xref: /openbmc/linux/arch/sparc/kernel/perf_event.c (revision ba61bb17)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Performance event support for sparc64.
3  *
4  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5  *
6  * This code is based almost entirely upon the x86 perf event
7  * code, which is:
8  *
9  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11  *  Copyright (C) 2009 Jaswinder Singh Rajput
12  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
14  */
15 
16 #include <linux/perf_event.h>
17 #include <linux/kprobes.h>
18 #include <linux/ftrace.h>
19 #include <linux/kernel.h>
20 #include <linux/kdebug.h>
21 #include <linux/mutex.h>
22 
23 #include <asm/stacktrace.h>
24 #include <asm/cpudata.h>
25 #include <linux/uaccess.h>
26 #include <linux/atomic.h>
27 #include <asm/nmi.h>
28 #include <asm/pcr.h>
29 #include <asm/cacheflush.h>
30 
31 #include "kernel.h"
32 #include "kstack.h"
33 
34 /* Two classes of sparc64 chips currently exist.  All of which have
35  * 32-bit counters which can generate overflow interrupts on the
36  * transition from 0xffffffff to 0.
37  *
38  * All chips upto and including SPARC-T3 have two performance
39  * counters.  The two 32-bit counters are accessed in one go using a
40  * single 64-bit register.
41  *
42  * On these older chips both counters are controlled using a single
43  * control register.  The only way to stop all sampling is to clear
44  * all of the context (user, supervisor, hypervisor) sampling enable
45  * bits.  But these bits apply to both counters, thus the two counters
46  * can't be enabled/disabled individually.
47  *
48  * Furthermore, the control register on these older chips have two
49  * event fields, one for each of the two counters.  It's thus nearly
50  * impossible to have one counter going while keeping the other one
51  * stopped.  Therefore it is possible to get overflow interrupts for
52  * counters not currently "in use" and that condition must be checked
53  * in the overflow interrupt handler.
54  *
55  * So we use a hack, in that we program inactive counters with the
56  * "sw_count0" and "sw_count1" events.  These count how many times
57  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
58  * unusual way to encode a NOP and therefore will not trigger in
59  * normal code.
60  *
61  * Starting with SPARC-T4 we have one control register per counter.
62  * And the counters are stored in individual registers.  The registers
63  * for the counters are 64-bit but only a 32-bit counter is
64  * implemented.  The event selections on SPARC-T4 lack any
65  * restrictions, therefore we can elide all of the complicated
66  * conflict resolution code we have for SPARC-T3 and earlier chips.
67  */
68 
69 #define MAX_HWEVENTS			4
70 #define MAX_PCRS			4
71 #define MAX_PERIOD			((1UL << 32) - 1)
72 
73 #define PIC_UPPER_INDEX			0
74 #define PIC_LOWER_INDEX			1
75 #define PIC_NO_INDEX			-1
76 
77 struct cpu_hw_events {
78 	/* Number of events currently scheduled onto this cpu.
79 	 * This tells how many entries in the arrays below
80 	 * are valid.
81 	 */
82 	int			n_events;
83 
84 	/* Number of new events added since the last hw_perf_disable().
85 	 * This works because the perf event layer always adds new
86 	 * events inside of a perf_{disable,enable}() sequence.
87 	 */
88 	int			n_added;
89 
90 	/* Array of events current scheduled on this cpu.  */
91 	struct perf_event	*event[MAX_HWEVENTS];
92 
93 	/* Array of encoded longs, specifying the %pcr register
94 	 * encoding and the mask of PIC counters this even can
95 	 * be scheduled on.  See perf_event_encode() et al.
96 	 */
97 	unsigned long		events[MAX_HWEVENTS];
98 
99 	/* The current counter index assigned to an event.  When the
100 	 * event hasn't been programmed into the cpu yet, this will
101 	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
102 	 * we ought to schedule the event.
103 	 */
104 	int			current_idx[MAX_HWEVENTS];
105 
106 	/* Software copy of %pcr register(s) on this cpu.  */
107 	u64			pcr[MAX_HWEVENTS];
108 
109 	/* Enabled/disable state.  */
110 	int			enabled;
111 
112 	unsigned int		txn_flags;
113 };
114 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
115 
116 /* An event map describes the characteristics of a performance
117  * counter event.  In particular it gives the encoding as well as
118  * a mask telling which counters the event can be measured on.
