xref: /openbmc/linux/arch/sparc/kernel/perf_event.c (revision d2999e1b)
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21 
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28 #include <asm/cacheflush.h>
29 
30 #include "kernel.h"
31 #include "kstack.h"
32 
33 /* Two classes of sparc64 chips currently exist.  All of which have
34  * 32-bit counters which can generate overflow interrupts on the
35  * transition from 0xffffffff to 0.
36  *
37  * All chips upto and including SPARC-T3 have two performance
38  * counters.  The two 32-bit counters are accessed in one go using a
39  * single 64-bit register.
40  *
41  * On these older chips both counters are controlled using a single
42  * control register.  The only way to stop all sampling is to clear
43  * all of the context (user, supervisor, hypervisor) sampling enable
44  * bits.  But these bits apply to both counters, thus the two counters
45  * can't be enabled/disabled individually.
46  *
47  * Furthermore, the control register on these older chips have two
48  * event fields, one for each of the two counters.  It's thus nearly
49  * impossible to have one counter going while keeping the other one
50  * stopped.  Therefore it is possible to get overflow interrupts for
51  * counters not currently "in use" and that condition must be checked
52  * in the overflow interrupt handler.
53  *
54  * So we use a hack, in that we program inactive counters with the
55  * "sw_count0" and "sw_count1" events.  These count how many times
56  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
57  * unusual way to encode a NOP and therefore will not trigger in
58  * normal code.
59  *
60  * Starting with SPARC-T4 we have one control register per counter.
61  * And the counters are stored in individual registers.  The registers
62  * for the counters are 64-bit but only a 32-bit counter is
63  * implemented.  The event selections on SPARC-T4 lack any
64  * restrictions, therefore we can elide all of the complicated
65  * conflict resolution code we have for SPARC-T3 and earlier chips.
66  */
67 
68 #define MAX_HWEVENTS			4
69 #define MAX_PCRS			4
70 #define MAX_PERIOD			((1UL << 32) - 1)
71 
72 #define PIC_UPPER_INDEX			0
73 #define PIC_LOWER_INDEX			1
74 #define PIC_NO_INDEX			-1
75 
76 struct cpu_hw_events {
77 	/* Number of events currently scheduled onto this cpu.
78 	 * This tells how many entries in the arrays below
79 	 * are valid.
80 	 */
81 	int			n_events;
82 
83 	/* Number of new events added since the last hw_perf_disable().
84 	 * This works because the perf event layer always adds new
85 	 * events inside of a perf_{disable,enable}() sequence.
86 	 */
87 	int			n_added;
88 
89 	/* Array of events current scheduled on this cpu.  */
90 	struct perf_event	*event[MAX_HWEVENTS];
91 
92 	/* Array of encoded longs, specifying the %pcr register
93 	 * encoding and the mask of PIC counters this even can
94 	 * be scheduled on.  See perf_event_encode() et al.
95 	 */
96 	unsigned long		events[MAX_HWEVENTS];
97 
98 	/* The current counter index assigned to an event.  When the
99 	 * event hasn't been programmed into the cpu yet, this will
100 	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
101 	 * we ought to schedule the event.
102 	 */
103 	int			current_idx[MAX_HWEVENTS];
104 
105 	/* Software copy of %pcr register(s) on this cpu.  */
106 	u64			pcr[MAX_HWEVENTS];
107 
108 	/* Enabled/disable state.  */
109 	int			enabled;
110 
111 	unsigned int		group_flag;
112 };
113 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
114 
115 /* An event map describes the characteristics of a performance
116  * counter event.  In particular it gives the encoding as well as
117  * a mask telling which counters the event can be measured on.
118  *
119  * The mask is unused on SPARC-T4 and later.
120  */
121 struct perf_event_map {
122 	u16	encoding;
123 	u8	pic_mask;
124 #define PIC_NONE	0x00
125 #define PIC_UPPER	0x01
126 #define PIC_LOWER	0x02
127 };
128 
129 /* Encode a perf_event_map entry into a long.  */
130 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
131 {
132 	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
133 }
134 
135 static u8 perf_event_get_msk(unsigned long val)
136 {
137 	return val & 0xff;
138 }
139 
140 static u64 perf_event_get_enc(unsigned long val)
141 {
142 	return val >> 16;
143 }
144 
145 #define C(x) PERF_COUNT_HW_CACHE_##x
146 
147 #define CACHE_OP_UNSUPPORTED	0xfffe
148 #define CACHE_OP_NONSENSE	0xffff
149 
150 typedef struct perf_event_map cache_map_t
151 				[PERF_COUNT_HW_CACHE_MAX]
152 				[PERF_COUNT_HW_CACHE_OP_MAX]
153 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
154 
155 struct sparc_pmu {
156 	const struct perf_event_map	*(*event_map)(int);
157 	const cache_map_t		*cache_map;
158 	int				max_events;
159 	u32				(*read_pmc)(int);
160 	void				(*write_pmc)(int, u64);
161 	int				upper_shift;
162 	int				lower_shift;
163 	int				event_mask;
164 	int				user_bit;
165 	int				priv_bit;
166 	int				hv_bit;
167 	int				irq_bit;
168 	int				upper_nop;
169 	int				lower_nop;
170 	unsigned int			flags;
171 #define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
172 #define SPARC_PMU_HAS_CONFLICTS		0x00000002
173 	int				max_hw_events;
174 	int				num_pcrs;
175 	int				num_pic_regs;
176 };
177 
178 static u32 sparc_default_read_pmc(int idx)
179 {
180 	u64 val;
181 
182 	val = pcr_ops->read_pic(0);
183 	if (idx == PIC_UPPER_INDEX)
184 		val >>= 32;
185 
186 	return val & 0xffffffff;
187 }
188 
189 static void sparc_default_write_pmc(int idx, u64 val)
190 {
191 	u64 shift, mask, pic;
192 
193 	shift = 0;
194 	if (idx == PIC_UPPER_INDEX)
195 		shift = 32;
196 
197 	mask = ((u64) 0xffffffff) << shift;
198 	val <<= shift;
199 
200 	pic = pcr_ops->read_pic(0);
201 	pic &= ~mask;
202 	pic |= val;
203 	pcr_ops->write_pic(0, pic);
204 }
205 
206 static const struct perf_event_map ultra3_perfmon_event_map[] = {
207 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
208 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
209 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
210 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
211 };
212 
213 static const struct perf_event_map *ultra3_event_map(int event_id)
214 {
215 	return &ultra3_perfmon_event_map[event_id];
216 }
217 
218 static const cache_map_t ultra3_cache_map = {
219 [C(L1D)] = {
220 	[C(OP_READ)] = {
221 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
222 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
223 	},
224 	[C(OP_WRITE)] = {
225 		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
226 		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
227 	},
228 	[C(OP_PREFETCH)] = {
229 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
230 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
231 	},
232 },
233 [C(L1I)] = {
234 	[C(OP_READ)] = {
235 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
236 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
237 	},
238 	[ C(OP_WRITE) ] = {
239 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
240 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
241 	},
242 	[ C(OP_PREFETCH) ] = {
243 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
245 	},
246 },
247 [C(LL)] = {
248 	[C(OP_READ)] = {
249 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
250 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
251 	},
252 	[C(OP_WRITE)] = {
253 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
254 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
255 	},
256 	[C(OP_PREFETCH)] = {
257 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
258 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
259 	},
260 },
261 [C(DTLB)] = {
262 	[C(OP_READ)] = {
263 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
264 		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
265 	},
266 	[ C(OP_WRITE) ] = {
267 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
268 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
