1 /* arch/sparc64/kernel/process.c 2 * 3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net) 4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) 5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) 6 */ 7 8 /* 9 * This file handles the architecture-dependent parts of process handling.. 10 */ 11 12 #include <stdarg.h> 13 14 #include <linux/errno.h> 15 #include <linux/export.h> 16 #include <linux/sched.h> 17 #include <linux/sched/debug.h> 18 #include <linux/sched/task.h> 19 #include <linux/sched/task_stack.h> 20 #include <linux/kernel.h> 21 #include <linux/mm.h> 22 #include <linux/fs.h> 23 #include <linux/smp.h> 24 #include <linux/stddef.h> 25 #include <linux/ptrace.h> 26 #include <linux/slab.h> 27 #include <linux/user.h> 28 #include <linux/delay.h> 29 #include <linux/compat.h> 30 #include <linux/tick.h> 31 #include <linux/init.h> 32 #include <linux/cpu.h> 33 #include <linux/perf_event.h> 34 #include <linux/elfcore.h> 35 #include <linux/sysrq.h> 36 #include <linux/nmi.h> 37 #include <linux/context_tracking.h> 38 39 #include <linux/uaccess.h> 40 #include <asm/page.h> 41 #include <asm/pgalloc.h> 42 #include <asm/pgtable.h> 43 #include <asm/processor.h> 44 #include <asm/pstate.h> 45 #include <asm/elf.h> 46 #include <asm/fpumacro.h> 47 #include <asm/head.h> 48 #include <asm/cpudata.h> 49 #include <asm/mmu_context.h> 50 #include <asm/unistd.h> 51 #include <asm/hypervisor.h> 52 #include <asm/syscalls.h> 53 #include <asm/irq_regs.h> 54 #include <asm/smp.h> 55 #include <asm/pcr.h> 56 57 #include "kstack.h" 58 59 /* Idle loop support on sparc64. */ 60 void arch_cpu_idle(void) 61 { 62 if (tlb_type != hypervisor) { 63 touch_nmi_watchdog(); 64 local_irq_enable(); 65 } else { 66 unsigned long pstate; 67 68 local_irq_enable(); 69 70 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over 71 * the cpu sleep hypervisor call. 72 */ 73 __asm__ __volatile__( 74 "rdpr %%pstate, %0\n\t" 75 "andn %0, %1, %0\n\t" 76 "wrpr %0, %%g0, %%pstate" 77 : "=&r" (pstate) 78 : "i" (PSTATE_IE)); 79 80 if (!need_resched() && !cpu_is_offline(smp_processor_id())) { 81 sun4v_cpu_yield(); 82 /* If resumed by cpu_poke then we need to explicitly 83 * call scheduler_ipi(). 84 */ 85 scheduler_poke(); 86 } 87 88 /* Re-enable interrupts. */ 89 __asm__ __volatile__( 90 "rdpr %%pstate, %0\n\t" 91 "or %0, %1, %0\n\t" 92 "wrpr %0, %%g0, %%pstate" 93 : "=&r" (pstate) 94 : "i" (PSTATE_IE)); 95 } 96 } 97 98 #ifdef CONFIG_HOTPLUG_CPU 99 void arch_cpu_idle_dead(void) 100 { 101 sched_preempt_enable_no_resched(); 102 cpu_play_dead(); 103 } 104 #endif 105 106 #ifdef CONFIG_COMPAT 107 static void show_regwindow32(struct pt_regs *regs) 108 { 109 struct reg_window32 __user *rw; 110 struct reg_window32 r_w; 111 mm_segment_t old_fs; 112 113 __asm__ __volatile__ ("flushw"); 114 rw = compat_ptr((unsigned int)regs->u_regs[14]); 115 old_fs = get_fs(); 116 set_fs (USER_DS); 117 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 118 set_fs (old_fs); 119 return; 120 } 121 122 set_fs (old_fs); 123 printk("l0: %08x l1: %08x l2: %08x l3: %08x " 124 "l4: %08x l5: %08x l6: %08x l7: %08x\n", 125 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], 126 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); 127 printk("i0: %08x i1: %08x i2: %08x i3: %08x " 128 "i4: %08x i5: %08x i6: %08x i7: %08x\n", 129 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], 130 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); 