xref: /openbmc/linux/arch/sparc/kernel/perf_event.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Performance event support for sparc64.
3  *
4  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5  *
6  * This code is based almost entirely upon the x86 perf event
7  * code, which is:
8  *
9  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11  *  Copyright (C) 2009 Jaswinder Singh Rajput
12  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
14  */
15 
16 #include <linux/perf_event.h>
17 #include <linux/kprobes.h>
18 #include <linux/ftrace.h>
19 #include <linux/kernel.h>
20 #include <linux/kdebug.h>
21 #include <linux/mutex.h>
22 
23 #include <asm/stacktrace.h>
24 #include <asm/cpudata.h>
25 #include <linux/uaccess.h>
26 #include <linux/atomic.h>
27 #include <linux/sched/clock.h>
28 #include <asm/nmi.h>
29 #include <asm/pcr.h>
30 #include <asm/cacheflush.h>
31 
32 #include "kernel.h"
33 #include "kstack.h"
34 
35 /* Two classes of sparc64 chips currently exist.  All of which have
36  * 32-bit counters which can generate overflow interrupts on the
37  * transition from 0xffffffff to 0.
38  *
39  * All chips upto and including SPARC-T3 have two performance
40  * counters.  The two 32-bit counters are accessed in one go using a
41  * single 64-bit register.
42  *
43  * On these older chips both counters are controlled using a single
44  * control register.  The only way to stop all sampling is to clear
45  * all of the context (user, supervisor, hypervisor) sampling enable
46  * bits.  But these bits apply to both counters, thus the two counters
47  * can't be enabled/disabled individually.
48  *
49  * Furthermore, the control register on these older chips have two
50  * event fields, one for each of the two counters.  It's thus nearly
51  * impossible to have one counter going while keeping the other one
52  * stopped.  Therefore it is possible to get overflow interrupts for
53  * counters not currently "in use" and that condition must be checked
54  * in the overflow interrupt handler.
55  *
56  * So we use a hack, in that we program inactive counters with the
57  * "sw_count0" and "sw_count1" events.  These count how many times
58  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
59  * unusual way to encode a NOP and therefore will not trigger in
60  * normal code.
61  *
62  * Starting with SPARC-T4 we have one control register per counter.
63  * And the counters are stored in individual registers.  The registers
64  * for the counters are 64-bit but only a 32-bit counter is
65  * implemented.  The event selections on SPARC-T4 lack any
66  * restrictions, therefore we can elide all of the complicated
67  * conflict resolution code we have for SPARC-T3 and earlier chips.
68  */
69 
70 #define MAX_HWEVENTS			4
71 #define MAX_PCRS			4
72 #define MAX_PERIOD			((1UL << 32) - 1)
73 
74 #define PIC_UPPER_INDEX			0
75 #define PIC_LOWER_INDEX			1
76 #define PIC_NO_INDEX			-1
77 
78 struct cpu_hw_events {
79 	/* Number of events currently scheduled onto this cpu.
80 	 * This tells how many entries in the arrays below
81 	 * are valid.
82 	 */
83 	int			n_events;
84 
85 	/* Number of new events added since the last hw_perf_disable().
86 	 * This works because the perf event layer always adds new
87 	 * events inside of a perf_{disable,enable}() sequence.
88 	 */
89 	int			n_added;
90 
91 	/* Array of events current scheduled on this cpu.  */
92 	struct perf_event	*event[MAX_HWEVENTS];
93 
94 	/* Array of encoded longs, specifying the %pcr register
95 	 * encoding and the mask of PIC counters this even can
96 	 * be scheduled on.  See perf_event_encode() et al.
97 	 */
98 	unsigned long		events[MAX_HWEVENTS];
99 
100 	/* The current counter index assigned to an event.  When the
101 	 * event hasn't been programmed into the cpu yet, this will
102 	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
103 	 * we ought to schedule the event.
104 	 */
105 	int			current_idx[MAX_HWEVENTS];
106 
107 	/* Software copy of %pcr register(s) on this cpu.  */
108 	u64			pcr[MAX_HWEVENTS];
109 
110 	/* Enabled/disable state.  */
111 	int			enabled;
112 
113 	unsigned int		txn_flags;
114 };
115 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
116 
117 /* An event map describes the characteristics of a performance
118  * counter event.  In particular it gives the encoding as well as
119  * a mask telling which counters the event can be measured on.
120  *
121  * The mask is unused on SPARC-T4 and later.
122  */
123 struct perf_event_map {
124 	u16	encoding;
125 	u8	pic_mask;
126 #define PIC_NONE	0x00
127 #define PIC_UPPER	0x01
128 #define PIC_LOWER	0x02
129 };
130 
131 /* Encode a perf_event_map entry into a long.  */
132 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
133 {
134 	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
135 }
136 
137 static u8 perf_event_get_msk(unsigned long val)
138 {
139 	return val & 0xff;
140 }
141 
142 static u64 perf_event_get_enc(unsigned long val)
143 {
144 	return val >> 16;
145 }
146 
147 #define C(x) PERF_COUNT_HW_CACHE_##x
148 
149 #define CACHE_OP_UNSUPPORTED	0xfffe
150 #define CACHE_OP_NONSENSE	0xffff
151 
152 typedef struct perf_event_map cache_map_t
153 				[PERF_COUNT_HW_CACHE_MAX]
154 				[PERF_COUNT_HW_CACHE_OP_MAX]
155 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
156 
157 struct sparc_pmu {
158 	const struct perf_event_map	*(*event_map)(int);
159 	const cache_map_t		*cache_map;
160 	int				max_events;
161 	u32				(*read_pmc)(int);
162 	void				(*write_pmc)(int, u64);
163 	int				upper_shift;
164 	int				lower_shift;
165 	int				event_mask;
166 	int				user_bit;
167 	int				priv_bit;
168 	int				hv_bit;
169 	int				irq_bit;
170 	int				upper_nop;
171 	int				lower_nop;
172 	unsigned int			flags;
173 #define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
174 #define SPARC_PMU_HAS_CONFLICTS		0x00000002
175 	int				max_hw_events;
176 	int				num_pcrs;
177 	int				num_pic_regs;
178 };
179 
180 static u32 sparc_default_read_pmc(int idx)
181 {
182 	u64 val;
183 
184 	val = pcr_ops->read_pic(0);
185 	if (idx == PIC_UPPER_INDEX)
186 		val >>= 32;
187 
188 	return val & 0xffffffff;
189 }
190 
191 static void sparc_default_write_pmc(int idx, u64 val)
192 {
193 	u64 shift, mask, pic;
194 
195 	shift = 0;
196 	if (idx == PIC_UPPER_INDEX)
197 		shift = 32;
198 
199 	mask = ((u64) 0xffffffff) << shift;
200 	val <<= shift;
201 
202 	pic = pcr_ops->read_pic(0);
203 	pic &= ~mask;
204 	pic |= val;
205 	pcr_ops->write_pic(0, pic);
206 }
207 
208 static const struct perf_event_map ultra3_perfmon_event_map[] = {
209 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
210 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
211 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
212 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
213 };
214 
215 static const struct perf_event_map *ultra3_event_map(int event_id)
216 {
217 	return &ultra3_perfmon_event_map[event_id];
218 }
219 
220 static const cache_map_t ultra3_cache_map = {
221 [C(L1D)] = {
222 	[C(OP_READ)] = {
223 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
224 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
225 	},
226 	[C(OP_WRITE)] = {
227 		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
228 		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
229 	},
230 	[C(OP_PREFETCH)] = {
231 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
232 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
233 	},
234 },
235 [C(L1I)] = {
236 	[C(OP_READ)] = {
237 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
238 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
239 	},
240 	[ C(OP_WRITE) ] = {
241 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
242 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
243 	},
244 	[ C(OP_PREFETCH) ] = {
245 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
247 	},
248 },
249 [C(LL)] = {
250 	[C(OP_READ)] = {
251 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
252 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
253 	},
254 	[C(OP_WRITE)] = {
255 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
256 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
257 	},
258 	[C(OP_PREFETCH)] = {
259 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
260 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
261 	},
262 },
263 [C(DTLB)] = {
264 	[C(OP_READ)] = {
265 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