119  *
120  * The mask is unused on SPARC-T4 and later.
121  */
122 struct perf_event_map {
123 	u16	encoding;
124 	u8	pic_mask;
125 #define PIC_NONE	0x00
126 #define PIC_UPPER	0x01
127 #define PIC_LOWER	0x02
128 };
129 
130 /* Encode a perf_event_map entry into a long.  */
131 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
132 {
133 	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
134 }
135 
136 static u8 perf_event_get_msk(unsigned long val)
137 {
138 	return val & 0xff;
139 }
140 
141 static u64 perf_event_get_enc(unsigned long val)
142 {
143 	return val >> 16;
144 }
145 
146 #define C(x) PERF_COUNT_HW_CACHE_##x
147 
148 #define CACHE_OP_UNSUPPORTED	0xfffe
149 #define CACHE_OP_NONSENSE	0xffff
150 
151 typedef struct perf_event_map cache_map_t
152 				[PERF_COUNT_HW_CACHE_MAX]
153 				[PERF_COUNT_HW_CACHE_OP_MAX]
154 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
155 
156 struct sparc_pmu {
157 	const struct perf_event_map	*(*event_map)(int);
158 	const cache_map_t		*cache_map;
159 	int				max_events;
160 	u32				(*read_pmc)(int);
161 	void				(*write_pmc)(int, u64);
162 	int				upper_shift;
163 	int				lower_shift;
164 	int				event_mask;
165 	int				user_bit;
166 	int				priv_bit;
167 	int				hv_bit;
168 	int				irq_bit;
169 	int				upper_nop;
170 	int				lower_nop;
171 	unsigned int			flags;
172 #define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
173 #define SPARC_PMU_HAS_CONFLICTS		0x00000002
174 	int				max_hw_events;
175 	int				num_pcrs;
176 	int				num_pic_regs;
177 };
178 
179 static u32 sparc_default_read_pmc(int idx)
180 {
181 	u64 val;
182 
183 	val = pcr_ops->read_pic(0);
184 	if (idx == PIC_UPPER_INDEX)
185 		val >>= 32;
186 
187 	return val & 0xffffffff;
188 }
189 
190 static void sparc_default_write_pmc(int idx, u64 val)
191 {
192 	u64 shift, mask, pic;
193 
194 	shift = 0;
195 	if (idx == PIC_UPPER_INDEX)
196 		shift = 32;
197 
198 	mask = ((u64) 0xffffffff) << shift;
199 	val <<= shift;
200 
201 	pic = pcr_ops->read_pic(0);
202 	pic &= ~mask;
203 	pic |= val;
204 	pcr_ops->write_pic(0, pic);
205 }
206 
207 static const struct perf_event_map ultra3_perfmon_event_map[] = {
208 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
209 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
210 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
211 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
212 };
213 
214 static const struct perf_event_map *ultra3_event_map(int event_id)
215 {
216 	return &ultra3_perfmon_event_map[event_id];
217 }
218 
219 static const cache_map_t ultra3_cache_map = {
220 [C(L1D)] = {
221 	[C(OP_READ)] = {
222 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
223 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
224 	},
225 	[C(OP_WRITE)] = {
226 		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
227 		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
228 	},
229 	[C(OP_PREFETCH)] = {
230 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
231 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
232 	},
233 },
234 [C(L1I)] = {
235 	[C(OP_READ)] = {
236 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
237 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
238 	},
239 	[ C(OP_WRITE) ] = {
240 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
241 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
242 	},
243 	[ C(OP_PREFETCH) ] = {
244 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
245 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
246 	},
247 },
248 [C(LL)] = {
249 	[C(OP_READ)] = {
250 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
251 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
252 	},
253 	[C(OP_WRITE)] = {
254 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
255 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
256 	},
257 	[C(OP_PREFETCH)] = {
258 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
259 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
260 	},
261 },
262 [C(DTLB)] = {
263 	[C(OP_READ)] = {
264 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
265 		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
266 	},
267 	[ C(OP_WRITE) ] = {
268 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
269 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
270 	},
271 	[ C(OP_PREFETCH) ] = {
272 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
273 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
274 	},
275 },
276 [C(ITLB)] = {
277 	[C(OP_READ)] = {
278 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
279 		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
280 	},
281 	[ C(OP_WRITE) ] = {
282 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
283 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
284 	},
285 	[ C(OP_PREFETCH) ] = {
286 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
287 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
288 	},
289 },
290 [C(BPU)] = {
291 	[C(OP_READ)] = {
292 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
293 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
294 	},
295 	[ C(OP_WRITE) ] = {
296 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
297 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
298 	},
299 	[ C(OP_PREFETCH) ] = {
300 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
301 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
302 	},
303 },
304 [C(NODE)] = {
305 	[C(OP_READ)] = {
306 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
308 	},
309 	[ C(OP_WRITE) ] = {