269 	},
270 	[ C(OP_PREFETCH) ] = {
271 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
272 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
273 	},
274 },
275 [C(ITLB)] = {
276 	[C(OP_READ)] = {
277 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
278 		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
279 	},
280 	[ C(OP_WRITE) ] = {
281 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
282 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
283 	},
284 	[ C(OP_PREFETCH) ] = {
285 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
286 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
287 	},
288 },
289 [C(BPU)] = {
290 	[C(OP_READ)] = {
291 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
292 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
293 	},
294 	[ C(OP_WRITE) ] = {
295 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
296 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
297 	},
298 	[ C(OP_PREFETCH) ] = {
299 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
300 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
301 	},
302 },
303 [C(NODE)] = {
304 	[C(OP_READ)] = {
305 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
306 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
307 	},
308 	[ C(OP_WRITE) ] = {
309 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
310 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
311 	},
312 	[ C(OP_PREFETCH) ] = {
313 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
314 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
315 	},
316 },
317 };
318 
319 static const struct sparc_pmu ultra3_pmu = {
320 	.event_map	= ultra3_event_map,
321 	.cache_map	= &ultra3_cache_map,
322 	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
323 	.read_pmc	= sparc_default_read_pmc,
324 	.write_pmc	= sparc_default_write_pmc,
325 	.upper_shift	= 11,
326 	.lower_shift	= 4,
327 	.event_mask	= 0x3f,
328 	.user_bit	= PCR_UTRACE,
329 	.priv_bit	= PCR_STRACE,
330 	.upper_nop	= 0x1c,
331 	.lower_nop	= 0x14,
332 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
333 			   SPARC_PMU_HAS_CONFLICTS),
334 	.max_hw_events	= 2,
335 	.num_pcrs	= 1,
336 	.num_pic_regs	= 1,
337 };
338 
339 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
340  * only instructions, so it is free running which creates all kinds of
341  * problems.  Some hardware designs make one wonder if the creator
342  * even looked at how this stuff gets used by software.
343  */
344 static const struct perf_event_map niagara1_perfmon_event_map[] = {
345 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
346 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
347 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
348 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
349 };
350 
351 static const struct perf_event_map *niagara1_event_map(int event_id)
352 {
353 	return &niagara1_perfmon_event_map[event_id];
354 }
355 
356 static const cache_map_t niagara1_cache_map = {
357 [C(L1D)] = {
358 	[C(OP_READ)] = {
359 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
360 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
361 	},
362 	[C(OP_WRITE)] = {
363 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
364 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
365 	},
366 	[C(OP_PREFETCH)] = {
367 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
368 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
369 	},
370 },
371 [C(L1I)] = {
372 	[C(OP_READ)] = {
373 		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
374 		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
375 	},
376 	[ C(OP_WRITE) ] = {
377 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
378 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
379 	},
380 	[ C(OP_PREFETCH) ] = {
381 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
382 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
383 	},
384 },
385 [C(LL)] = {
386 	[C(OP_READ)] = {
387 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
388 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
389 	},
390 	[C(OP_WRITE)] = {
391 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
392 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
393 	},
394 	[C(OP_PREFETCH)] = {
395 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
396 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
397 	},
398 },
399 [C(DTLB)] = {
400 	[C(OP_READ)] = {
401 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402 		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
403 	},
404 	[ C(OP_WRITE) ] = {
405 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
406 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
407 	},
408 	[ C(OP_PREFETCH) ] = {
409 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
410 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
411 	},
412 },
413 [C(ITLB)] = {
414 	[C(OP_READ)] = {
415 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
416 		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
417 	},
418 	[ C(OP_WRITE) ] = {
419 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
420 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
421 	},
422 	[ C(OP_PREFETCH) ] = {
423 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
424 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
425 	},
426 },
427 [C(BPU)] = {
428 	[C(OP_READ)] = {
429 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
431 	},
432 	[ C(OP_WRITE) ] = {
433 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
434 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
435 	},
436 	[ C(OP_PREFETCH) ] = {
437 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
439 	},
440 },
441 [C(NODE)] = {
442 	[C(OP_READ)] = {
443 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
444 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
445 	},
446 	[ C(OP_WRITE) ] = {
447 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
448 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
449 	},
450 	[ C(OP_PREFETCH) ] = {
451 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
453 	},
454 },
455 };
456 
457 static const struct sparc_pmu niagara1_pmu = {
458 	.event_map	= niagara1_event_map,
459 	.cache_map	= &niagara1_cache_map,
460 	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
461 	.read_pmc	= sparc_default_read_pmc,
462 	.write_pmc	= sparc_default_write_pmc,
463 	.upper_shift	= 0,
464 	.lower_shift	= 4,
465 	.event_mask	= 0x7,
466 	.user_bit	= PCR_UTRACE,
467 	.priv_bit	= PCR_STRACE,
468 	.upper_nop	= 0x0,
469 	.lower_nop	= 0x0,
470 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
471 			   SPARC_PMU_HAS_CONFLICTS),
472 	.max_hw_events	= 2,
473 	.num_pcrs	= 1,
474 	.num_pic_regs	= 1,
475 };
476 
477 static const struct perf_event_map niagara2_perfmon_event_map[] = {
478 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
479 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
481 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
482 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
483 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
484 };
485 
486 static const struct perf_event_map *niagara2_event_map(int event_id)
487 {
488 	return &niagara2_perfmon_event_map[event_id];
489 }
490 
491 static const cache_map_t niagara2_cache_map = {
492 [C(L1D)] = {
493 	[C(OP_READ)] = {
494 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
495 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
496 	},
497 	[C(OP_WRITE)] = {
498 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
499 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
500 	},
501 	[C(OP_PREFETCH)] = {
502 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
503 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
504 	},
505 },
506 [C(L1I)] = {
507 	[C(OP_READ)] = {
508 		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
509 		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
510 	},
511 	[ C(OP_WRITE) ] = {