266 		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
267 	},
268 	[ C(OP_WRITE) ] = {
269 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
270 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
271 	},
272 	[ C(OP_PREFETCH) ] = {
273 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
274 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
275 	},
276 },
277 [C(ITLB)] = {
278 	[C(OP_READ)] = {
279 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
280 		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
281 	},
282 	[ C(OP_WRITE) ] = {
283 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
284 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
285 	},
286 	[ C(OP_PREFETCH) ] = {
287 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
288 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
289 	},
290 },
291 [C(BPU)] = {
292 	[C(OP_READ)] = {
293 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
294 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
295 	},
296 	[ C(OP_WRITE) ] = {
297 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
298 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
299 	},
300 	[ C(OP_PREFETCH) ] = {
301 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
302 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
303 	},
304 },
305 [C(NODE)] = {
306 	[C(OP_READ)] = {
307 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
308 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
309 	},
310 	[ C(OP_WRITE) ] = {
311 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
312 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
313 	},
314 	[ C(OP_PREFETCH) ] = {
315 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
316 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
317 	},
318 },
319 };
320 
321 static const struct sparc_pmu ultra3_pmu = {
322 	.event_map	= ultra3_event_map,
323 	.cache_map	= &ultra3_cache_map,
324 	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
325 	.read_pmc	= sparc_default_read_pmc,
326 	.write_pmc	= sparc_default_write_pmc,
327 	.upper_shift	= 11,
328 	.lower_shift	= 4,
329 	.event_mask	= 0x3f,
330 	.user_bit	= PCR_UTRACE,
331 	.priv_bit	= PCR_STRACE,
332 	.upper_nop	= 0x1c,
333 	.lower_nop	= 0x14,
334 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
335 			   SPARC_PMU_HAS_CONFLICTS),
336 	.max_hw_events	= 2,
337 	.num_pcrs	= 1,
338 	.num_pic_regs	= 1,
339 };
340 
341 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
342  * only instructions, so it is free running which creates all kinds of
343  * problems.  Some hardware designs make one wonder if the creator
344  * even looked at how this stuff gets used by software.
345  */
346 static const struct perf_event_map niagara1_perfmon_event_map[] = {
347 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
348 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
349 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
350 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
351 };
352 
353 static const struct perf_event_map *niagara1_event_map(int event_id)
354 {
355 	return &niagara1_perfmon_event_map[event_id];
356 }
357 
358 static const cache_map_t niagara1_cache_map = {
359 [C(L1D)] = {
360 	[C(OP_READ)] = {
361 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
362 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
363 	},
364 	[C(OP_WRITE)] = {
365 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
366 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
367 	},
368 	[C(OP_PREFETCH)] = {
369 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
370 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
371 	},
372 },
373 [C(L1I)] = {
374 	[C(OP_READ)] = {
375 		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
376 		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
377 	},
378 	[ C(OP_WRITE) ] = {
379 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
380 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
381 	},
382 	[ C(OP_PREFETCH) ] = {
383 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
384 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
385 	},
386 },
387 [C(LL)] = {
388 	[C(OP_READ)] = {
389 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
390 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
391 	},
392 	[C(OP_WRITE)] = {
393 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
394 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
395 	},
396 	[C(OP_PREFETCH)] = {
397 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
398 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
399 	},
400 },
401 [C(DTLB)] = {
402 	[C(OP_READ)] = {
403 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
404 		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
405 	},
406 	[ C(OP_WRITE) ] = {
407 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
408 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
409 	},
410 	[ C(OP_PREFETCH) ] = {
411 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
412 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
413 	},
414 },
415 [C(ITLB)] = {
416 	[C(OP_READ)] = {
417 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
418 		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
419 	},
420 	[ C(OP_WRITE) ] = {
421 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
422 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
423 	},
424 	[ C(OP_PREFETCH) ] = {
425 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
426 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
427 	},
428 },
429 [C(BPU)] = {
430 	[C(OP_READ)] = {
431 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
432 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
433 	},
434 	[ C(OP_WRITE) ] = {
435 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
436 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
437 	},
438 	[ C(OP_PREFETCH) ] = {
439 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
440 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
441 	},
442 },
443 [C(NODE)] = {
444 	[C(OP_READ)] = {
445 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
446 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
447 	},
448 	[ C(OP_WRITE) ] = {
449 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
450 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
451 	},
452 	[ C(OP_PREFETCH) ] = {
453 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
454 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
455 	},
456 },
457 };
458 
459 static const struct sparc_pmu niagara1_pmu = {
460 	.event_map	= niagara1_event_map,
461 	.cache_map	= &niagara1_cache_map,
462 	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
463 	.read_pmc	= sparc_default_read_pmc,
464 	.write_pmc	= sparc_default_write_pmc,
465 	.upper_shift	= 0,
466 	.lower_shift	= 4,
467 	.event_mask	= 0x7,
468 	.user_bit	= PCR_UTRACE,
469 	.priv_bit	= PCR_STRACE,
470 	.upper_nop	= 0x0,
471 	.lower_nop	= 0x0,
472 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
473 			   SPARC_PMU_HAS_CONFLICTS),
474 	.max_hw_events	= 2,
475 	.num_pcrs	= 1,
476 	.num_pic_regs	= 1,
477 };
478 
479 static const struct perf_event_map niagara2_perfmon_event_map[] = {
480 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
481 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
482 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
483 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
484 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
485 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
486 };
487 
488 static const struct perf_event_map *niagara2_event_map(int event_id)
489 {
490 	return &niagara2_perfmon_event_map[event_id];
491 }
492 
493 static const cache_map_t niagara2_cache_map = {
494 [C(L1D)] = {
495 	[C(OP_READ)] = {
496 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
497 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
498 	},
499 	[C(OP_WRITE)] = {
500 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
501 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
502 	},
503 	[C(OP_PREFETCH)] = {
504 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
505 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
506 	},
507 },
508 [C(L1I)] = {
509 	[C(OP_READ)] = {
510 		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
511 		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
512 	},
513 	[ C(OP_WRITE) ] = {
514 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