310 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
311 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
312 	},
313 	[ C(OP_PREFETCH) ] = {
314 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
315 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
316 	},
317 },
318 };
319 
320 static const struct sparc_pmu ultra3_pmu = {
321 	.event_map	= ultra3_event_map,
322 	.cache_map	= &ultra3_cache_map,
323 	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
324 	.read_pmc	= sparc_default_read_pmc,
325 	.write_pmc	= sparc_default_write_pmc,
326 	.upper_shift	= 11,
327 	.lower_shift	= 4,
328 	.event_mask	= 0x3f,
329 	.user_bit	= PCR_UTRACE,
330 	.priv_bit	= PCR_STRACE,
331 	.upper_nop	= 0x1c,
332 	.lower_nop	= 0x14,
333 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
334 			   SPARC_PMU_HAS_CONFLICTS),
335 	.max_hw_events	= 2,
336 	.num_pcrs	= 1,
337 	.num_pic_regs	= 1,
338 };
339 
340 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
341  * only instructions, so it is free running which creates all kinds of
342  * problems.  Some hardware designs make one wonder if the creator
343  * even looked at how this stuff gets used by software.
344  */
345 static const struct perf_event_map niagara1_perfmon_event_map[] = {
346 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
347 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
348 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
349 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
350 };
351 
352 static const struct perf_event_map *niagara1_event_map(int event_id)
353 {
354 	return &niagara1_perfmon_event_map[event_id];
355 }
356 
357 static const cache_map_t niagara1_cache_map = {
358 [C(L1D)] = {
359 	[C(OP_READ)] = {
360 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
361 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
362 	},
363 	[C(OP_WRITE)] = {
364 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
365 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
366 	},
367 	[C(OP_PREFETCH)] = {
368 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
369 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
370 	},
371 },
372 [C(L1I)] = {
373 	[C(OP_READ)] = {
374 		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
375 		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
376 	},
377 	[ C(OP_WRITE) ] = {
378 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
379 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
380 	},
381 	[ C(OP_PREFETCH) ] = {
382 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
383 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
384 	},
385 },
386 [C(LL)] = {
387 	[C(OP_READ)] = {
388 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
389 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
390 	},
391 	[C(OP_WRITE)] = {
392 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
393 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
394 	},
395 	[C(OP_PREFETCH)] = {
396 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
397 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
398 	},
399 },
400 [C(DTLB)] = {
401 	[C(OP_READ)] = {
402 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
403 		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
404 	},
405 	[ C(OP_WRITE) ] = {
406 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
407 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
408 	},
409 	[ C(OP_PREFETCH) ] = {
410 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
411 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
412 	},
413 },
414 [C(ITLB)] = {
415 	[C(OP_READ)] = {
416 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
417 		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
418 	},
419 	[ C(OP_WRITE) ] = {
420 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
421 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
422 	},
423 	[ C(OP_PREFETCH) ] = {
424 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
425 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
426 	},
427 },
428 [C(BPU)] = {
429 	[C(OP_READ)] = {
430 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432 	},
433 	[ C(OP_WRITE) ] = {
434 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
435 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
436 	},
437 	[ C(OP_PREFETCH) ] = {
438 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
439 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
440 	},
441 },
442 [C(NODE)] = {
443 	[C(OP_READ)] = {
444 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
445 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
446 	},
447 	[ C(OP_WRITE) ] = {
448 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
449 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
450 	},
451 	[ C(OP_PREFETCH) ] = {
452 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
453 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
454 	},
455 },
456 };
457 
458 static const struct sparc_pmu niagara1_pmu = {
459 	.event_map	= niagara1_event_map,
460 	.cache_map	= &niagara1_cache_map,
461 	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
462 	.read_pmc	= sparc_default_read_pmc,
463 	.write_pmc	= sparc_default_write_pmc,
464 	.upper_shift	= 0,
465 	.lower_shift	= 4,
466 	.event_mask	= 0x7,
467 	.user_bit	= PCR_UTRACE,
468 	.priv_bit	= PCR_STRACE,
469 	.upper_nop	= 0x0,
470 	.lower_nop	= 0x0,
471 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
472 			   SPARC_PMU_HAS_CONFLICTS),
473 	.max_hw_events	= 2,
474 	.num_pcrs	= 1,
475 	.num_pic_regs	= 1,