131 } 132 #else 133 #define show_regwindow32(regs) do { } while (0) 134 #endif 135 136 static void show_regwindow(struct pt_regs *regs) 137 { 138 struct reg_window __user *rw; 139 struct reg_window *rwk; 140 struct reg_window r_w; 141 mm_segment_t old_fs; 142 143 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { 144 __asm__ __volatile__ ("flushw"); 145 rw = (struct reg_window __user *) 146 (regs->u_regs[14] + STACK_BIAS); 147 rwk = (struct reg_window *) 148 (regs->u_regs[14] + STACK_BIAS); 149 if (!(regs->tstate & TSTATE_PRIV)) { 150 old_fs = get_fs(); 151 set_fs (USER_DS); 152 if (copy_from_user (&r_w, rw, sizeof(r_w))) { 153 set_fs (old_fs); 154 return; 155 } 156 rwk = &r_w; 157 set_fs (old_fs); 158 } 159 } else { 160 show_regwindow32(regs); 161 return; 162 } 163 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", 164 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); 165 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", 166 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); 167 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", 168 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); 169 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", 170 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); 171 if (regs->tstate & TSTATE_PRIV) 172 printk("I7: <%pS>\n", (void *) rwk->ins[7]); 173 } 174 175 void show_regs(struct pt_regs *regs) 176 { 177 show_regs_print_info(KERN_DEFAULT); 178 179 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, 180 regs->tpc, regs->tnpc, regs->y, print_tainted()); 181 printk("TPC: <%pS>\n", (void *) regs->tpc); 182 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", 183 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], 184 regs->u_regs[3]); 185 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", 186 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], 187 regs->u_regs[7]); 188 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", 189 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], 190 regs->u_regs[11]); 191 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", 192 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], 193 regs->u_regs[15]); 194 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]); 195 show_regwindow(regs); 196 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]); 197 } 198 199 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS]; 200 static DEFINE_SPINLOCK(global_cpu_snapshot_lock); 201 202 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs, 203 int this_cpu) 204 { 205 struct global_reg_snapshot *rp; 206 207 flushw_all(); 208 209 rp = &global_cpu_snapshot[this_cpu].reg; 210 211 rp->tstate = regs->tstate; 212 rp->tpc = regs->tpc; 213 rp->tnpc = regs->tnpc; 214 rp->o7 = regs->u_regs[UREG_I7]; 215 216 if (regs->tstate & TSTATE_PRIV) { 217 struct reg_window *rw; 218 219 rw = (struct reg_window *) 220 (regs->u_regs[UREG_FP] + STACK_BIAS); 221 if (kstack_valid(tp, (unsigned long) rw)) { 222 rp->i7 = rw->ins[7]; 223 rw = (struct reg_window *) 224 (rw->ins[6] + STACK_BIAS); 225 if (kstack_valid(tp, (unsigned long) rw)) 226 rp->rpc = rw->ins[7]; 227 } 228 } else { 229 rp->i7 = 0; 230 rp->rpc = 0; 231 } 232 rp->thread = tp; 233 } 234 235 /* In order to avoid hangs we do not try to synchronize with the 236 * global register dump client cpus. The last store they make is to 237 * the thread pointer, so do a short poll waiting for that to