515 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
516 	},
517 	[ C(OP_PREFETCH) ] = {
518 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
519 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
520 	},
521 },
522 [C(LL)] = {
523 	[C(OP_READ)] = {
524 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
525 		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
526 	},
527 	[C(OP_WRITE)] = {
528 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
529 		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
530 	},
531 	[C(OP_PREFETCH)] = {
532 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
533 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
534 	},
535 },
536 [C(DTLB)] = {
537 	[C(OP_READ)] = {
538 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
539 		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
540 	},
541 	[ C(OP_WRITE) ] = {
542 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
543 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
544 	},
545 	[ C(OP_PREFETCH) ] = {
546 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
547 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
548 	},
549 },
550 [C(ITLB)] = {
551 	[C(OP_READ)] = {
552 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
553 		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
554 	},
555 	[ C(OP_WRITE) ] = {
556 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
557 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
558 	},
559 	[ C(OP_PREFETCH) ] = {
560 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
561 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
562 	},
563 },
564 [C(BPU)] = {
565 	[C(OP_READ)] = {
566 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
567 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
568 	},
569 	[ C(OP_WRITE) ] = {
570 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
571 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
572 	},
573 	[ C(OP_PREFETCH) ] = {
574 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
575 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
576 	},
577 },
578 [C(NODE)] = {
579 	[C(OP_READ)] = {
580 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
581 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
582 	},
583 	[ C(OP_WRITE) ] = {
584 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
585 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
586 	},
587 	[ C(OP_PREFETCH) ] = {
588 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
589 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
590 	},
591 },
592 };
593 
594 static const struct sparc_pmu niagara2_pmu = {
595 	.event_map	= niagara2_event_map,
596 	.cache_map	= &niagara2_cache_map,
597 	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
598 	.read_pmc	= sparc_default_read_pmc,
599 	.write_pmc	= sparc_default_write_pmc,
600 	.upper_shift	= 19,
601 	.lower_shift	= 6,
602 	.event_mask	= 0xfff,
603 	.user_bit	= PCR_UTRACE,
604 	.priv_bit	= PCR_STRACE,
605 	.hv_bit		= PCR_N2_HTRACE,
606 	.irq_bit	= 0x30,
607 	.upper_nop	= 0x220,
608 	.lower_nop	= 0x220,
609 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
610 			   SPARC_PMU_HAS_CONFLICTS),
611 	.max_hw_events	= 2,
612 	.num_pcrs	= 1,
613 	.num_pic_regs	= 1,
614 };
615 
616 static const struct perf_event_map niagara4_perfmon_event_map[] = {
617 	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
618 	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
619 	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
620 	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
621 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
622 	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
623 };
624 
625 static const struct perf_event_map *niagara4_event_map(int event_id)
626 {
627 	return &niagara4_perfmon_event_map[event_id];
628 }
629 
630 static const cache_map_t niagara4_cache_map = {
631 [C(L1D)] = {
632 	[C(OP_READ)] = {
633 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
634 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
635 	},
636 	[C(OP_WRITE)] = {
637 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
638 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
639 	},
640 	[C(OP_PREFETCH)] = {
641 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
642 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
643 	},
644 },
645 [C(L1I)] = {
646 	[C(OP_READ)] = {
647 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
648 		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
649 	},
650 	[ C(OP_WRITE) ] = {
651 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
652 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
653 	},
654 	[ C(OP_PREFETCH) ] = {
655 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
656 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
657 	},
658 },
659 [C(LL)] = {
660 	[C(OP_READ)] = {
661 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
662 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
663 	},
664 	[C(OP_WRITE)] = {
665 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
666 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
667 	},
668 	[C(OP_PREFETCH)] = {
669 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
670 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
671 	},
672 },
673 [C(DTLB)] = {
674 	[C(OP_READ)] = {
675 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
676 		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
677 	},
678 	[ C(OP_WRITE) ] = {
679 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
680 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
681 	},
682 	[ C(OP_PREFETCH) ] = {
683 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
684 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
685 	},
686 },
687 [C(ITLB)] = {
688 	[C(OP_READ)] = {
689 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
690 		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
691 	},
692 	[ C(OP_WRITE) ] = {
693 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
694 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
695 	},
696 	[ C(OP_PREFETCH) ] = {
697 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
698 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
699 	},
700 },
701 [C(BPU)] = {
702 	[C(OP_READ)] = {
703 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
704 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
705 	},
706 	[ C(OP_WRITE) ] = {
707 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
708 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
709 	},
710 	[ C(OP_PREFETCH) ] = {
711 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
712 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
713 	},
714 },
715 [C(NODE)] = {
716 	[C(OP_READ)] = {
717 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
718 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
719 	},
720 	[ C(OP_WRITE) ] = {
721 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
722 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
723 	},
724 	[ C(OP_PREFETCH) ] = {
725 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
726 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
727 	},
728 },
729 };
730 
731 static u32 sparc_vt_read_pmc(int idx)
732 {
733 	u64 val = pcr_ops->read_pic(idx);
734 
735 	return val & 0xffffffff;
736 }
737 
738 static void sparc_vt_write_pmc(int idx, u64 val)
739 {
740 	u64 pcr;
741 
742 	pcr = pcr_ops->read_pcr(idx);
743 	/* ensure ov and ntc are reset */
744 	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
745 
746 	pcr_ops->write_pic(idx, val & 0xffffffff);
747 
748 	pcr_ops->write_pcr(idx, pcr);
749 }
750 
751 static const struct sparc_pmu niagara4_pmu = {
752 	.event_map	= niagara4_event_map,
753 	.cache_map	= &niagara4_cache_map,
754 	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
755 	.read_pmc	= sparc_vt_read_pmc,
756 	.write_pmc	= sparc_vt_write_pmc,
757 	.upper_shift	= 5,
758 	.lower_shift	= 5,
759 	.event_mask	= 0x7ff,
760 	.user_bit	= PCR_N4_UTRACE,
761 	.priv_bit	= PCR_N4_STRACE,
762 
763 	/* We explicitly don't support hypervisor tracing.  The T4
764 	 * generates the overflow event for precise events via a trap
765 	 * which will not be generated (ie. it's completely lost) if
766 	 * we happen to be in the hypervisor when the event triggers.
767 	 * Essentially, the overflow event reporting is completely
768 	 * unusable when you have hypervisor mode tracing enabled.