476 };
477 
478 static const struct perf_event_map niagara2_perfmon_event_map[] = {
479 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
481 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
482 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
483 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
484 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
485 };
486 
487 static const struct perf_event_map *niagara2_event_map(int event_id)
488 {
489 	return &niagara2_perfmon_event_map[event_id];
490 }
491 
492 static const cache_map_t niagara2_cache_map = {
493 [C(L1D)] = {
494 	[C(OP_READ)] = {
495 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
496 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
497 	},
498 	[C(OP_WRITE)] = {
499 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
500 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
501 	},
502 	[C(OP_PREFETCH)] = {
503 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
504 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
505 	},
506 },
507 [C(L1I)] = {
508 	[C(OP_READ)] = {
509 		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
510 		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
511 	},
512 	[ C(OP_WRITE) ] = {
513 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
514 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
515 	},
516 	[ C(OP_PREFETCH) ] = {
517 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
518 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
519 	},
520 },
521 [C(LL)] = {
522 	[C(OP_READ)] = {
523 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
524 		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
525 	},
526 	[C(OP_WRITE)] = {
527 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
528 		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
529 	},
530 	[C(OP_PREFETCH)] = {
531 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
532 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
533 	},
534 },
535 [C(DTLB)] = {
536 	[C(OP_READ)] = {
537 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
538 		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
539 	},
540 	[ C(OP_WRITE) ] = {
541 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
542 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
543 	},
544 	[ C(OP_PREFETCH) ] = {
545 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
546 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
547 	},
548 },
549 [C(ITLB)] = {
550 	[C(OP_READ)] = {
551 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
552 		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
553 	},
554 	[ C(OP_WRITE) ] = {
555 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
556 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
557 	},
558 	[ C(OP_PREFETCH) ] = {
559 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
560 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
561 	},
562 },
563 [C(BPU)] = {
564 	[C(OP_READ)] = {
565 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
566 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
567 	},
568 	[ C(OP_WRITE) ] = {
569 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
570 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
571 	},
572 	[ C(OP_PREFETCH) ] = {
573 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
574 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
575 	},
576 },
577 [C(NODE)] = {
578 	[C(OP_READ)] = {
579 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
580 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
581 	},
582 	[ C(OP_WRITE) ] = {
583 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
584 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
585 	},
586 	[ C(OP_PREFETCH) ] = {
587 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
588 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
589 	},
590 },
591 };
592 
593 static const struct sparc_pmu niagara2_pmu = {
594 	.event_map	= niagara2_event_map,
595 	.cache_map	= &niagara2_cache_map,
596 	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
597 	.read_pmc	= sparc_default_read_pmc,
598 	.write_pmc	= sparc_default_write_pmc,
599 	.upper_shift	= 19,
600 	.lower_shift	= 6,
601 	.event_mask	= 0xfff,
602 	.user_bit	= PCR_UTRACE,
603 	.priv_bit	= PCR_STRACE,
604 	.hv_bit		= PCR_N2_HTRACE,
605 	.irq_bit	= 0x30,
606 	.upper_nop	= 0x220,
607 	.lower_nop	= 0x220,
608 	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
609 			   SPARC_PMU_HAS_CONFLICTS),
610 	.max_hw_events	= 2,
611 	.num_pcrs	= 1,
612 	.num_pic_regs	= 1,
613 };
614 
615 static const struct perf_event_map niagara4_perfmon_event_map[] = {
616 	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
617 	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
618 	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
619 	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
620 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
621 	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
622 };
623 
624 static const struct perf_event_map *niagara4_event_map(int event_id)
625 {
626 	return &niagara4_perfmon_event_map[event_id];
627 }
628 
629 static const cache_map_t niagara4_cache_map = {
630 [C(L1D)] = {
631 	[C(OP_READ)] = {
632 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
633 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
634 	},
635 	[C(OP_WRITE)] = {
636 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
637 		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
638 	},
639 	[C(OP_PREFETCH)] = {
