 __global_pmu_poll(pp); 349 350 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n", 351 (cpu == this_cpu ? '*' : ' '), cpu, 352 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3], 353 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]); 354 } 355 356 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 357 358 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 359 } 360 361 static void sysrq_handle_globpmu(int key) 362 { 363 pmu_snapshot_all_cpus(); 364 } 365 366 static struct sysrq_key_op sparc_globalpmu_op = { 367 .handler = sysrq_handle_globpmu, 368 .help_msg = "global-pmu(x)", 369 .action_msg = "Show Global PMU Regs", 370 }; 371 372 static int __init sparc_sysrq_init(void) 373 { 374 int ret = register_sysrq_key('y', &sparc_globalreg_op); 375 376 if (!ret) 377 ret = register_sysrq_key('x', &sparc_globalpmu_op); 378 return ret; 379 } 380 381 core_initcall(sparc_sysrq_init); 382 383 #endif 384 385 unsigned long thread_saved_pc(struct task_struct *tsk) 386 { 387 struct thread_info *ti = task_thread_info(tsk); 388 unsigned long ret = 0xdeadbeefUL; 389 390 if (ti && ti->ksp) { 391 unsigned long *sp; 392 sp = (unsigned long *)(ti->ksp + STACK_BIAS); 393 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && 394 sp[14]) { 395 unsigned long *fp; 396 fp = (unsigned long *)(sp[14] + STACK_BIAS); 397 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) 398 ret = fp[15]; 399 } 400 } 401 return ret; 402 } 403 404 /* Free current thread data structures etc.. */ 405 void exit_thread(void) 406 { 407 struct thread_info *t = current_thread_info(); 408 409 if (t->utraps) { 410 if (t->utraps[0] < 2) 411 kfree (t->utraps); 412 else 413 t->utraps[0]--; 414 } 415 } 416 417 void flush_thread(void) 418 { 419 struct thread_info *t = current_thread_info(); 420 struct mm_struct *mm; 421 422 mm = t->task->mm; 423 if (mm) 424 tsb_context_switch(mm); 425 426 set_thread_wsaved(0); 427 428 /* Clear FPU register state. */ 429 t->fpsaved[0] = 0; 430 } 431 432 /* It's a bit more tricky when 64-bit tasks are involved... */ 433 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 434 { 435 bool stack_64bit = test_thread_64bit_stack(psp); 436 unsigned long fp, distance, rval; 437 438 if (stack_64bit) { 439 csp += STACK_BIAS; 440 psp += STACK_BIAS; 441 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 442 fp += STACK_BIAS; 443 if (test_thread_flag(TIF_32BIT)) 444 fp &= 0xffffffff; 445 } else 446 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 447 448 /* Now align the stack as this is mandatory in the Sparc ABI 449 * due to how register windows work. This hides the 450 * restriction from thread libraries etc. 451 */ 452 csp &= ~15UL; 453 454 distance = fp - psp; 455 rval = (csp - distance); 456 if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) 457 rval = 0; 458 else if (!stack_64bit) { 459 if (put_user(((u32)csp), 460 &(((struct reg_window32 __user *)rval)->ins[6]))) 461 rval = 0; 462 } else { 463 if (put_user(((u64)csp - STACK_BIAS), 464 &(((struct reg_window __user *)rval)->ins[6]))) 465 rval = 0; 466 else 467 rval = rval - STACK_BIAS; 468 } 469 470 return rval; 471 } 472 473 /* Standard stuff. */ 474 static inline void shift_window_buffer(int first_win, int last_win, 475 struct thread_info *t) 476 { 477 int i; 478 479 for (i = first_win; i < last_win; i++) { 480 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 481 memcpy(&t->reg_window[i], &t->reg_window[i+1], 482 sizeof(struct reg_window)); 483 } 484 } 485 486 void synchronize_user_stack(void) 487 { 488 struct thread_info *t = current_thread_info(); 489 unsigned long window; 490 491 flush_user_windows(); 492 if ((window = get_thread_wsaved()) != 0) { 493 