769 	 */
770 	.hv_bit		= 0,
771 
772 	.irq_bit	= PCR_N4_TOE,
773 	.upper_nop	= 0,
774 	.lower_nop	= 0,
775 	.flags		= 0,
776 	.max_hw_events	= 4,
777 	.num_pcrs	= 4,
778 	.num_pic_regs	= 4,
779 };
780 
781 static const struct sparc_pmu sparc_m7_pmu = {
782 	.event_map	= niagara4_event_map,
783 	.cache_map	= &niagara4_cache_map,
784 	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
785 	.read_pmc	= sparc_vt_read_pmc,
786 	.write_pmc	= sparc_vt_write_pmc,
787 	.upper_shift	= 5,
788 	.lower_shift	= 5,
789 	.event_mask	= 0x7ff,
790 	.user_bit	= PCR_N4_UTRACE,
791 	.priv_bit	= PCR_N4_STRACE,
792 
793 	/* We explicitly don't support hypervisor tracing. */
794 	.hv_bit		= 0,
795 
796 	.irq_bit	= PCR_N4_TOE,
797 	.upper_nop	= 0,
798 	.lower_nop	= 0,
799 	.flags		= 0,
800 	.max_hw_events	= 4,
801 	.num_pcrs	= 4,
802 	.num_pic_regs	= 4,
803 };
804 static const struct sparc_pmu *sparc_pmu __read_mostly;
805 
806 static u64 event_encoding(u64 event_id, int idx)
807 {
808 	if (idx == PIC_UPPER_INDEX)
809 		event_id <<= sparc_pmu->upper_shift;
810 	else
811 		event_id <<= sparc_pmu->lower_shift;
812 	return event_id;
813 }
814 
815 static u64 mask_for_index(int idx)
816 {
817 	return event_encoding(sparc_pmu->event_mask, idx);
818 }
819 
820 static u64 nop_for_index(int idx)
821 {
822 	return event_encoding(idx == PIC_UPPER_INDEX ?
823 			      sparc_pmu->upper_nop :
824 			      sparc_pmu->lower_nop, idx);
825 }
826 
827 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
828 {
829 	u64 enc, val, mask = mask_for_index(idx);
830 	int pcr_index = 0;
831 
832 	if (sparc_pmu->num_pcrs > 1)
833 		pcr_index = idx;
834 
835 	enc = perf_event_get_enc(cpuc->events[idx]);
836 
837 	val = cpuc->pcr[pcr_index];
838 	val &= ~mask;
839 	val |= event_encoding(enc, idx);
840 	cpuc->pcr[pcr_index] = val;
841 
842 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
843 }
844 
845 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
846 {
847 	u64 mask = mask_for_index(idx);
848 	u64 nop = nop_for_index(idx);
849 	int pcr_index = 0;
850 	u64 val;
851 
852 	if (sparc_pmu->num_pcrs > 1)
853 		pcr_index = idx;
854 
855 	val = cpuc->pcr[pcr_index];
856 	val &= ~mask;
857 	val |= nop;
858 	cpuc->pcr[pcr_index] = val;
859 
860 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
861 }
862 
863 static u64 sparc_perf_event_update(struct perf_event *event,
864 				   struct hw_perf_event *hwc, int idx)
865 {
866 	int shift = 64 - 32;
867 	u64 prev_raw_count, new_raw_count;
868 	s64 delta;
869 
870 again:
871 	prev_raw_count = local64_read(&hwc->prev_count);
872 	new_raw_count = sparc_pmu->read_pmc(idx);
873 
874 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
875 			     new_raw_count) != prev_raw_count)
876 		goto again;
877 
878 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
879 	delta >>= shift;
880 
881 	local64_add(delta, &event->count);
882 	local64_sub(delta, &hwc->period_left);
883 
884 	return new_raw_count;
885 }
886 
887 static int sparc_perf_event_set_period(struct perf_event *event,
888 				       struct hw_perf_event *hwc, int idx)
889 {
890 	s64 left = local64_read(&hwc->period_left);
891 	s64 period = hwc->sample_period;
892 	int ret = 0;
893 
894 	/* The period may have been changed by PERF_EVENT_IOC_PERIOD */
895 	if (unlikely(period != hwc->last_period))
896 		left = period - (hwc->last_period - left);
897 
898 	if (unlikely(left <= -period)) {
899 		left = period;
900 		local64_set(&hwc->period_left, left);
901 		hwc->last_period = period;
902 		ret = 1;
903 	}
904 
905 	if (unlikely(left <= 0)) {
906 		left += period;
907 		local64_set(&hwc->period_left, left);
908 		hwc->last_period = period;
909 		ret = 1;
910 	}
911 	if (left > MAX_PERIOD)
912 		left = MAX_PERIOD;
913 
914 	local64_set(&hwc->prev_count, (u64)-left);
915 
916 	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
917 
918 	perf_event_update_userpage(event);
919 
920 	return ret;
921 }
922 
923 static void read_in_all_counters(struct cpu_hw_events *cpuc)
924 {
925 	int i;
926 
927 	for (i = 0; i < cpuc->n_events; i++) {
928 		struct perf_event *cp = cpuc->event[i];
929 
930 		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
931 		    cpuc->current_idx[i] != cp->hw.idx) {
932 			sparc_perf_event_update(cp, &cp->hw,
933 						cpuc->current_idx[i]);
934 			cpuc->current_idx[i] = PIC_NO_INDEX;
935 			if (cp->hw.state & PERF_HES_STOPPED)
936 				cp->hw.state |= PERF_HES_ARCH;
937 		}
938 	}
939 }
940 
941 /* On this PMU all PICs are programmed using a single PCR.  Calculate
942  * the combined control register value.
943  *
944  * For such chips we require that all of the events have the same
945  * configuration, so just fetch the settings from the first entry.
946  */
947 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
948 {
949 	int i;
950 
951 	if (!cpuc->n_added)
952 		goto out;
953 
954 	/* Assign to counters all unassigned events.  */
955 	for (i = 0; i < cpuc->n_events; i++) {
956 		struct perf_event *cp = cpuc->event[i];
957 		struct hw_perf_event *hwc = &cp->hw;
958 		int idx = hwc->idx;
959 		u64 enc;
960 
961 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
962 			continue;
963 
964 		sparc_perf_event_set_period(cp, hwc, idx);
965 		cpuc->current_idx[i] = idx;
966 
967 		enc = perf_event_get_enc(cpuc->events[i]);
968 		cpuc->pcr[0] &= ~mask_for_index(idx);
969 		if (hwc->state & PERF_HES_ARCH) {
970 			cpuc->pcr[0] |= nop_for_index(idx);
971 		} else {
972 			cpuc->pcr[0] |= event_encoding(enc, idx);
973 			hwc->state = 0;
974 		}
975 	}
976 out:
977 	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
978 }
979 
980 static void sparc_pmu_start(struct perf_event *event, int flags);
981 
982 /* On this PMU each PIC has it's own PCR control register.  */
983 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
984 {
985 	int i;
986 
987 	if (!cpuc->n_added)
988 		goto out;
989 
990 	for (i = 0; i < cpuc->n_events; i++) {
991 		struct perf_event *cp = cpuc->event[i];
992 		struct hw_perf_event *hwc = &cp->hw;
993 		int idx = hwc->idx;
994 
995 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
996 			continue;
997 
998 		cpuc->current_idx[i] = idx;
999 
1000 		if (cp->hw.state & PERF_HES_ARCH)
1001 			continue;
1002 
1003 		sparc_pmu_start(cp, PERF_EF_RELOAD);
1004 	}
1005 out:
1006 	for (i = 0; i < cpuc->n_events; i++) {
1007 		struct perf_event *cp = cpuc->event[i];
1008 		int idx = cp->hw.idx;
1009 
1010 		cpuc->pcr[idx] |= cp->hw.config_base;
1011 	}
1012 }
1013 
1014 /* If performance event entries have been added, move existing events
1015  * around (if necessary) and then assign new entries to counters.