640 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
641 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
642 	},
643 },
644 [C(L1I)] = {
645 	[C(OP_READ)] = {
646 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
647 		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
648 	},
649 	[ C(OP_WRITE) ] = {
650 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
651 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
652 	},
653 	[ C(OP_PREFETCH) ] = {
654 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
655 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
656 	},
657 },
658 [C(LL)] = {
659 	[C(OP_READ)] = {
660 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
661 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
662 	},
663 	[C(OP_WRITE)] = {
664 		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
665 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
666 	},
667 	[C(OP_PREFETCH)] = {
668 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
669 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
670 	},
671 },
672 [C(DTLB)] = {
673 	[C(OP_READ)] = {
674 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
675 		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
676 	},
677 	[ C(OP_WRITE) ] = {
678 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
679 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
680 	},
681 	[ C(OP_PREFETCH) ] = {
682 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
683 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
684 	},
685 },
686 [C(ITLB)] = {
687 	[C(OP_READ)] = {
688 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
689 		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
690 	},
691 	[ C(OP_WRITE) ] = {
692 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
693 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
694 	},
695 	[ C(OP_PREFETCH) ] = {
696 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
697 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
698 	},
699 },
700 [C(BPU)] = {
701 	[C(OP_READ)] = {
702 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
703 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
704 	},
705 	[ C(OP_WRITE) ] = {
706 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
707 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
708 	},
709 	[ C(OP_PREFETCH) ] = {
710 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
711 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
712 	},
713 },
714 [C(NODE)] = {
715 	[C(OP_READ)] = {
716 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
717 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
718 	},
719 	[ C(OP_WRITE) ] = {
720 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
721 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
722 	},
723 	[ C(OP_PREFETCH) ] = {
724 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
725 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
726 	},
727 },
728 };
729 
730 static u32 sparc_vt_read_pmc(int idx)
731 {
732 	u64 val = pcr_ops->read_pic(idx);
733 
734 	return val & 0xffffffff;
735 }
736 
737 static void sparc_vt_write_pmc(int idx, u64 val)
738 {
739 	u64 pcr;
740 
741 	pcr = pcr_ops->read_pcr(idx);
742 	/* ensure ov and ntc are reset */
743 	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
744 
745 	pcr_ops->write_pic(idx, val & 0xffffffff);
746 
747 	pcr_ops->write_pcr(idx, pcr);
748 }
749 
750 static const struct sparc_pmu niagara4_pmu = {
751 	.event_map	= niagara4_event_map,
752 	.cache_map	= &niagara4_cache_map,
753 	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
754 	.read_pmc	= sparc_vt_read_pmc,
755 	.write_pmc	= sparc_vt_write_pmc,
756 	.upper_shift	= 5,
757 	.lower_shift	= 5,
758 	.event_mask	= 0x7ff,
759 	.user_bit	= PCR_N4_UTRACE,
760 	.priv_bit	= PCR_N4_STRACE,
761 
762 	/* We explicitly don't support hypervisor tracing.  The T4
763 	 * generates the overflow event for precise events via a trap
764 	 * which will not be generated (ie. it's completely lost) if
765 	 * we happen to be in the hypervisor when the event triggers.
766 	 * Essentially, the overflow event reporting is completely
767 	 * unusable when you have hypervisor mode tracing enabled.
768 	 */
769 	.hv_bit		= 0,
770 
771 	.irq_bit	= PCR_N4_TOE,
772 	.upper_nop	= 0,
773 	.lower_nop	= 0,
774 	.flags		= 0,
775 	.max_hw_events	= 4,
776 	.num_pcrs	= 4,
777 	.num_pic_regs	= 4,
778 };
779 
780 static const struct sparc_pmu sparc_m7_pmu = {
781 	.event_map	= niagara4_event_map,
782 	.cache_map	= &niagara4_cache_map,
783 	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
784 	.read_pmc	= sparc_vt_read_pmc,
785 	.write_pmc	= sparc_vt_write_pmc,
786 	.upper_shift	= 5,
787 	.lower_shift	= 5,
788 	.event_mask	= 0x7ff,
789 	.user_bit	= PCR_N4_UTRACE,
790 	.priv_bit	= PCR_N4_STRACE,
791 
792 	/* We explicitly don't support hypervisor tracing. */
793 	.hv_bit		= 0,
794 
795 	.irq_bit	= PCR_N4_TOE,
796 	.upper_nop	= 0,
797 	.lower_nop	= 0,
798 	.flags		= 0,
799 	.max_hw_events	= 4,
800 	.num_pcrs	= 4,
801 	.num_pic_regs	= 4,
802 };
803 static const struct sparc_pmu *sparc_pmu __read_mostly;
804 
805 static u64 event_encoding(u64 event_id, int idx)
806 {
807 	if (idx == PIC_UPPER_INDEX)
808 		event_id <<= sparc_pmu->upper_shift;
809 	else
810 		event_id <<= sparc_pmu->lower_shift;
811 	return event_id;
812 }
813 
814 static u64 mask_for_index(int idx)
815 {
816 	return event_encoding(sparc_pmu->event_mask, idx);
817 }
818 
819 static u64 nop_for_index(int idx)
820 {
821 	return event_encoding(idx == PIC_UPPER_INDEX ?