512 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
513 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
514 	},
515 	[ C(OP_PREFETCH) ] = {
516 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
518 	},
519 },
520 [C(LL)] = {
521 	[C(OP_READ)] = {
522 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
523 		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
524 	},
525 	[C(OP_WRITE)] = {
526 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
527 		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
528 	},
529 	[C(OP_PREFETCH)] = {
530 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
531 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
532 	},
533 },
534 [C(DTLB)] = {
535 	[C(OP_READ)] = {
536 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
537 		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
538 	},
539 	[ C(OP_WRITE) ] = {
540 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
541 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
542 	},
543 	[ C(OP_PREFETCH) ] = {
544 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
545 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
546 	},
547 },
548 [C(ITLB)] = {
549 	[C(OP_READ)] = {
550 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
551 		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
552 	},
553 	[ C(OP_WRITE) ] = {
554 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
556 	},
557 	[ C(OP_PREFETCH) ] = {
558 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
559 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
560 	},
561 },
562 [C(BPU)] = {
563 	[C(OP_READ)] = {
564 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
565 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
566 	},
567 	[ C(OP_WRITE) ] = {
568 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
570 	},
571 	[ C(OP_PREFETCH) ] = {
572 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
573 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
574 	},
575 },
576 [C(NODE)] = {
577 	[C(OP_READ)] = {
578 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
579 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
580 	},
581 	[ C(OP_WRITE) ] = {
582 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
583 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
584 	},
585 	[ C(OP_PREFETCH) ] = {
586 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
587 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
588 	},
589 },
590 };
591 
592 static const struct sparc_pmu niagara2_pmu = {
593 	.event_map	= niagara2_event_map,
594 	.cache_map	= &niagara2_cache_map,
595 	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
596 	.read_pmc	= sparc_default_read_pmc,
597 	.write_pmc	= sparc_default_write_pmc,
598 	.upper_shift	= 19,
599 	.lower_shift	= 6,
600 	.event_mask	= 0xfff,
601 	.user_bit	= PCR_UTRACE,
602 	.priv_bit	= PCR_STRACE,
603 	.hv_bit		= PCR_N2_HTRACE,
604 	.irq_bit	= 0x30,
605 	.upper_nop	= 0x220,
606 	.lower_nop	= 0x220,
607 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
608 			   SPARC_PMU_HAS_CONFLICTS),
609 	.max_hw_events	= 2,
610 	.num_pcrs	= 1,
611 	.num_pic_regs	= 1,
612 };
613 
614 static const struct perf_event_map niagara4_perfmon_event_map[] = {
615 	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
616 	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
617 	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
618 	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
619 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
620 	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
621 };
622 
623 static const struct perf_event_map *niagara4_event_map(int event_id)
624 {
625 	return &niagara4_perfmon_event_map[event_id];
626 }
627 
628 static const cache_map_t niagara4_cache_map = {
629 [C(L1D)] = {
630 	[C(OP_READ)] = {
631 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
632 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
633 	},
634 	[C(OP_WRITE)] = {
635 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
636 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
637 	},
638 	[C(OP_PREFETCH)] = {
639 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
640 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
641 	},
642 },
643 [C(L1I)] = {
644 	[C(OP_READ)] = {
645 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
646 		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
647 	},
648 	[ C(OP_WRITE) ] = {
649 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
650 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
651 	},
652 	[ C(OP_PREFETCH) ] = {
653 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
654 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
655 	},
656 },
657 [C(LL)] = {
658 	[C(OP_READ)] = {
659 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
660 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
661 	},
662 	[C(OP_WRITE)] = {
663 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
664 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
665 	},
666 	[C(OP_PREFETCH)] = {
667 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
668 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
669 	},
670 },
671 [C(DTLB)] = {
672 	[C(OP_READ)] = {
673 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
674 		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
675 	},
676 	[ C(OP_WRITE) ] = {
677 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
678 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
679 	},
680 	[ C(OP_PREFETCH) ] = {
681 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
682 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
683 	},
684 },
685 [C(ITLB)] = {
686 	[C(OP_READ)] = {
687 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
688 		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
689 	},
690 	[ C(OP_WRITE) ] = {
691 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
692 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
693 	},
694 	[ C(OP_PREFETCH) ] = {
695 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
696 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
697 	},
698 },
699 [C(BPU)] = {
700 	[C(OP_READ)] = {
701 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
702 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
703 	},
704 	[ C(OP_WRITE) ] = {
705 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
706 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
707 	},
708 	[ C(OP_PREFETCH) ] = {
709 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
710 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
711 	},
712 },
713 [C(NODE)] = {
714 	[C(OP_READ)] = {
715 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
716 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
717 	},
718 	[ C(OP_WRITE) ] = {
719 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
720 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
721 	},
722 	[ C(OP_PREFETCH) ] = {
723 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
724 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
725 	},
726 },
727 };
728 
729 static u32 sparc_vt_read_pmc(int idx)
730 {
731 	u64 val = pcr_ops->read_pic(idx);
732 
733 	return val & 0xffffffff;
734 }
735 
736 static void sparc_vt_write_pmc(int idx, u64 val)
737 {
738 	u64 pcr;
739 
740 	/* There seems to be an internal latch on the overflow event
741 	 * on SPARC-T4 that prevents it from triggering unless you
742 	 * update the PIC exactly as we do here.  The requirement
743 	 * seems to be that you have to turn off event counting in the
744 	 * PCR around the PIC update.
745 	 *
746 	 * For example, after the following sequence:
747 	 *
748 	 * 1) set PIC to -1
749 	 * 2) enable event counting and overflow reporting in PCR
750 	 * 3) overflow triggers, softint 15 handler invoked
751 	 * 4) clear OV bit in PCR
752 	 * 5) write PIC to -1
753 	 *
754 	 * a subsequent overflow event will not trigger.  This
755 	 * sequence works on SPARC-T3 and previous chips.