become 238 * non-NULL. 239 */ 240 static void __global_reg_poll(struct global_reg_snapshot *gp) 241 { 242 int limit = 0; 243 244 while (!gp->thread && ++limit < 100) { 245 barrier(); 246 udelay(1); 247 } 248 } 249 250 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 251 { 252 struct thread_info *tp = current_thread_info(); 253 struct pt_regs *regs = get_irq_regs(); 254 unsigned long flags; 255 int this_cpu, cpu; 256 257 if (!regs) 258 regs = tp->kregs; 259 260 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 261 262 this_cpu = raw_smp_processor_id(); 263 264 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 265 266 if (cpumask_test_cpu(this_cpu, mask) && !exclude_self) 267 __global_reg_self(tp, regs, this_cpu); 268 269 smp_fetch_global_regs(); 270 271 for_each_cpu(cpu, mask) { 272 struct global_reg_snapshot *gp; 273 274 if (exclude_self && cpu == this_cpu) 275 continue; 276 277 gp = &global_cpu_snapshot[cpu].reg; 278 279 __global_reg_poll(gp); 280 281 tp = gp->thread; 282 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n", 283 (cpu == this_cpu ? '*' : ' '), cpu, 284 gp->tstate, gp->tpc, gp->tnpc, 285 ((tp && tp->task) ? tp->task->comm : "NULL"), 286 ((tp && tp->task) ? tp->task->pid : -1)); 287 288 if (gp->tstate & TSTATE_PRIV) { 289 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n", 290 (void *) gp->tpc, 291 (void *) gp->o7, 292 (void *) gp->i7, 293 (void *) gp->rpc); 294 } else { 295 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n", 296 gp->tpc, gp->o7, gp->i7, gp->rpc); 297 } 298 299 touch_nmi_watchdog(); 300 } 301 302 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 303 304 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 305 } 306 307 #ifdef CONFIG_MAGIC_SYSRQ 308 309 static void sysrq_handle_globreg(int key) 310 { 311 trigger_all_cpu_backtrace(); 312 } 313 314 static struct sysrq_key_op sparc_globalreg_op = { 315 .handler = sysrq_handle_globreg, 316 .help_msg = "global-regs(y)", 317 .action_msg = "Show Global CPU Regs", 318 }; 319 320 static void __global_pmu_self(int this_cpu) 321 { 322 struct global_pmu_snapshot *pp; 323 int i, num; 324 325 if (!pcr_ops) 326 return; 327 328 pp = &global_cpu_snapshot[this_cpu].pmu; 329 330 num = 1; 331 if (tlb_type == hypervisor && 332 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) 333 num = 4; 334 335 for (i = 0; i < num; i++) { 336 pp->pcr[i] = pcr_ops->read_pcr(i); 337 pp->pic[i] = pcr_ops->read_pic(i); 338 } 339 } 340 341 static void __global_pmu_poll(struct global_pmu_snapshot *pp) 342 { 343 int limit = 0; 344 345 while (!pp->pcr[0] && ++limit < 100) { 346 barrier(); 347 udelay(1); 348 } 349 } 350 351 static void pmu_snapshot_all_cpus(void) 352 { 353 unsigned long flags; 354 int this_cpu, cpu; 355 356 spin_lock_irqsave(&global_cpu_snapshot_lock, flags); 357 358 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 359 360 this_cpu = raw_smp_processor_id(); 361 362 __global_pmu_self(this_cpu); 363 364 smp_fetch_global_pmu(); 365 366 for_each_online_cpu(cpu) { 367 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu; 368 369 __global_pmu_poll(pp); 370 371 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n", 372 (cpu == this_cpu ? '*' : ' '), cpu, 373 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3], 374 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]); 375 376 touch_nmi_watchdog(); 377 } 378 379 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot)); 