822 			      sparc_pmu->upper_nop :
823 			      sparc_pmu->lower_nop, idx);
824 }
825 
826 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
827 {
828 	u64 enc, val, mask = mask_for_index(idx);
829 	int pcr_index = 0;
830 
831 	if (sparc_pmu->num_pcrs > 1)
832 		pcr_index = idx;
833 
834 	enc = perf_event_get_enc(cpuc->events[idx]);
835 
836 	val = cpuc->pcr[pcr_index];
837 	val &= ~mask;
838 	val |= event_encoding(enc, idx);
839 	cpuc->pcr[pcr_index] = val;
840 
841 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
842 }
843 
844 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
845 {
846 	u64 mask = mask_for_index(idx);
847 	u64 nop = nop_for_index(idx);
848 	int pcr_index = 0;
849 	u64 val;
850 
851 	if (sparc_pmu->num_pcrs > 1)
852 		pcr_index = idx;
853 
854 	val = cpuc->pcr[pcr_index];
855 	val &= ~mask;
856 	val |= nop;
857 	cpuc->pcr[pcr_index] = val;
858 
859 	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
860 }
861 
862 static u64 sparc_perf_event_update(struct perf_event *event,
863 				   struct hw_perf_event *hwc, int idx)
864 {
865 	int shift = 64 - 32;
866 	u64 prev_raw_count, new_raw_count;
867 	s64 delta;
868 
869 again:
870 	prev_raw_count = local64_read(&hwc->prev_count);
871 	new_raw_count = sparc_pmu->read_pmc(idx);
872 
873 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
874 			     new_raw_count) != prev_raw_count)
875 		goto again;
876 
877 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
878 	delta >>= shift;
879 
880 	local64_add(delta, &event->count);
881 	local64_sub(delta, &hwc->period_left);
882 
883 	return new_raw_count;
884 }
885 
886 static int sparc_perf_event_set_period(struct perf_event *event,
887 				       struct hw_perf_event *hwc, int idx)
888 {
889 	s64 left = local64_read(&hwc->period_left);
890 	s64 period = hwc->sample_period;
891 	int ret = 0;
892 
893 	if (unlikely(left <= -period)) {
894 		left = period;
895 		local64_set(&hwc->period_left, left);
896 		hwc->last_period = period;
897 		ret = 1;
898 	}
899 
900 	if (unlikely(left <= 0)) {
901 		left += period;
902 		local64_set(&hwc->period_left, left);
903 		hwc->last_period = period;
904 		ret = 1;
905 	}
906 	if (left > MAX_PERIOD)
907 		left = MAX_PERIOD;
908 
909 	local64_set(&hwc->prev_count, (u64)-left);
910 
911 	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
912 
913 	perf_event_update_userpage(event);
914 
915 	return ret;
916 }
917 
918 static void read_in_all_counters(struct cpu_hw_events *cpuc)
919 {
920 	int i;
921 
922 	for (i = 0; i < cpuc->n_events; i++) {
923 		struct perf_event *cp = cpuc->event[i];
924 
925 		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
926 		    cpuc->current_idx[i] != cp->hw.idx) {
927 			sparc_perf_event_update(cp, &cp->hw,
928 						cpuc->current_idx[i]);
929 			cpuc->current_idx[i] = PIC_NO_INDEX;
930 		}
931 	}
932 }
933 
934 /* On this PMU all PICs are programmed using a single PCR.  Calculate
935  * the combined control register value.