window -= 1; 494 do { 495 struct reg_window *rwin = &t->reg_window[window]; 496 int winsize = sizeof(struct reg_window); 497 unsigned long sp; 498 499 sp = t->rwbuf_stkptrs[window]; 500 501 if (test_thread_64bit_stack(sp)) 502 sp += STACK_BIAS; 503 else 504 winsize = sizeof(struct reg_window32); 505 506 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 507 shift_window_buffer(window, get_thread_wsaved() - 1, t); 508 set_thread_wsaved(get_thread_wsaved() - 1); 509 } 510 } while (window--); 511 } 512 } 513 514 static void stack_unaligned(unsigned long sp) 515 { 516 siginfo_t info; 517 518 info.si_signo = SIGBUS; 519 info.si_errno = 0; 520 info.si_code = BUS_ADRALN; 521 info.si_addr = (void __user *) sp; 522 info.si_trapno = 0; 523 force_sig_info(SIGBUS, &info, current); 524 } 525 526 void fault_in_user_windows(void) 527 { 528 struct thread_info *t = current_thread_info(); 529 unsigned long window; 530 531 flush_user_windows(); 532 window = get_thread_wsaved(); 533 534 if (likely(window != 0)) { 535 window -= 1; 536 do { 537 struct reg_window *rwin = &t->reg_window[window]; 538 int winsize = sizeof(struct reg_window); 539 unsigned long sp; 540 541 sp = t->rwbuf_stkptrs[window]; 542 543 if (test_thread_64bit_stack(sp)) 544 sp += STACK_BIAS; 545 else 546 winsize = sizeof(struct reg_window32); 547 548 if (unlikely(sp & 0x7UL)) 549 stack_unaligned(sp); 550 551 if (unlikely(copy_to_user((char __user *)sp, 552 rwin, winsize))) 553 goto barf; 554 } while (window--); 555 } 556 set_thread_wsaved(0); 557 return; 558 559 barf: 560 set_thread_wsaved(window + 1); 561 user_exit(); 562 do_exit(SIGILL); 563 } 564 565 asmlinkage long sparc_do_fork(unsigned long clone_flags, 566 unsigned long stack_start, 567 struct pt_regs *regs, 568 unsigned long stack_size) 569 { 570 int __user *parent_tid_ptr, *child_tid_ptr; 571 unsigned long orig_i1 = regs->u_regs[UREG_I1]; 572 long ret; 573 574 #ifdef CONFIG_COMPAT 575 if (test_thread_flag(TIF_32BIT)) { 576 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); 577 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); 578 } else 579 #endif 580 { 581 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; 582 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; 583 } 584 585 ret = do_fork(clone_flags, stack_start, stack_size, 586 parent_tid_ptr, child_tid_ptr); 587 588 /* If we get an error and potentially restart the system 589 * call, we're screwed because copy_thread() clobbered 590 * the parent's %o1. So detect that case and restore it 591 * here. 592 */ 593 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) 594 regs->u_regs[UREG_I1] = orig_i1; 595 596 return ret; 597 } 598 599 /* Copy a Sparc thread. The fork() return value conventions 600 * under SunOS are nothing short of bletcherous: 601 * Parent --> %o0 == childs pid, %o1 == 0 602 * Child --> %o0 == parents pid, %o1 == 1 603 */ 604 int copy_thread(unsigned long clone_flags, unsigned long sp, 605 unsigned long arg, struct task_struct *p) 606 { 607 struct thread_info *t = task_thread_info(p); 608 struct pt_regs *regs = current_pt_regs(); 609 struct sparc_stackf *parent_sf; 610 unsigned long child_stack_sz; 611 char *child_trap_frame; 612 613 /* Calculate offset to stack_frame & pt_regs */ 614 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ); 615 child_trap_frame = (task_stack_page(p) + 616 (THREAD_SIZE - child_stack_sz)); 617 618 t->new_child = 1; 619 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 620 t->kregs = (struct pt_regs *) (child_trap_frame + 621 sizeof(struct sparc_stackf)); 622 t->fpsaved[0] = 0; 623 624 if (unlikely(p->flags & PF_KTHREAD)) { 625 memset(child_trap_frame, 0, child_stack_sz); 626 