756 	 */
757 	pcr = pcr_ops->read_pcr(idx);
758 	pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
759 
760 	pcr_ops->write_pic(idx, val & 0xffffffff);
761 
762 	pcr_ops->write_pcr(idx, pcr);
763 }
764 
765 static const struct sparc_pmu niagara4_pmu = {
766 	.event_map	= niagara4_event_map,
767 	.cache_map	= &niagara4_cache_map,
768 	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
769 	.read_pmc	= sparc_vt_read_pmc,
770 	.write_pmc	= sparc_vt_write_pmc,
771 	.upper_shift	= 5,
772 	.lower_shift	= 5,
773 	.event_mask	= 0x7ff,
774 	.user_bit	= PCR_N4_UTRACE,
775 	.priv_bit	= PCR_N4_STRACE,
776 
777 	/* We explicitly don't support hypervisor tracing.  The T4
778 	 * generates the overflow event for precise events via a trap
779 	 * which will not be generated (ie. it's completely lost) if
780 	 * we happen to be in the hypervisor when the event triggers.
781 	 * Essentially, the overflow event reporting is completely
782 	 * unusable when you have hypervisor mode tracing enabled.
783 	 */
784 	.hv_bit		= 0,
785 
786 	.irq_bit	= PCR_N4_TOE,
787 	.upper_nop	= 0,
788 	.lower_nop	= 0,
789 	.flags		= 0,
790 	.max_hw_events	= 4,
791 	.num_pcrs	= 4,
792 	.num_pic_regs	= 4,
793 };
794 
795 static const struct sparc_pmu *sparc_pmu __read_mostly;
796 
797 static u64 event_encoding(u64 event_id, int idx)
798 {
799 	if (idx == PIC_UPPER_INDEX)
800 		event_id <<= sparc_pmu->upper_shift;
801 	else
802 		event_id <<= sparc_pmu->lower_shift;
803 	return event_id;
804 }
805 
806 static u64 mask_for_index(int idx)
807 {
808 	return event_encoding(sparc_pmu->event_mask, idx);
809 }
810 
811 static u64 nop_for_index(int idx)
812 {
813 	return event_encoding(idx == PIC_UPPER_INDEX ?
814 			      sparc_pmu->upper_nop :
815 			      sparc_pmu->lower_nop, idx);
816 }
817 
818 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
819 {
820 	u64 enc, val, mask = mask_for_index(idx);
821 	int pcr_index = 0;
822 
823 	if (sparc_pmu->num_pcrs > 1)
824 		pcr_index = idx;
825 
826 	enc = perf_event_get_enc(cpuc->events[idx]);
827 
828 	val = cpuc->pcr[pcr_index];
829 	val &= ~mask;
830 	val |= event_encoding(enc, idx);
831 	cpuc->pcr[pcr_index] = val;
832 
833 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
834 }
835 
836 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
837 {
838 	u64 mask = mask_for_index(idx);
839 	u64 nop = nop_for_index(idx);
840 	int pcr_index = 0;
841 	u64 val;
842 
843 	if (sparc_pmu->num_pcrs > 1)
844 		pcr_index = idx;
845 
846 	val = cpuc->pcr[pcr_index];
847 	val &= ~mask;
848 	val |= nop;
849 	cpuc->pcr[pcr_index] = val;
850 
851 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
852 }
853 
854 static u64 sparc_perf_event_update(struct perf_event *event,
855 				   struct hw_perf_event *hwc, int idx)
856 {
857 	int shift = 64 - 32;
858 	u64 prev_raw_count, new_raw_count;
859 	s64 delta;
860 
861 again:
862 	prev_raw_count = local64_read(&hwc->prev_count);
863 	new_raw_count = sparc_pmu->read_pmc(idx);
864 
865 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
866 			     new_raw_count) != prev_raw_count)
867 		goto again;
868 
869 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
870 	delta >>= shift;
871 
872 	local64_add(delta, &event->count);
873 	local64_sub(delta, &hwc->period_left);
874 
875 	return new_raw_count;
876 }
877 
878 static int sparc_perf_event_set_period(struct perf_event *event,
879 				       struct hw_perf_event *hwc, int idx)
880 {
881 	s64 left = local64_read(&hwc->period_left);
882 	s64 period = hwc->sample_period;
883 	int ret = 0;
884 
885 	if (unlikely(left <= -period)) {
886 		left = period;
887 		local64_set(&hwc->period_left, left);
888 		hwc->last_period = period;
889 		ret = 1;
890 	}
891 
892 	if (unlikely(left <= 0)) {
893 		left += period;
894 		local64_set(&hwc->period_left, left);
895 		hwc->last_period = period;
896 		ret = 1;
897 	}
898 	if (left > MAX_PERIOD)
899 		left = MAX_PERIOD;
900 
901 	local64_set(&hwc->prev_count, (u64)-left);
902 
903 	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
904 
905 	perf_event_update_userpage(event);
906 
907 	return ret;
908 }
909 
910 static void read_in_all_counters(struct cpu_hw_events *cpuc)
911 {
912 	int i;
913 
914 	for (i = 0; i < cpuc->n_events; i++) {
915 		struct perf_event *cp = cpuc->event[i];
916 
917 		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
918 		    cpuc->current_idx[i] != cp->hw.idx) {
919 			sparc_perf_event_update(cp, &cp->hw,
920 						cpuc->current_idx[i]);
921 			cpuc->current_idx[i] = PIC_NO_INDEX;
922 		}
923 	}
924 }
925 
926 /* On this PMU all PICs are programmed using a single PCR.  Calculate
927  * the combined control register value.
928  *
929  * For such chips we require that all of the events have the same
930  * configuration, so just fetch the settings from the first entry.
931  */
932 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
933 {
934 	int i;
935 
936 	if (!cpuc->n_added)
937 		goto out;
938 
939 	/* Assign to counters all unassigned events.  */
940 	for (i = 0; i < cpuc->n_events; i++) {
941 		struct perf_event *cp = cpuc->event[i];
942 		struct hw_perf_event *hwc = &cp->hw;
943 		int idx = hwc->idx;
944 		u64 enc;
945 
946 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
947 			continue;
948 
949 		sparc_perf_event_set_period(cp, hwc, idx);
950 		cpuc->current_idx[i] = idx;
951 
952 		enc = perf_event_get_enc(cpuc->events[i]);
953 		cpuc->pcr[0] &= ~mask_for_index(idx);
954 		if (hwc->state & PERF_HES_STOPPED)
955 			cpuc->pcr[0] |= nop_for_index(idx);
956 		else
957 			cpuc->pcr[0] |= event_encoding(enc, idx);
958 	}
959 out:
960 	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
961 }
962 
963 /* On this PMU each PIC has it's own PCR control register.  */
964 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
965 {
966 	int i;
967 
968 	if (!cpuc->n_added)
969 		goto out;
970 
971 	for (i = 0; i < cpuc->n_events; i++) {
972 		struct perf_event *cp = cpuc->event[i];
973 		struct hw_perf_event *hwc = &cp->hw;
974 		int idx = hwc->idx;
975 		u64 enc;
976 
977 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
978 			continue;
979 
980 		sparc_perf_event_set_period(cp, hwc, idx);
981 		cpuc->current_idx[i] = idx;
982 
983 		enc = perf_event_get_enc(cpuc->events[i]);
984 		cpuc->pcr[idx] &= ~mask_for_index(idx);
985 		if (hwc->state & PERF_HES_STOPPED)
986 			cpuc->pcr[idx] |= nop_for_index(idx);
987 		else
988 			cpuc->pcr[idx] |= event_encoding(enc, idx);
989 	}
990 out:
991 	for (i = 0; i < cpuc->n_events; i++) {
992 		struct perf_event *cp = cpuc->event[i];
993 		int idx = cp->hw.idx;
994 
995 		cpuc->pcr[idx] |= cp->hw.config_base;
996 	}
997 }
998 
999 /* If performance event entries have been added, move existing events
1000  * around (if necessary) and then assign new entries to counters.