936  *
937  * For such chips we require that all of the events have the same
938  * configuration, so just fetch the settings from the first entry.
939  */
940 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
941 {
942 	int i;
943 
944 	if (!cpuc->n_added)
945 		goto out;
946 
947 	/* Assign to counters all unassigned events.  */
948 	for (i = 0; i < cpuc->n_events; i++) {
949 		struct perf_event *cp = cpuc->event[i];
950 		struct hw_perf_event *hwc = &cp->hw;
951 		int idx = hwc->idx;
952 		u64 enc;
953 
954 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
955 			continue;
956 
957 		sparc_perf_event_set_period(cp, hwc, idx);
958 		cpuc->current_idx[i] = idx;
959 
960 		enc = perf_event_get_enc(cpuc->events[i]);
961 		cpuc->pcr[0] &= ~mask_for_index(idx);
962 		if (hwc->state & PERF_HES_STOPPED)
963 			cpuc->pcr[0] |= nop_for_index(idx);
964 		else
965 			cpuc->pcr[0] |= event_encoding(enc, idx);
966 	}
967 out:
968 	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
969 }
970 
971 static void sparc_pmu_start(struct perf_event *event, int flags);
972 
973 /* On this PMU each PIC has it's own PCR control register.  */
974 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
975 {
976 	int i;
977 
978 	if (!cpuc->n_added)
979 		goto out;
980 
981 	for (i = 0; i < cpuc->n_events; i++) {
982 		struct perf_event *cp = cpuc->event[i];
983 		struct hw_perf_event *hwc = &cp->hw;
984 		int idx = hwc->idx;
985 
986 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
987 			continue;
988 
989 		cpuc->current_idx[i] = idx;
990 
991 		sparc_pmu_start(cp, PERF_EF_RELOAD);
992 	}
993 out:
994 	for (i = 0; i < cpuc->n_events; i++) {
995 		struct perf_event *cp = cpuc->event[i];
996 		int idx = cp->hw.idx;
997 
998 		cpuc->pcr[idx] |= cp->hw.config_base;
999 	}
1000 }
1001 
1002 /* If performance event entries have been added, move existing events
1003  * around (if necessary) and then assign new entries to counters.
1004  */
1005 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1006 {
1007 	if (cpuc->n_added)
1008 		read_in_all_counters(cpuc);
1009 
1010 	if (sparc_pmu->num_pcrs == 1) {
1011 		calculate_single_pcr(cpuc);
1012 	} else {
1013 		calculate_multiple_pcrs(cpuc);
1014 	}
1015 }
1016 
1017 static void sparc_pmu_enable(struct pmu *pmu)
1018 {
1019 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020 	int i;
1021 
1022 	if (cpuc->enabled)
1023 		return;
1024 
1025 	cpuc->enabled = 1;
1026 	barrier();
1027 
1028 	if (cpuc->n_events)
1029 		update_pcrs_for_enable(cpuc);
1030 
1031 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1032 		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1033 }
1034 
1035 static void sparc_pmu_disable(struct pmu *pmu)
1036 {
1037 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1038 	int i;
1039 
1040 	if (!cpuc->enabled)
1041 		return;
1042 
1043 	cpuc->enabled = 0;
1044 	cpuc->n_added = 0;
1045 
1046 	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1047 		u64 val = cpuc->pcr[i];
1048 
1049 		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1050 			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1051 		cpuc->pcr[i] = val;
1052 		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1053 	}
1054 }
1055 
1056 static int active_event_index(struct cpu_hw_events *cpuc,
1057 			      struct perf_event *event)
1058 {
1059 	int i;
1060 
1061 	for (i = 0; i < cpuc->n_events; i++) {
1062 		if (cpuc->event[i] == event)
1063 			break;
1064 	}
1065 	BUG_ON(i == cpuc->n_events);
1066 	return cpuc->current_idx[i];
1067 }
1068 
1069 static void sparc_pmu_start(struct perf_event *event, int flags)
1070 {
1071 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1072 	int idx = active_event_index(cpuc, event);
1073 
1074 	if (flags & PERF_EF_RELOAD) {
1075 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1076 		sparc_perf_event_set_period(event, &event->hw, idx);
1077 	}
1078 
1079 	event->hw.state = 0;
1080 
1081 	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1082 }
1083 
1084 static void sparc_pmu_stop(struct perf_event *event, int flags)
1085 {
1086 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1087 	int idx = active_event_index(cpuc, event);
1088 
1089 	if (!(event->hw.state & PERF_HES_STOPPED)) {
1090 		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1091 		event->hw.state |= PERF_HES_STOPPED;
1092 	}
1093 
1094 	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1095 		sparc_perf_event_update(event, &event->hw, idx);
1096 		event->hw.state |= PERF_HES_UPTODATE;
1097 	}
1098 }
1099 
1100 static void sparc_pmu_del(struct perf_event *event, int _flags)
1101 {
1102 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1103 	unsigned long flags;
1104 	int i;
1105 
1106 	local_irq_save(flags);
1107 
1108 	for (i = 0; i < cpuc->n_events; i++) {
1109 		if (event == cpuc->event[i]) {
1110 			/* Absorb the final count and turn off the
1111 			 * event.