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 627 (current_pt_regs()->tstate + 1) & TSTATE_CWP; 628 t->current_ds = ASI_P; 629 t->kregs->u_regs[UREG_G1] = sp; /* function */ 630 t->kregs->u_regs[UREG_G2] = arg; 631 return 0; 632 } 633 634 parent_sf = ((struct sparc_stackf *) regs) - 1; 635 memcpy(child_trap_frame, parent_sf, child_stack_sz); 636 if (t->flags & _TIF_32BIT) { 637 sp &= 0x00000000ffffffffUL; 638 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 639 } 640 t->kregs->u_regs[UREG_FP] = sp; 641 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 642 (regs->tstate + 1) & TSTATE_CWP; 643 t->current_ds = ASI_AIUS; 644 if (sp != regs->u_regs[UREG_FP]) { 645 unsigned long csp; 646 647 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 648 if (!csp) 649 return -EFAULT; 650 t->kregs->u_regs[UREG_FP] = csp; 651 } 652 if (t->utraps) 653 t->utraps[0]++; 654 655 /* Set the return value for the child. */ 656 t->kregs->u_regs[UREG_I0] = current->pid; 657 t->kregs->u_regs[UREG_I1] = 1; 658 659 /* Set the second return value for the parent. */ 660 regs->u_regs[UREG_I1] = 0; 661 662 if (clone_flags & CLONE_SETTLS) 663 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; 664 665 return 0; 666 } 667 668 typedef struct { 669 union { 670 unsigned int pr_regs[32]; 671 unsigned long pr_dregs[16]; 672 } pr_fr; 673 unsigned int __unused; 674 unsigned int pr_fsr; 675 unsigned char pr_qcnt; 676 unsigned char pr_q_entrysize; 677 unsigned char pr_en; 678 unsigned int pr_q[64]; 679 } elf_fpregset_t32; 680 681 /* 682 * fill in the fpu structure for a core dump. 683 */ 684 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) 685 { 686 unsigned long *kfpregs = current_thread_info()->fpregs; 687 unsigned long fprs = current_thread_info()->fpsaved[0]; 688 689 if (test_thread_flag(TIF_32BIT)) { 690 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; 691 692 if (fprs & FPRS_DL) 693 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, 694 sizeof(unsigned int) * 32); 695 else 696 memset(&fpregs32->pr_fr.pr_regs[0], 0, 697 sizeof(unsigned int) * 32); 698 fpregs32->pr_qcnt = 0; 699 fpregs32->pr_q_entrysize = 8; 700 memset(&fpregs32->pr_q[0], 0, 701 (sizeof(unsigned int) * 64)); 702 if (fprs & FPRS_FEF) { 703 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; 704 fpregs32->pr_en = 1; 705 } else { 706 fpregs32->pr_fsr = 0; 707 fpregs32->pr_en = 0; 708 } 709 } else { 710 if(fprs & FPRS_DL) 711 memcpy(&fpregs->pr_regs[0], kfpregs, 712 sizeof(unsigned int) * 32); 713 else 714 memset(&fpregs->pr_regs[0], 0, 715 sizeof(unsigned int) * 32); 716 if(fprs & FPRS_DU) 717 memcpy(&fpregs->pr_regs[16], kfpregs+16, 718 sizeof(unsigned int) * 32); 719 else 720 memset(&fpregs->pr_regs[16], 0, 721 sizeof(unsigned int) * 32); 722 if(fprs & FPRS_FEF) { 723 fpregs->pr_fsr = current_thread_info()->xfsr[0]; 724 fpregs->pr_gsr = current_thread_info()->gsr[0]; 725 } else { 726 fpregs->pr_fsr = fpregs->pr_gsr = 0; 727 } 728 fpregs->pr_fprs = fprs; 729 } 730 return 1; 731 } 732 EXPORT_SYMBOL(dump_fpu); 733 734 unsigned long get_wchan(struct task_struct *task) 735 { 736 unsigned long pc, fp, bias = 0; 737 struct thread_info *tp; 738 struct reg_window *rw; 739 unsigned long ret = 0; 740 int count = 0; 741 742 if (!task || task == current || 743 task->state == TASK_RUNNING) 744 goto out; 745 746 tp = task_thread_info(task); 747 bias = STACK_BIAS; 748 fp = task_thread_info(task)->ksp + bias; 749 750 do { 751 if (!kstack_valid(tp, fp)) 752 break; 753 rw = (struct reg_window *) fp; 754 pc = rw->ins[7]; 755 if (!in_sched_functions(pc)) { 756 ret = pc; 757 goto out; 758 } 759 fp = rw->ins[6] + bias; 760 } while (++count < 16); 761 762 out: 763 return ret; 764 } 765