1001  */
1002 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1003 {
1004 	if (cpuc->n_added)
1005 		read_in_all_counters(cpuc);
1006 
1007 	if (sparc_pmu->num_pcrs == 1) {
1008 		calculate_single_pcr(cpuc);
1009 	} else {
1010 		calculate_multiple_pcrs(cpuc);
1011 	}
1012 }
1013 
1014 static void sparc_pmu_enable(struct pmu *pmu)
1015 {
1016 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1017 	int i;
1018 
1019 	if (cpuc->enabled)
1020 		return;
1021 
1022 	cpuc->enabled = 1;
1023 	barrier();
1024 
1025 	if (cpuc->n_events)
1026 		update_pcrs_for_enable(cpuc);
1027 
1028 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1029 		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1030 }
1031 
1032 static void sparc_pmu_disable(struct pmu *pmu)
1033 {
1034 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1035 	int i;
1036 
1037 	if (!cpuc->enabled)
1038 		return;
1039 
1040 	cpuc->enabled = 0;
1041 	cpuc->n_added = 0;
1042 
1043 	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1044 		u64 val = cpuc->pcr[i];
1045 
1046 		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1047 			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1048 		cpuc->pcr[i] = val;
1049 		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1050 	}
1051 }
1052 
1053 static int active_event_index(struct cpu_hw_events *cpuc,
1054 			      struct perf_event *event)
1055 {
1056 	int i;
1057 
1058 	for (i = 0; i < cpuc->n_events; i++) {
1059 		if (cpuc->event[i] == event)
1060 			break;
1061 	}
1062 	BUG_ON(i == cpuc->n_events);
1063 	return cpuc->current_idx[i];
1064 }
1065 
1066 static void sparc_pmu_start(struct perf_event *event, int flags)
1067 {
1068 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1069 	int idx = active_event_index(cpuc, event);
1070 
1071 	if (flags & PERF_EF_RELOAD) {
1072 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1073 		sparc_perf_event_set_period(event, &event->hw, idx);
1074 	}
1075 
1076 	event->hw.state = 0;
1077 
1078 	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1079 }
1080 
1081 static void sparc_pmu_stop(struct perf_event *event, int flags)
1082 {
1083 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1084 	int idx = active_event_index(cpuc, event);
1085 
1086 	if (!(event->hw.state & PERF_HES_STOPPED)) {
1087 		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1088 		event->hw.state |= PERF_HES_STOPPED;
1089 	}
1090 
1091 	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1092 		sparc_perf_event_update(event, &event->hw, idx);
1093 		event->hw.state |= PERF_HES_UPTODATE;
1094 	}
1095 }
1096 
1097 static void sparc_pmu_del(struct perf_event *event, int _flags)
1098 {
1099 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1100 	unsigned long flags;
1101 	int i;
1102 
1103 	local_irq_save(flags);
1104 	perf_pmu_disable(event->pmu);
1105 
1106 	for (i = 0; i < cpuc->n_events; i++) {
1107 		if (event == cpuc->event[i]) {
1108 			/* Absorb the final count and turn off the
1109 			 * event.
1110 			 */
1111 			sparc_pmu_stop(event, PERF_EF_UPDATE);
1112 
1113 			/* Shift remaining entries down into
1114 			 * the existing slot.
1115 			 */
1116 			while (++i < cpuc->n_events) {
1117 				cpuc->event[i - 1] = cpuc->event[i];
1118 				cpuc->events[i - 1] = cpuc->events[i];
1119 				cpuc->current_idx[i - 1] =
1120 					cpuc->current_idx[i];
1121 			}
1122 
1123 			perf_event_update_userpage(event);
1124 
1125 			cpuc->n_events--;
1126 			break;
1127 		}
1128 	}
1129 
1130 	perf_pmu_enable(event->pmu);
1131 	local_irq_restore(flags);
1132 }
1133 
1134 static void sparc_pmu_read(struct perf_event *event)
1135 {
1136 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1137 	int idx = active_event_index(cpuc, event);
1138 	struct hw_perf_event *hwc = &event->hw;
1139 
1140 	sparc_perf_event_update(event, hwc, idx);
1141 }
1142 
1143 static atomic_t active_events = ATOMIC_INIT(0);
1144 static DEFINE_MUTEX(pmc_grab_mutex);
1145 
1146 static void perf_stop_nmi_watchdog(void *unused)
1147 {
1148 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1149 	int i;
1150 
1151 	stop_nmi_watchdog(NULL);
1152 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153 		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154 }
1155 
1156 static void perf_event_grab_pmc(void)
1157 {
1158 	if (atomic_inc_not_zero(&active_events))
1159 		return;
1160 
1161 	mutex_lock(&pmc_grab_mutex);
1162 	if (atomic_read(&active_events) == 0) {
1163 		if (atomic_read(&nmi_active) > 0) {
1164 			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165 			BUG_ON(atomic_read(&nmi_active) != 0);
1166 		}
1167 		atomic_inc(&active_events);
1168 	}
1169 	mutex_unlock(&pmc_grab_mutex);
1170 }
1171 
1172 static void perf_event_release_pmc(void)
1173 {
1174 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175 		if (atomic_read(&nmi_active) == 0)
1176 			on_each_cpu(start_nmi_watchdog, NULL, 1);
1177 		mutex_unlock(&pmc_grab_mutex);
1178 	}
1179 }
1180 
1181 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182 {
1183 	unsigned int cache_type, cache_op, cache_result;
1184 	const struct perf_event_map *pmap;
1185 
1186 	if (!sparc_pmu->cache_map)
1187 		return ERR_PTR(-ENOENT);
1188 
1189 	cache_type = (config >>  0) & 0xff;
1190 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191 		return ERR_PTR(-EINVAL);
1192 
1193 	cache_op = (config >>  8) & 0xff;
1194 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195 		return ERR_PTR(-EINVAL);
1196 
1197 	cache_result = (config >> 16) & 0xff;
1198 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199 		return ERR_PTR(-EINVAL);
1200 
1201 	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202 
1203 	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204 		return ERR_PTR(-ENOENT);
1205 
1206 	if (pmap->encoding == CACHE_OP_NONSENSE)
1207 		return ERR_PTR(-EINVAL);
1208 
1209 	return pmap;
1210 }
1211 
1212 static void hw_perf_event_destroy(struct perf_event *event)
1213 {
1214 	perf_event_release_pmc();
1215 }
1216 
1217 /* Make sure all events can be scheduled into the hardware at
1218  * the same time.  This is simplified by the fact that we only
1219  * need to support 2 simultaneous HW events.