1016  */
1017 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1018 {
1019 	if (cpuc->n_added)
1020 		read_in_all_counters(cpuc);
1021 
1022 	if (sparc_pmu->num_pcrs == 1) {
1023 		calculate_single_pcr(cpuc);
1024 	} else {
1025 		calculate_multiple_pcrs(cpuc);
1026 	}
1027 }
1028 
1029 static void sparc_pmu_enable(struct pmu *pmu)
1030 {
1031 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1032 	int i;
1033 
1034 	if (cpuc->enabled)
1035 		return;
1036 
1037 	cpuc->enabled = 1;
1038 	barrier();
1039 
1040 	if (cpuc->n_events)
1041 		update_pcrs_for_enable(cpuc);
1042 
1043 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1044 		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1045 }
1046 
1047 static void sparc_pmu_disable(struct pmu *pmu)
1048 {
1049 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1050 	int i;
1051 
1052 	if (!cpuc->enabled)
1053 		return;
1054 
1055 	cpuc->enabled = 0;
1056 	cpuc->n_added = 0;
1057 
1058 	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1059 		u64 val = cpuc->pcr[i];
1060 
1061 		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1062 			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1063 		cpuc->pcr[i] = val;
1064 		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1065 	}
1066 }
1067 
1068 static int active_event_index(struct cpu_hw_events *cpuc,
1069 			      struct perf_event *event)
1070 {
1071 	int i;
1072 
1073 	for (i = 0; i < cpuc->n_events; i++) {
1074 		if (cpuc->event[i] == event)
1075 			break;
1076 	}
1077 	BUG_ON(i == cpuc->n_events);
1078 	return cpuc->current_idx[i];
1079 }
1080 
1081 static void sparc_pmu_start(struct perf_event *event, int flags)
1082 {
1083 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1084 	int idx = active_event_index(cpuc, event);
1085 
1086 	if (flags & PERF_EF_RELOAD) {
1087 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1088 		sparc_perf_event_set_period(event, &event->hw, idx);
1089 	}
1090 
1091 	event->hw.state = 0;
1092 
1093 	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1094 
1095 	perf_event_update_userpage(event);
1096 }
1097 
1098 static void sparc_pmu_stop(struct perf_event *event, int flags)
1099 {
1100 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1101 	int idx = active_event_index(cpuc, event);
1102 
1103 	if (!(event->hw.state & PERF_HES_STOPPED)) {
1104 		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1105 		event->hw.state |= PERF_HES_STOPPED;
1106 	}
1107 
1108 	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1109 		sparc_perf_event_update(event, &event->hw, idx);
1110 		event->hw.state |= PERF_HES_UPTODATE;
1111 	}
1112 }
1113 
1114 static void sparc_pmu_del(struct perf_event *event, int _flags)
1115 {
1116 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1117 	unsigned long flags;
1118 	int i;
1119 
1120 	local_irq_save(flags);
1121 
1122 	for (i = 0; i < cpuc->n_events; i++) {
1123 		if (event == cpuc->event[i]) {
1124 			/* Absorb the final count and turn off the
1125 			 * event.
1126 			 */
1127 			sparc_pmu_stop(event, PERF_EF_UPDATE);
1128 
1129 			/* Shift remaining entries down into
1130 			 * the existing slot.
1131 			 */
1132 			while (++i < cpuc->n_events) {
1133 				cpuc->event[i - 1] = cpuc->event[i];
1134 				cpuc->events[i - 1] = cpuc->events[i];
1135 				cpuc->current_idx[i - 1] =
1136 					cpuc->current_idx[i];
1137 			}
1138 
1139 			perf_event_update_userpage(event);
1140 
1141 			cpuc->n_events--;
1142 			break;
1143 		}
1144 	}
1145 
1146 	local_irq_restore(flags);
1147 }
1148 
1149 static void sparc_pmu_read(struct perf_event *event)
1150 {
1151 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1152 	int idx = active_event_index(cpuc, event);
1153 	struct hw_perf_event *hwc = &event->hw;
1154 
1155 	sparc_perf_event_update(event, hwc, idx);
1156 }
1157 
1158 static atomic_t active_events = ATOMIC_INIT(0);
1159 static DEFINE_MUTEX(pmc_grab_mutex);
1160 
1161 static void perf_stop_nmi_watchdog(void *unused)
1162 {
1163 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1164 	int i;
1165 
1166 	stop_nmi_watchdog(NULL);
1167 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1168 		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1169 }
1170 
1171 static void perf_event_grab_pmc(void)
1172 {
1173 	if (atomic_inc_not_zero(&active_events))
1174 		return;
1175 
1176 	mutex_lock(&pmc_grab_mutex);
1177 	if (atomic_read(&active_events) == 0) {
1178 		if (atomic_read(&nmi_active) > 0) {
1179 			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1180 			BUG_ON(atomic_read(&nmi_active) != 0);
1181 		}
1182 		atomic_inc(&active_events);
1183 	}
1184 	mutex_unlock(&pmc_grab_mutex);
1185 }
1186 
1187 static void perf_event_release_pmc(void)
1188 {
1189 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1190 		if (atomic_read(&nmi_active) == 0)
1191 			on_each_cpu(start_nmi_watchdog, NULL, 1);
1192 		mutex_unlock(&pmc_grab_mutex);
1193 	}
1194 }
1195 
1196 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1197 {
1198 	unsigned int cache_type, cache_op, cache_result;
1199 	const struct perf_event_map *pmap;
1200 
1201 	if (!sparc_pmu->cache_map)
1202 		return ERR_PTR(-ENOENT);
1203 
1204 	cache_type = (config >>  0) & 0xff;
1205 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1206 		return ERR_PTR(-EINVAL);
1207 
1208 	cache_op = (config >>  8) & 0xff;
1209 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1210 		return ERR_PTR(-EINVAL);
1211 
1212 	cache_result = (config >> 16) & 0xff;
1213 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1214 		return ERR_PTR(-EINVAL);
1215 
1216 	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1217 
1218 	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1219 		return ERR_PTR(-ENOENT);
1220 
1221 	if (pmap->encoding == CACHE_OP_NONSENSE)
1222 		return ERR_PTR(-EINVAL);
1223 
1224 	return pmap;
1225 }
1226 
1227 static void hw_perf_event_destroy(struct perf_event *event)
1228 {
1229 	perf_event_release_pmc();
1230 }
1231 
1232 /* Make sure all events can be scheduled into the hardware at
1233  * the same time.  This is simplified by the fact that we only
1234  * need to support 2 simultaneous HW events.