380 381 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags); 382 } 383 384 static void sysrq_handle_globpmu(int key) 385 { 386 pmu_snapshot_all_cpus(); 387 } 388 389 static struct sysrq_key_op sparc_globalpmu_op = { 390 .handler = sysrq_handle_globpmu, 391 .help_msg = "global-pmu(x)", 392 .action_msg = "Show Global PMU Regs", 393 }; 394 395 static int __init sparc_sysrq_init(void) 396 { 397 int ret = register_sysrq_key('y', &sparc_globalreg_op); 398 399 if (!ret) 400 ret = register_sysrq_key('x', &sparc_globalpmu_op); 401 return ret; 402 } 403 404 core_initcall(sparc_sysrq_init); 405 406 #endif 407 408 /* Free current thread data structures etc.. */ 409 void exit_thread(struct task_struct *tsk) 410 { 411 struct thread_info *t = task_thread_info(tsk); 412 413 if (t->utraps) { 414 if (t->utraps[0] < 2) 415 kfree (t->utraps); 416 else 417 t->utraps[0]--; 418 } 419 } 420 421 void flush_thread(void) 422 { 423 struct thread_info *t = current_thread_info(); 424 struct mm_struct *mm; 425 426 mm = t->task->mm; 427 if (mm) 428 tsb_context_switch(mm); 429 430 set_thread_wsaved(0); 431 432 /* Clear FPU register state. */ 433 t->fpsaved[0] = 0; 434 } 435 436 /* It's a bit more tricky when 64-bit tasks are involved... */ 437 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) 438 { 439 bool stack_64bit = test_thread_64bit_stack(psp); 440 unsigned long fp, distance, rval; 441 442 if (stack_64bit) { 443 csp += STACK_BIAS; 444 psp += STACK_BIAS; 445 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); 446 fp += STACK_BIAS; 447 if (test_thread_flag(TIF_32BIT)) 448 fp &= 0xffffffff; 449 } else 450 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); 451 452 /* Now align the stack as this is mandatory in the Sparc ABI 453 * due to how register windows work. This hides the 454 * restriction from thread libraries etc. 455 */ 456 csp &= ~15UL; 457 458 distance = fp - psp; 459 rval = (csp - distance); 460 if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) 461 rval = 0; 462 else if (!stack_64bit) { 463 if (put_user(((u32)csp), 464 &(((struct reg_window32 __user *)rval)->ins[6]))) 465 rval = 0; 466 } else { 467 if (put_user(((u64)csp - STACK_BIAS), 468 &(((struct reg_window __user *)rval)->ins[6]))) 469 rval = 0; 470 else 471 rval = rval - STACK_BIAS; 472 } 473 474 return rval; 475 } 476 477 /* Standard stuff. */ 478 static inline void shift_window_buffer(int first_win, int last_win, 479 struct thread_info *t) 480 { 481 int i; 482 483 for (i = first_win; i < last_win; i++) { 484 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; 485 memcpy(&t->reg_window[i], &t->reg_window[i+1], 486 sizeof(struct reg_window)); 487 } 488 } 489 490 void synchronize_user_stack(void) 491 { 492 struct thread_info *t = current_thread_info(); 493 unsigned long window; 494 495 flush_user_windows(); 496 if ((window = get_thread_wsaved()) != 0) { 497 window -= 1; 498 do { 499 struct reg_window *rwin = &t->reg_window[window]; 500 int winsize = sizeof(struct reg_window); 501 unsigned long sp; 502 503 sp = t->rwbuf_stkptrs[window]; 504 505 if (test_thread_64bit_stack(sp)) 506 sp += STACK_BIAS; 507 else 508 winsize = sizeof(struct reg_window32); 509 510 if (!copy_to_user((char __user *)sp, rwin, winsize)) { 511 shift_window_buffer(window, get_thread_wsaved() - 1, t); 512 set_thread_wsaved(get_thread_wsaved() - 1); 513 } 514 } while (window--); 515 } 516 } 517 518 static void