1220  *
1221  * As a side effect, the evts[]->hw.idx values will be assigned
1222  * on success.  These are pending indexes.  When the events are
1223  * actually programmed into the chip, these values will propagate
1224  * to the per-cpu cpuc->current_idx[] slots, see the code in
1225  * maybe_change_configuration() for details.
1226  */
1227 static int sparc_check_constraints(struct perf_event **evts,
1228 				   unsigned long *events, int n_ev)
1229 {
1230 	u8 msk0 = 0, msk1 = 0;
1231 	int idx0 = 0;
1232 
1233 	/* This case is possible when we are invoked from
1234 	 * hw_perf_group_sched_in().
1235 	 */
1236 	if (!n_ev)
1237 		return 0;
1238 
1239 	if (n_ev > sparc_pmu->max_hw_events)
1240 		return -1;
1241 
1242 	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243 		int i;
1244 
1245 		for (i = 0; i < n_ev; i++)
1246 			evts[i]->hw.idx = i;
1247 		return 0;
1248 	}
1249 
1250 	msk0 = perf_event_get_msk(events[0]);
1251 	if (n_ev == 1) {
1252 		if (msk0 & PIC_LOWER)
1253 			idx0 = 1;
1254 		goto success;
1255 	}
1256 	BUG_ON(n_ev != 2);
1257 	msk1 = perf_event_get_msk(events[1]);
1258 
1259 	/* If both events can go on any counter, OK.  */
1260 	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261 	    msk1 == (PIC_UPPER | PIC_LOWER))
1262 		goto success;
1263 
1264 	/* If one event is limited to a specific counter,
1265 	 * and the other can go on both, OK.
1266 	 */
1267 	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268 	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1269 		if (msk0 & PIC_LOWER)
1270 			idx0 = 1;
1271 		goto success;
1272 	}
1273 
1274 	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275 	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1276 		if (msk1 & PIC_UPPER)
1277 			idx0 = 1;
1278 		goto success;
1279 	}
1280 
1281 	/* If the events are fixed to different counters, OK.  */
1282 	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283 	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284 		if (msk0 & PIC_LOWER)
1285 			idx0 = 1;
1286 		goto success;
1287 	}
1288 
1289 	/* Otherwise, there is a conflict.  */
1290 	return -1;
1291 
1292 success:
1293 	evts[0]->hw.idx = idx0;
1294 	if (n_ev == 2)
1295 		evts[1]->hw.idx = idx0 ^ 1;
1296 	return 0;
1297 }
1298 
1299 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300 {
1301 	int eu = 0, ek = 0, eh = 0;
1302 	struct perf_event *event;
1303 	int i, n, first;
1304 
1305 	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306 		return 0;
1307 
1308 	n = n_prev + n_new;
1309 	if (n <= 1)
1310 		return 0;
1311 
1312 	first = 1;
1313 	for (i = 0; i < n; i++) {
1314 		event = evts[i];
1315 		if (first) {
1316 			eu = event->attr.exclude_user;
1317 			ek = event->attr.exclude_kernel;
1318 			eh = event->attr.exclude_hv;
1319 			first = 0;
1320 		} else if (event->attr.exclude_user != eu ||
1321 			   event->attr.exclude_kernel != ek ||
1322 			   event->attr.exclude_hv != eh) {
1323 			return -EAGAIN;
1324 		}
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 static int collect_events(struct perf_event *group, int max_count,
1331 			  struct perf_event *evts[], unsigned long *events,
1332 			  int *current_idx)
1333 {
1334 	struct perf_event *event;
1335 	int n = 0;
1336 
1337 	if (!is_software_event(group)) {
1338 		if (n >= max_count)
1339 			return -1;
1340 		evts[n] = group;
1341 		events[n] = group->hw.event_base;
1342 		current_idx[n++] = PIC_NO_INDEX;
1343 	}
1344 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1345 		if (!is_software_event(event) &&
1346 		    event->state != PERF_EVENT_STATE_OFF) {
1347 			if (n >= max_count)
1348 				return -1;
1349 			evts[n] = event;
1350 			events[n] = event->hw.event_base;
1351 			current_idx[n++] = PIC_NO_INDEX;
1352 		}
1353 	}
1354 	return n;
1355 }
1356 
1357 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358 {
1359 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1360 	int n0, ret = -EAGAIN;
1361 	unsigned long flags;
1362 
1363 	local_irq_save(flags);
1364 	perf_pmu_disable(event->pmu);
1365 
1366 	n0 = cpuc->n_events;
1367 	if (n0 >= sparc_pmu->max_hw_events)
1368 		goto out;
1369 
1370 	cpuc->event[n0] = event;
1371 	cpuc->events[n0] = event->hw.event_base;
1372 	cpuc->current_idx[n0] = PIC_NO_INDEX;
1373 
1374 	event->hw.state = PERF_HES_UPTODATE;
1375 	if (!(ef_flags & PERF_EF_START))
1376 		event->hw.state |= PERF_HES_STOPPED;
1377 
1378 	/*
1379 	 * If group events scheduling transaction was started,
1380 	 * skip the schedulability test here, it will be performed
1381 	 * at commit time(->commit_txn) as a whole
1382 	 */
1383 	if (cpuc->group_flag & PERF_EVENT_TXN)
1384 		goto nocheck;
1385 
1386 	if (check_excludes(cpuc->event, n0, 1))
1387 		goto out;
1388 	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389 		goto out;
1390 
1391 nocheck:
1392 	cpuc->n_events++;
1393 	cpuc->n_added++;
1394 
1395 	ret = 0;
1396 out:
1397 	perf_pmu_enable(event->pmu);
1398 	local_irq_restore(flags);
1399 	return ret;
1400 }
1401 
1402 static int sparc_pmu_event_init(struct perf_event *event)
1403 {
1404 	struct perf_event_attr *attr = &event->attr;
1405 	struct perf_event *evts[MAX_HWEVENTS];
1406 	struct hw_perf_event *hwc = &event->hw;
1407 	unsigned long events[MAX_HWEVENTS];
1408 	int current_idx_dmy[MAX_HWEVENTS];
1409 	const struct perf_event_map *pmap;
1410 	int n;
1411 
1412 	if (atomic_read(&nmi_active) < 0)
1413 		return -ENODEV;
1414 
1415 	/* does not support taken branch sampling */
1416 	if (has_branch_stack(event))
1417 		return -EOPNOTSUPP;
1418 
1419 	switch (attr->type) {
1420 	case PERF_TYPE_HARDWARE:
1421 		if (attr->config >= sparc_pmu->max_events)
1422 			return -EINVAL;
1423 		pmap = sparc_pmu->event_map(attr->config);
1424 		break;
1425 
1426 	case PERF_TYPE_HW_CACHE:
1427 		pmap = sparc_map_cache_event(attr->config);
1428 		if (IS_ERR(pmap))
1429 			return PTR_ERR(pmap);
1430 		break;
1431 
1432 	case PERF_TYPE_RAW:
1433 		pmap = NULL;
1434 		break;
1435 
1436 	default:
1437 		return -ENOENT;
1438 
1439 	}
1440 
1441 	if (pmap) {
1442 		hwc->event_base = perf_event_encode(pmap);
1443 	} else {
1444 		/*
1445 		 * User gives us "(encoding << 16) | pic_mask" for
1446 		 * PERF_TYPE_RAW events.