1235  *
1236  * As a side effect, the evts[]->hw.idx values will be assigned
1237  * on success.  These are pending indexes.  When the events are
1238  * actually programmed into the chip, these values will propagate
1239  * to the per-cpu cpuc->current_idx[] slots, see the code in
1240  * maybe_change_configuration() for details.
1241  */
1242 static int sparc_check_constraints(struct perf_event **evts,
1243 				   unsigned long *events, int n_ev)
1244 {
1245 	u8 msk0 = 0, msk1 = 0;
1246 	int idx0 = 0;
1247 
1248 	/* This case is possible when we are invoked from
1249 	 * hw_perf_group_sched_in().
1250 	 */
1251 	if (!n_ev)
1252 		return 0;
1253 
1254 	if (n_ev > sparc_pmu->max_hw_events)
1255 		return -1;
1256 
1257 	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1258 		int i;
1259 
1260 		for (i = 0; i < n_ev; i++)
1261 			evts[i]->hw.idx = i;
1262 		return 0;
1263 	}
1264 
1265 	msk0 = perf_event_get_msk(events[0]);
1266 	if (n_ev == 1) {
1267 		if (msk0 & PIC_LOWER)
1268 			idx0 = 1;
1269 		goto success;
1270 	}
1271 	BUG_ON(n_ev != 2);
1272 	msk1 = perf_event_get_msk(events[1]);
1273 
1274 	/* If both events can go on any counter, OK.  */
1275 	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1276 	    msk1 == (PIC_UPPER | PIC_LOWER))
1277 		goto success;
1278 
1279 	/* If one event is limited to a specific counter,
1280 	 * and the other can go on both, OK.
1281 	 */
1282 	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1283 	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1284 		if (msk0 & PIC_LOWER)
1285 			idx0 = 1;
1286 		goto success;
1287 	}
1288 
1289 	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1290 	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1291 		if (msk1 & PIC_UPPER)
1292 			idx0 = 1;
1293 		goto success;
1294 	}
1295 
1296 	/* If the events are fixed to different counters, OK.  */
1297 	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1298 	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1299 		if (msk0 & PIC_LOWER)
1300 			idx0 = 1;
1301 		goto success;
1302 	}
1303 
1304 	/* Otherwise, there is a conflict.  */
1305 	return -1;
1306 
1307 success:
1308 	evts[0]->hw.idx = idx0;
1309 	if (n_ev == 2)
1310 		evts[1]->hw.idx = idx0 ^ 1;
1311 	return 0;
1312 }
1313 
1314 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1315 {
1316 	int eu = 0, ek = 0, eh = 0;
1317 	struct perf_event *event;
1318 	int i, n, first;
1319 
1320 	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1321 		return 0;
1322 
1323 	n = n_prev + n_new;
1324 	if (n <= 1)
1325 		return 0;
1326 
1327 	first = 1;
1328 	for (i = 0; i < n; i++) {
1329 		event = evts[i];
1330 		if (first) {
1331 			eu = event->attr.exclude_user;
1332 			ek = event->attr.exclude_kernel;
1333 			eh = event->attr.exclude_hv;
1334 			first = 0;
1335 		} else if (event->attr.exclude_user != eu ||
1336 			   event->attr.exclude_kernel != ek ||
1337 			   event->attr.exclude_hv != eh) {
1338 			return -EAGAIN;
1339 		}
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static int collect_events(struct perf_event *group, int max_count,
1346 			  struct perf_event *evts[], unsigned long *events,
1347 			  int *current_idx)
1348 {
1349 	struct perf_event *event;
1350 	int n = 0;
1351 
1352 	if (!is_software_event(group)) {
1353 		if (n >= max_count)
1354 			return -1;
1355 		evts[n] = group;
1356 		events[n] = group->hw.event_base;
1357 		current_idx[n++] = PIC_NO_INDEX;
1358 	}
1359 	for_each_sibling_event(event, group) {
1360 		if (!is_software_event(event) &&
1361 		    event->state != PERF_EVENT_STATE_OFF) {
1362 			if (n >= max_count)
1363 				return -1;
1364 			evts[n] = event;
1365 			events[n] = event->hw.event_base;
1366 			current_idx[n++] = PIC_NO_INDEX;
1367 		}
1368 	}
1369 	return n;
1370 }
1371 
1372 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1373 {
1374 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1375 	int n0, ret = -EAGAIN;
1376 	unsigned long flags;
1377 
1378 	local_irq_save(flags);
1379 
1380 	n0 = cpuc->n_events;
1381 	if (n0 >= sparc_pmu->max_hw_events)
1382 		goto out;
1383 
1384 	cpuc->event[n0] = event;
1385 	cpuc->events[n0] = event->hw.event_base;
1386 	cpuc->current_idx[n0] = PIC_NO_INDEX;
1387 
1388 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1389 	if (!(ef_flags & PERF_EF_START))
1390 		event->hw.state |= PERF_HES_ARCH;
1391 
1392 	/*
1393 	 * If group events scheduling transaction was started,
1394 	 * skip the schedulability test here, it will be performed
1395 	 * at commit time(->commit_txn) as a whole
1396 	 */
1397 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1398 		goto nocheck;
1399 
1400 	if (check_excludes(cpuc->event, n0, 1))
1401 		goto out;
1402 	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1403 		goto out;
1404 
1405 nocheck:
1406 	cpuc->n_events++;
1407 	cpuc->n_added++;
1408 
1409 	ret = 0;
1410 out:
1411 	local_irq_restore(flags);
1412 	return ret;
1413 }
1414 
1415 static int sparc_pmu_event_init(struct perf_event *event)
1416 {
1417 	struct perf_event_attr *attr = &event->attr;
1418 	struct perf_event *evts[MAX_HWEVENTS];
1419 	struct hw_perf_event *hwc = &event->hw;
1420 	unsigned long events[MAX_HWEVENTS];
1421 	int current_idx_dmy[MAX_HWEVENTS];
1422 	const struct perf_event_map *pmap;
1423 	int n;
1424 
1425 	if (atomic_read(&nmi_active) < 0)
1426 		return -ENODEV;
1427 
1428 	/* does not support taken branch sampling */
1429 	if (has_branch_stack(event))
1430 		return -EOPNOTSUPP;
1431 
1432 	switch (attr->type) {
1433 	case PERF_TYPE_HARDWARE:
1434 		if (attr->config >= sparc_pmu->max_events)
1435 			return -EINVAL;
1436 		pmap = sparc_pmu->event_map(attr->config);
1437 		break;
1438 
1439 	case PERF_TYPE_HW_CACHE:
1440 		pmap = sparc_map_cache_event(attr->config);
1441 		if (IS_ERR(pmap))
1442 			return PTR_ERR(pmap);
1443 		break;
1444 
1445 	case PERF_TYPE_RAW:
1446 		pmap = NULL;
1447 		break;
1448 
1449 	default:
1450 		return -ENOENT;
1451 
1452 	}
1453 
1454 	if (pmap) {
1455 		hwc->event_base = perf_event_encode(pmap);
1456 	} else {
1457 		/*
1458 		 * User gives us "(encoding << 16) | pic_mask" for
1459 		 * PERF_TYPE_RAW events.