stack_unaligned(unsigned long sp) 519 { 520 siginfo_t info; 521 522 info.si_signo = SIGBUS; 523 info.si_errno = 0; 524 info.si_code = BUS_ADRALN; 525 info.si_addr = (void __user *) sp; 526 info.si_trapno = 0; 527 force_sig_info(SIGBUS, &info, current); 528 } 529 530 void fault_in_user_windows(void) 531 { 532 struct thread_info *t = current_thread_info(); 533 unsigned long window; 534 535 flush_user_windows(); 536 window = get_thread_wsaved(); 537 538 if (likely(window != 0)) { 539 window -= 1; 540 do { 541 struct reg_window *rwin = &t->reg_window[window]; 542 int winsize = sizeof(struct reg_window); 543 unsigned long sp; 544 545 sp = t->rwbuf_stkptrs[window]; 546 547 if (test_thread_64bit_stack(sp)) 548 sp += STACK_BIAS; 549 else 550 winsize = sizeof(struct reg_window32); 551 552 if (unlikely(sp & 0x7UL)) 553 stack_unaligned(sp); 554 555 if (unlikely(copy_to_user((char __user *)sp, 556 rwin, winsize))) 557 goto barf; 558 } while (window--); 559 } 560 set_thread_wsaved(0); 561 return; 562 563 barf: 564 set_thread_wsaved(window + 1); 565 user_exit(); 566 do_exit(SIGILL); 567 } 568 569 asmlinkage long sparc_do_fork(unsigned long clone_flags, 570 unsigned long stack_start, 571 struct pt_regs *regs, 572 unsigned long stack_size) 573 { 574 int __user *parent_tid_ptr, *child_tid_ptr; 575 unsigned long orig_i1 = regs->u_regs[UREG_I1]; 576 long ret; 577 578 #ifdef CONFIG_COMPAT 579 if (test_thread_flag(TIF_32BIT)) { 580 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); 581 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); 582 } else 583 #endif 584 { 585 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; 586 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; 587 } 588 589 ret = do_fork(clone_flags, stack_start, stack_size, 590 parent_tid_ptr, child_tid_ptr); 591 592 /* If we get an error and potentially restart the system 593 * call, we're screwed because copy_thread() clobbered 594 * the parent's %o1. So detect that case and restore it 595 * here. 596 */ 597 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK) 598 regs->u_regs[UREG_I1] = orig_i1; 599 600 return ret; 601 } 602 603 /* Copy a Sparc thread. The fork() return value conventions 604 * under SunOS are nothing short of bletcherous: 605 * Parent --> %o0 == childs pid, %o1 == 0 606 * Child --> %o0 == parents pid, %o1 == 1 607 */ 608 int copy_thread(unsigned long clone_flags, unsigned long sp, 609 unsigned long arg, struct task_struct *p) 610 { 611 struct thread_info *t = task_thread_info(p); 612 struct pt_regs *regs = current_pt_regs(); 613 struct sparc_stackf *parent_sf; 614 unsigned long child_stack_sz; 615 char *child_trap_frame; 616 617 /* Calculate offset to stack_frame & pt_regs */ 618 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ); 619 child_trap_frame = (task_stack_page(p) + 620 (THREAD_SIZE - child_stack_sz)); 621 622 t->new_child = 1; 623 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; 624 t->kregs = (struct pt_regs *) (child_trap_frame + 625 sizeof(struct sparc_stackf)); 626 t->fpsaved[0] = 0; 627 628 if (unlikely(p->flags & PF_KTHREAD)) { 629 memset(child_trap_frame, 0, child_stack_sz); 630 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 631 (current_pt_regs()->tstate + 1) & TSTATE_CWP; 632 t->current_ds = ASI_P; 633 t->kregs->u_regs[UREG_G1] = sp; /* function */ 634 t->kregs->u_regs[UREG_G2] = arg; 635 return 0; 636 } 637 638 parent_sf = ((struct sparc_stackf *) regs) - 1; 639 memcpy(child_trap_frame, parent_sf, child_stack_sz); 640 if (t->flags & _TIF_32BIT) { 641 sp &= 0x00000000ffffffffUL; 642 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; 643 } 644 t->kregs->u_regs[UREG_FP] = sp; 645 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 646 (regs->tstate + 1) & TSTATE_CWP; 647 t->current_ds = ASI_AIUS; 648 if (sp != regs->u_regs[UREG_FP]) { 649 unsigned long csp; 650 651 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); 652 if (!csp) 653 return -EFAULT; 654 t->kregs->u_regs[UREG_FP] = csp; 655 } 656 if (t->utraps) 657 t->utraps[0]++; 658 659 /* Set the return value for the child. */ 660 t->kregs->u_regs[UREG_I0] = current->pid; 661 t->kregs->u_regs[UREG_I1] = 1; 662 663 /* Set the second return value for the parent. */ 664 regs->u_regs[UREG_I1] = 0; 665 666 if (clone_flags & CLONE_SETTLS) 667 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; 668 669 return 0; 670 } 671 672 typedef struct { 673 union { 674 unsigned int pr_regs[32]; 675 unsigned long pr_dregs[16]; 676 } pr_fr; 677 unsigned int __unused; 678 unsigned int pr_fsr; 679 unsigned char pr_qcnt; 680 unsigned char pr_q_entrysize; 681 unsigned char pr_en; 682 unsigned int pr_q[64]; 683 } elf_fpregset_t32; 684 685 /* 686 * fill in the fpu structure for a core dump. 687 */ 688 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) 689 { 690 unsigned long *kfpregs = current_thread_info()->fpregs; 691 unsigned long fprs = current_thread_info()->fpsaved[0]; 692 693 if (test_thread_flag(TIF_32BIT)) { 694 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; 695 696 if (fprs & FPRS_DL) 697 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, 698 sizeof(unsigned int) * 32); 699 else 700 memset(&fpregs32->pr_fr.pr_regs[0], 0, 701 sizeof(unsigned int) * 32); 702 fpregs32->pr_qcnt = 0; 703 fpregs32->pr_q_entrysize = 8; 704 memset(&fpregs32->pr_q[0], 0, 705 (sizeof(unsigned int) * 64)); 706 if (fprs & FPRS_FEF) { 707 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; 708 fpregs32->pr_en = 1; 709 } else { 710 fpregs32->pr_fsr = 0; 711 fpregs32->pr_en = 0; 712 } 713 } else { 714 if(fprs & FPRS_DL) 715 memcpy(&fpregs->pr_regs[0], kfpregs, 716 sizeof(unsigned int) * 32); 717 else 718 memset(&fpregs->pr_regs[0], 0, 719 sizeof(unsigned int) * 32); 720 if(fprs & FPRS_DU) 721 memcpy(&fpregs->pr_regs[16], kfpregs+16, 722 sizeof(unsigned int) * 32); 723 else 724 memset(&fpregs->pr_regs[16], 0, 725 sizeof(unsigned int) * 32); 726 if(fprs & FPRS_FEF) { 727 fpregs->pr_fsr = current_thread_info()->xfsr[0]; 728 fpregs->pr_gsr = current_thread_info()->gsr[0]; 729 } else { 730 fpregs->pr_fsr = fpregs->pr_gsr = 0; 731 } 732 fpregs->pr_fprs = fprs; 733 } 734 return 1; 735 } 736 EXPORT_SYMBOL(dump_fpu); 737 738 unsigned long get_wchan(struct task_struct *task) 739 { 740 unsigned long pc, fp, bias = 0; 741 struct thread_info *tp; 742 struct reg_window *rw; 743 unsigned long ret = 0; 744 int count = 0; 745 746 if (!task || task == current || 747 task->state == TASK_RUNNING) 748 goto out; 749 750 tp = task_thread_info(task); 751 bias = STACK_BIAS; 752 fp = task_thread_info(task)->ksp + bias; 753 754 do { 755 if (!kstack_valid(tp, fp)) 756 break; 757 rw = (struct reg_window *) fp; 758 pc = rw->ins[7]; 759 if (!in_sched_functions(pc)) { 760 ret = pc; 761 goto out; 762 } 763 fp = rw->ins[6] + bias; 764 } while (++count < 16); 765 766 out: 767 return ret; 768 } 769