1447 		 */
1448 		hwc->event_base = attr->config;
1449 	}
1450 
1451 	/* We save the enable bits in the config_base.  */
1452 	hwc->config_base = sparc_pmu->irq_bit;
1453 	if (!attr->exclude_user)
1454 		hwc->config_base |= sparc_pmu->user_bit;
1455 	if (!attr->exclude_kernel)
1456 		hwc->config_base |= sparc_pmu->priv_bit;
1457 	if (!attr->exclude_hv)
1458 		hwc->config_base |= sparc_pmu->hv_bit;
1459 
1460 	n = 0;
1461 	if (event->group_leader != event) {
1462 		n = collect_events(event->group_leader,
1463 				   sparc_pmu->max_hw_events - 1,
1464 				   evts, events, current_idx_dmy);
1465 		if (n < 0)
1466 			return -EINVAL;
1467 	}
1468 	events[n] = hwc->event_base;
1469 	evts[n] = event;
1470 
1471 	if (check_excludes(evts, n, 1))
1472 		return -EINVAL;
1473 
1474 	if (sparc_check_constraints(evts, events, n + 1))
1475 		return -EINVAL;
1476 
1477 	hwc->idx = PIC_NO_INDEX;
1478 
1479 	/* Try to do all error checking before this point, as unwinding
1480 	 * state after grabbing the PMC is difficult.
1481 	 */
1482 	perf_event_grab_pmc();
1483 	event->destroy = hw_perf_event_destroy;
1484 
1485 	if (!hwc->sample_period) {
1486 		hwc->sample_period = MAX_PERIOD;
1487 		hwc->last_period = hwc->sample_period;
1488 		local64_set(&hwc->period_left, hwc->sample_period);
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 /*
1495  * Start group events scheduling transaction
1496  * Set the flag to make pmu::enable() not perform the
1497  * schedulability test, it will be performed at commit time
1498  */
1499 static void sparc_pmu_start_txn(struct pmu *pmu)
1500 {
1501 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1502 
1503 	perf_pmu_disable(pmu);
1504 	cpuhw->group_flag |= PERF_EVENT_TXN;
1505 }
1506 
1507 /*
1508  * Stop group events scheduling transaction
1509  * Clear the flag and pmu::enable() will perform the
1510  * schedulability test.
1511  */
1512 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1513 {
1514 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1515 
1516 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1517 	perf_pmu_enable(pmu);
1518 }
1519 
1520 /*
1521  * Commit group events scheduling transaction
1522  * Perform the group schedulability test as a whole
1523  * Return 0 if success
1524  */
1525 static int sparc_pmu_commit_txn(struct pmu *pmu)
1526 {
1527 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1528 	int n;
1529 
1530 	if (!sparc_pmu)
1531 		return -EINVAL;
1532 
1533 	cpuc = &__get_cpu_var(cpu_hw_events);
1534 	n = cpuc->n_events;
1535 	if (check_excludes(cpuc->event, 0, n))
1536 		return -EINVAL;
1537 	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1538 		return -EAGAIN;
1539 
1540 	cpuc->group_flag &= ~PERF_EVENT_TXN;
1541 	perf_pmu_enable(pmu);
1542 	return 0;
1543 }
1544 
1545 static struct pmu pmu = {
1546 	.pmu_enable	= sparc_pmu_enable,
1547 	.pmu_disable	= sparc_pmu_disable,
1548 	.event_init	= sparc_pmu_event_init,
1549 	.add		= sparc_pmu_add,
1550 	.del		= sparc_pmu_del,
1551 	.start		= sparc_pmu_start,
1552 	.stop		= sparc_pmu_stop,
1553 	.read		= sparc_pmu_read,
1554 	.start_txn	= sparc_pmu_start_txn,
1555 	.cancel_txn	= sparc_pmu_cancel_txn,
1556 	.commit_txn	= sparc_pmu_commit_txn,
1557 };
1558 
1559 void perf_event_print_debug(void)
1560 {
1561 	unsigned long flags;
1562 	int cpu, i;
1563 
1564 	if (!sparc_pmu)
1565 		return;
1566 
1567 	local_irq_save(flags);
1568 
1569 	cpu = smp_processor_id();
1570 
1571 	pr_info("\n");
1572 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1573 		pr_info("CPU#%d: PCR%d[%016llx]\n",
1574 			cpu, i, pcr_ops->read_pcr(i));
1575 	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1576 		pr_info("CPU#%d: PIC%d[%016llx]\n",
1577 			cpu, i, pcr_ops->read_pic(i));
1578 
1579 	local_irq_restore(flags);
1580 }
1581 
1582 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1583 					    unsigned long cmd, void *__args)
1584 {
1585 	struct die_args *args = __args;
1586 	struct perf_sample_data data;
1587 	struct cpu_hw_events *cpuc;
1588 	struct pt_regs *regs;
1589 	int i;
1590 
1591 	if (!atomic_read(&active_events))
1592 		return NOTIFY_DONE;
1593 
1594 	switch (cmd) {
1595 	case DIE_NMI:
1596 		break;
1597 
1598 	default:
1599 		return NOTIFY_DONE;
1600 	}
1601 
1602 	regs = args->regs;
1603 
1604 	cpuc = &__get_cpu_var(cpu_hw_events);
1605 
1606 	/* If the PMU has the TOE IRQ enable bits, we need to do a
1607 	 * dummy write to the %pcr to clear the overflow bits and thus
1608 	 * the interrupt.