1460 		 */
1461 		hwc->event_base = attr->config;
1462 	}
1463 
1464 	/* We save the enable bits in the config_base.  */
1465 	hwc->config_base = sparc_pmu->irq_bit;
1466 	if (!attr->exclude_user)
1467 		hwc->config_base |= sparc_pmu->user_bit;
1468 	if (!attr->exclude_kernel)
1469 		hwc->config_base |= sparc_pmu->priv_bit;
1470 	if (!attr->exclude_hv)
1471 		hwc->config_base |= sparc_pmu->hv_bit;
1472 
1473 	n = 0;
1474 	if (event->group_leader != event) {
1475 		n = collect_events(event->group_leader,
1476 				   sparc_pmu->max_hw_events - 1,
1477 				   evts, events, current_idx_dmy);
1478 		if (n < 0)
1479 			return -EINVAL;
1480 	}
1481 	events[n] = hwc->event_base;
1482 	evts[n] = event;
1483 
1484 	if (check_excludes(evts, n, 1))
1485 		return -EINVAL;
1486 
1487 	if (sparc_check_constraints(evts, events, n + 1))
1488 		return -EINVAL;
1489 
1490 	hwc->idx = PIC_NO_INDEX;
1491 
1492 	/* Try to do all error checking before this point, as unwinding
1493 	 * state after grabbing the PMC is difficult.
1494 	 */
1495 	perf_event_grab_pmc();
1496 	event->destroy = hw_perf_event_destroy;
1497 
1498 	if (!hwc->sample_period) {
1499 		hwc->sample_period = MAX_PERIOD;
1500 		hwc->last_period = hwc->sample_period;
1501 		local64_set(&hwc->period_left, hwc->sample_period);
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 /*
1508  * Start group events scheduling transaction
1509  * Set the flag to make pmu::enable() not perform the
1510  * schedulability test, it will be performed at commit time
1511  */
1512 static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1513 {
1514 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1515 
1516 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1517 
1518 	cpuhw->txn_flags = txn_flags;
1519 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1520 		return;
1521 
1522 	perf_pmu_disable(pmu);
1523 }
1524 
1525 /*
1526  * Stop group events scheduling transaction
1527  * Clear the flag and pmu::enable() will perform the
1528  * schedulability test.
1529  */
1530 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1531 {
1532 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1533 	unsigned int txn_flags;
1534 
1535 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1536 
1537 	txn_flags = cpuhw->txn_flags;
1538 	cpuhw->txn_flags = 0;
1539 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1540 		return;
1541 
1542 	perf_pmu_enable(pmu);
1543 }
1544 
1545 /*
1546  * Commit group events scheduling transaction
1547  * Perform the group schedulability test as a whole
1548  * Return 0 if success
1549  */
1550 static int sparc_pmu_commit_txn(struct pmu *pmu)
1551 {
1552 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1553 	int n;
1554 
1555 	if (!sparc_pmu)
1556 		return -EINVAL;
1557 
1558 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1559 
1560 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1561 		cpuc->txn_flags = 0;
1562 		return 0;
1563 	}
1564 
1565 	n = cpuc->n_events;
1566 	if (check_excludes(cpuc->event, 0, n))
1567 		return -EINVAL;
1568 	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1569 		return -EAGAIN;
1570 
1571 	cpuc->txn_flags = 0;
1572 	perf_pmu_enable(pmu);
1573 	return 0;
1574 }
1575 
1576 static struct pmu pmu = {
1577 	.pmu_enable	= sparc_pmu_enable,
1578 	.pmu_disable	= sparc_pmu_disable,
1579 	.event_init	= sparc_pmu_event_init,
1580 	.add		= sparc_pmu_add,
1581 	.del		= sparc_pmu_del,
1582 	.start		= sparc_pmu_start,
1583 	.stop		= sparc_pmu_stop,
1584 	.read		= sparc_pmu_read,
1585 	.start_txn	= sparc_pmu_start_txn,
1586 	.cancel_txn	= sparc_pmu_cancel_txn,
1587 	.commit_txn	= sparc_pmu_commit_txn,
1588 };
1589 
1590 void perf_event_print_debug(void)
1591 {
1592 	unsigned long flags;
1593 	int cpu, i;
1594 
1595 	if (!sparc_pmu)
1596 		return;
1597 
1598 	local_irq_save(flags);
1599 
1600 	cpu = smp_processor_id();
1601 
1602 	pr_info("\n");
1603 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1604 		pr_info("CPU#%d: PCR%d[%016llx]\n",
1605 			cpu, i, pcr_ops->read_pcr(i));
1606 	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1607 		pr_info("CPU#%d: PIC%d[%016llx]\n",
1608 			cpu, i, pcr_ops->read_pic(i));
1609 
1610 	local_irq_restore(flags);
1611 }
1612 
1613 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1614 					    unsigned long cmd, void *__args)
1615 {
1616 	struct die_args *args = __args;
1617 	struct perf_sample_data data;
1618 	struct cpu_hw_events *cpuc;
1619 	struct pt_regs *regs;
1620 	u64 finish_clock;
1621 	u64 start_clock;
1622 	int i;
1623 
1624 	if (!atomic_read(&active_events))
1625 		return NOTIFY_DONE;
1626 
1627 	switch (cmd) {
1628 	case DIE_NMI:
1629 		break;
1630 
1631 	default:
1632 		return NOTIFY_DONE;
1633 	}
1634 
1635 	start_clock = sched_clock();
1636 
1637 	regs = args->regs;
1638 
1639 	cpuc = this_cpu_ptr(&cpu_hw_events);
1640 
1641 	/* If the PMU has the TOE IRQ enable bits, we need to do a
1642 	 * dummy write to the %pcr to clear the overflow bits and thus
1643 	 * the interrupt.
1644 	 *
1645 	 * Do this before we peek at the counters to determine
1646 	 * overflow so we don't lose any events.
1647 	 */
1648 	if (sparc_pmu->irq_bit &&
1649 	    sparc_pmu->num_pcrs == 1)
1650 		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1651 
1652 	for (i = 0; i < cpuc->n_events; i++) {
1653 		struct perf_event *event = cpuc->event[i];
1654 		int idx = cpuc->current_idx[i];
1655 		struct hw_perf_event *hwc;
1656 		u64 val;
1657 
1658 		if (sparc_pmu->irq_bit &&
1659 		    sparc_pmu->num_pcrs > 1)
1660 			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1661 
1662 		hwc = &event->hw;
1663 		val = sparc_perf_event_update(event, hwc, idx);
1664 		if (val & (1ULL << 31))
1665 			continue;
1666 
1667 		perf_sample_data_init(&data, 0, hwc->last_period);
1668 		if (!sparc_perf_event_set_period(event, hwc, idx))
1669 			continue;
1670 
1671 		if (perf_event_overflow(event, &data, regs))
1672 			sparc_pmu_stop(event, 0);
1673 	}
1674 
1675 	finish_clock = sched_clock();
1676 
1677 	perf_sample_event_took(finish_clock - start_clock);
1678 
1679 	return NOTIFY_STOP;
1680 }
1681 
1682 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1683 	.notifier_call		= perf_event_nmi_handler,
1684 };
1685 
1686 static bool __init supported_pmu(void)
1687 {
1688 	if (!strcmp(sparc_pmu_type, "ultra3") ||
1689 	    !strcmp(sparc_pmu_type, "ultra3+") ||
1690 	    !strcmp(sparc_pmu_type, "ultra3i") ||
1691 	    !strcmp(sparc_pmu_type, "ultra4+")) {
1692 		sparc_pmu = &ultra3_pmu;
1693 		return true;
1694 	}
1695 	if (!strcmp(sparc_pmu_type, "niagara")) {
1696 		sparc_pmu = &niagara1_pmu;
1697 		return true;
1698 	}
1699 	if (!strcmp(sparc_pmu_type, "niagara2") ||
1700 	    !strcmp(sparc_pmu_type, "niagara3")) {
1701 		sparc_pmu = &niagara2_pmu;
1702 		return true;
1703 	}
1704 	if (!strcmp(sparc_pmu_type, "niagara4") ||
1705 	    !strcmp(sparc_pmu_type, "niagara5")) {
1706 		sparc_pmu = &niagara4_pmu;
1707 		return true;
1708 	}
1709 	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1710 		sparc_pmu = &sparc_m7_pmu;
1711 		return true;
1712 	}
1713 	return false;
1714 }
1715 
1716 static int __init init_hw_perf_events(void)
1717 {
1718 	int err;
1719 
1720 	pr_info("Performance events: ");
1721 
1722 	err = pcr_arch_init();
1723 	if (err || !supported_pmu()) {
1724 		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1725 		return 0;
1726 	}
1727 
1728 	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1729 
1730 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1731 	register_die_notifier(&perf_event_nmi_notifier);
1732 
1733 	return 0;
1734 }
1735 pure_initcall(init_hw_perf_events);
1736 
1737 void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1738 			   struct pt_regs *regs)
1739 {
1740 	unsigned long ksp, fp;
1741 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1742 	int graph = 0;
1743 #endif
1744 
1745 	stack_trace_flush();
1746 
1747 	perf_callchain_store(entry, regs->tpc);
1748 
1749 	ksp = regs->u_regs[UREG_I6];
1750 	fp = ksp + STACK_BIAS;
1751 	do {
1752 		struct sparc_stackf *sf;
1753 		struct pt_regs *regs;
1754 		unsigned long pc;
1755 
1756 		if (!kstack_valid(current_thread_info(), fp))
1757 			break;
1758 
1759 		sf = (struct sparc_stackf *) fp;
1760 		regs = (struct pt_regs *) (sf + 1);
1761 
1762 		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1763 			if (user_mode(regs))
1764 				break;
1765 			pc = regs->tpc;
1766 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1767 		} else {
1768 			pc = sf->callers_pc;
1769 			fp = (unsigned long)sf->fp + STACK_BIAS;
1770 		}
1771 		perf_callchain_store(entry, pc);
1772 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1773 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1774 			struct ftrace_ret_stack *ret_stack;
1775 			ret_stack = ftrace_graph_get_ret_stack(current,
1776 							       graph);
1777 			if (ret_stack) {
1778 				pc = ret_stack->ret;
1779 				perf_callchain_store(entry, pc);
1780 				graph++;
1781 			}
1782 		}
1783 #endif
1784 	} while (entry->nr < entry->max_stack);
1785 }
1786 
1787 static inline int
1788 valid_user_frame(const void __user *fp, unsigned long size)
1789 {
1790 	/* addresses should be at least 4-byte aligned */
1791 	if (((unsigned long) fp) & 3)
1792 		return 0;
1793 
1794 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1795 }
1796 
1797 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1798 				   struct pt_regs *regs)
1799 {
1800 	unsigned long ufp;
1801 
1802 	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1803 	do {
1804 		struct sparc_stackf __user *usf;
1805 		struct sparc_stackf sf;
1806 		unsigned long pc;
1807 
1808 		usf = (struct sparc_stackf __user *)ufp;
1809 		if (!valid_user_frame(usf, sizeof(sf)))
1810 			break;
1811 
1812 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813 			break;
1814 
1815 		pc = sf.callers_pc;
1816 		ufp = (unsigned long)sf.fp + STACK_BIAS;
1817 		perf_callchain_store(entry, pc);
1818 	} while (entry->nr < entry->max_stack);
1819 }
1820 
1821 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1822 				   struct pt_regs *regs)
1823 {
1824 	unsigned long ufp;
1825 
1826 	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1827 	do {
1828 		unsigned long pc;
1829 
1830 		if (thread32_stack_is_64bit(ufp)) {
1831 			struct sparc_stackf __user *usf;
1832 			struct sparc_stackf sf;
1833 
1834 			ufp += STACK_BIAS;
1835 			usf = (struct sparc_stackf __user *)ufp;
1836 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1837 				break;
1838 			pc = sf.callers_pc & 0xffffffff;
1839 			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1840 		} else {
1841 			struct sparc_stackf32 __user *usf;
1842 			struct sparc_stackf32 sf;
1843 			usf = (struct sparc_stackf32 __user *)ufp;
1844 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1845 				break;
1846 			pc = sf.callers_pc;
1847 			ufp = (unsigned long)sf.fp;
1848 		}
1849 		perf_callchain_store(entry, pc);
1850 	} while (entry->nr < entry->max_stack);
1851 }
1852 
1853 void
1854 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1855 {
1856 	u64 saved_fault_address = current_thread_info()->fault_address;
1857 	u8 saved_fault_code = get_thread_fault_code();
1858 
1859 	perf_callchain_store(entry, regs->tpc);
1860 
1861 	if (!current->mm)
1862 		return;
1863 
1864 	flushw_user();
1865 
1866 	pagefault_disable();
1867 
1868 	if (test_thread_flag(TIF_32BIT))
1869 		perf_callchain_user_32(entry, regs);
1870 	else
1871 		perf_callchain_user_64(entry, regs);
1872 
1873 	pagefault_enable();
1874 
1875 	set_thread_fault_code(saved_fault_code);
1876 	current_thread_info()->fault_address = saved_fault_address;
1877 }
1878