1609 	 *
1610 	 * Do this before we peek at the counters to determine
1611 	 * overflow so we don't lose any events.
1612 	 */
1613 	if (sparc_pmu->irq_bit &&
1614 	    sparc_pmu->num_pcrs == 1)
1615 		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1616 
1617 	for (i = 0; i < cpuc->n_events; i++) {
1618 		struct perf_event *event = cpuc->event[i];
1619 		int idx = cpuc->current_idx[i];
1620 		struct hw_perf_event *hwc;
1621 		u64 val;
1622 
1623 		if (sparc_pmu->irq_bit &&
1624 		    sparc_pmu->num_pcrs > 1)
1625 			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1626 
1627 		hwc = &event->hw;
1628 		val = sparc_perf_event_update(event, hwc, idx);
1629 		if (val & (1ULL << 31))
1630 			continue;
1631 
1632 		perf_sample_data_init(&data, 0, hwc->last_period);
1633 		if (!sparc_perf_event_set_period(event, hwc, idx))
1634 			continue;
1635 
1636 		if (perf_event_overflow(event, &data, regs))
1637 			sparc_pmu_stop(event, 0);
1638 	}
1639 
1640 	return NOTIFY_STOP;
1641 }
1642 
1643 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1644 	.notifier_call		= perf_event_nmi_handler,
1645 };
1646 
1647 static bool __init supported_pmu(void)
1648 {
1649 	if (!strcmp(sparc_pmu_type, "ultra3") ||
1650 	    !strcmp(sparc_pmu_type, "ultra3+") ||
1651 	    !strcmp(sparc_pmu_type, "ultra3i") ||
1652 	    !strcmp(sparc_pmu_type, "ultra4+")) {
1653 		sparc_pmu = &ultra3_pmu;
1654 		return true;
1655 	}
1656 	if (!strcmp(sparc_pmu_type, "niagara")) {
1657 		sparc_pmu = &niagara1_pmu;
1658 		return true;
1659 	}
1660 	if (!strcmp(sparc_pmu_type, "niagara2") ||
1661 	    !strcmp(sparc_pmu_type, "niagara3")) {
1662 		sparc_pmu = &niagara2_pmu;
1663 		return true;
1664 	}
1665 	if (!strcmp(sparc_pmu_type, "niagara4")) {
1666 		sparc_pmu = &niagara4_pmu;
1667 		return true;
1668 	}
1669 	return false;
1670 }
1671 
1672 static int __init init_hw_perf_events(void)
1673 {
1674 	pr_info("Performance events: ");
1675 
1676 	if (!supported_pmu()) {
1677 		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1678 		return 0;
1679 	}
1680 
1681 	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1682 
1683 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1684 	register_die_notifier(&perf_event_nmi_notifier);
1685 
1686 	return 0;
1687 }
1688 early_initcall(init_hw_perf_events);
1689 
1690 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1691 			   struct pt_regs *regs)
1692 {
1693 	unsigned long ksp, fp;
1694 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1695 	int graph = 0;
1696 #endif
1697 
1698 	stack_trace_flush();
1699 
1700 	perf_callchain_store(entry, regs->tpc);
1701 
1702 	ksp = regs->u_regs[UREG_I6];
1703 	fp = ksp + STACK_BIAS;
1704 	do {
1705 		struct sparc_stackf *sf;
1706 		struct pt_regs *regs;
1707 		unsigned long pc;
1708 
1709 		if (!kstack_valid(current_thread_info(), fp))
1710 			break;
1711 
1712 		sf = (struct sparc_stackf *) fp;
1713 		regs = (struct pt_regs *) (sf + 1);
1714 
1715 		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1716 			if (user_mode(regs))
1717 				break;
1718 			pc = regs->tpc;
1719 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1720 		} else {
1721 			pc = sf->callers_pc;
1722 			fp = (unsigned long)sf->fp + STACK_BIAS;
1723 		}
1724 		perf_callchain_store(entry, pc);
1725 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1726 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1727 			int index = current->curr_ret_stack;
1728 			if (current->ret_stack && index >= graph) {
1729 				pc = current->ret_stack[index - graph].ret;
1730 				perf_callchain_store(entry, pc);
1731 				graph++;
1732 			}
1733 		}
1734 #endif
1735 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1736 }
1737 
1738 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1739 				   struct pt_regs *regs)
1740 {
1741 	unsigned long ufp;
1742 
1743 	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1744 	do {
1745 		struct sparc_stackf __user *usf;
1746 		struct sparc_stackf sf;
1747 		unsigned long pc;
1748 
1749 		usf = (struct sparc_stackf __user *)ufp;
1750 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1751 			break;
1752 
1753 		pc = sf.callers_pc;
1754 		ufp = (unsigned long)sf.fp + STACK_BIAS;
1755 		perf_callchain_store(entry, pc);
1756 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1757 }
1758 
1759 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1760 				   struct pt_regs *regs)
1761 {
1762 	unsigned long ufp;
1763 
1764 	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1765 	do {
1766 		unsigned long pc;
1767 
1768 		if (thread32_stack_is_64bit(ufp)) {
1769 			struct sparc_stackf __user *usf;
1770 			struct sparc_stackf sf;
1771 
1772 			ufp += STACK_BIAS;
1773 			usf = (struct sparc_stackf __user *)ufp;
1774 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1775 				break;
1776 			pc = sf.callers_pc & 0xffffffff;
1777 			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1778 		} else {
1779 			struct sparc_stackf32 __user *usf;
1780 			struct sparc_stackf32 sf;
1781 			usf = (struct sparc_stackf32 __user *)ufp;
1782 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1783 				break;
1784 			pc = sf.callers_pc;
1785 			ufp = (unsigned long)sf.fp;
1786 		}
1787 		perf_callchain_store(entry, pc);
1788 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1789 }
1790 
1791 void
1792 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1793 {
1794 	perf_callchain_store(entry, regs->tpc);
1795 
1796 	if (!current->mm)
1797 		return;
1798 
1799 	flushw_user();
1800 	if (test_thread_flag(TIF_32BIT))
1801 		perf_callchain_user_32(entry, regs);
1802 	else
1803 		perf_callchain_user_64(entry, regs);
1804 }
1805