1112 			 */
1113 			sparc_pmu_stop(event, PERF_EF_UPDATE);
1114 
1115 			/* Shift remaining entries down into
1116 			 * the existing slot.
1117 			 */
1118 			while (++i < cpuc->n_events) {
1119 				cpuc->event[i - 1] = cpuc->event[i];
1120 				cpuc->events[i - 1] = cpuc->events[i];
1121 				cpuc->current_idx[i - 1] =
1122 					cpuc->current_idx[i];
1123 			}
1124 
1125 			perf_event_update_userpage(event);
1126 
1127 			cpuc->n_events--;
1128 			break;
1129 		}
1130 	}
1131 
1132 	local_irq_restore(flags);
1133 }
1134 
1135 static void sparc_pmu_read(struct perf_event *event)
1136 {
1137 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1138 	int idx = active_event_index(cpuc, event);
1139 	struct hw_perf_event *hwc = &event->hw;
1140 
1141 	sparc_perf_event_update(event, hwc, idx);
1142 }
1143 
1144 static atomic_t active_events = ATOMIC_INIT(0);
1145 static DEFINE_MUTEX(pmc_grab_mutex);
1146 
1147 static void perf_stop_nmi_watchdog(void *unused)
1148 {
1149 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150 	int i;
1151 
1152 	stop_nmi_watchdog(NULL);
1153 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1154 		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1155 }
1156 
1157 static void perf_event_grab_pmc(void)
1158 {
1159 	if (atomic_inc_not_zero(&active_events))
1160 		return;
1161 
1162 	mutex_lock(&pmc_grab_mutex);
1163 	if (atomic_read(&active_events) == 0) {
1164 		if (atomic_read(&nmi_active) > 0) {
1165 			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1166 			BUG_ON(atomic_read(&nmi_active) != 0);
1167 		}
1168 		atomic_inc(&active_events);
1169 	}
1170 	mutex_unlock(&pmc_grab_mutex);
1171 }
1172 
1173 static void perf_event_release_pmc(void)
1174 {
1175 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1176 		if (atomic_read(&nmi_active) == 0)
1177 			on_each_cpu(start_nmi_watchdog, NULL, 1);
1178 		mutex_unlock(&pmc_grab_mutex);
1179 	}
1180 }
1181 
1182 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1183 {
1184 	unsigned int cache_type, cache_op, cache_result;
1185 	const struct perf_event_map *pmap;
1186 
1187 	if (!sparc_pmu->cache_map)
1188 		return ERR_PTR(-ENOENT);
1189 
1190 	cache_type = (config >>  0) & 0xff;
1191 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1192 		return ERR_PTR(-EINVAL);
1193 
1194 	cache_op = (config >>  8) & 0xff;
1195 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1196 		return ERR_PTR(-EINVAL);
1197 
1198 	cache_result = (config >> 16) & 0xff;
1199 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1200 		return ERR_PTR(-EINVAL);
1201 
1202 	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1203 
1204 	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1205 		return ERR_PTR(-ENOENT);
1206 
1207 	if (pmap->encoding == CACHE_OP_NONSENSE)
1208 		return ERR_PTR(-EINVAL);
1209 
1210 	return pmap;
1211 }
1212 
1213 static void hw_perf_event_destroy(struct perf_event *event)
1214 {
1215 	perf_event_release_pmc();
1216 }
1217 
1218 /* Make sure all events can be scheduled into the hardware at
1219  * the same time.  This is simplified by the fact that we only
1220  * need to support 2 simultaneous HW events.
1221  *
1222  * As a side effect, the evts[]->hw.idx values will be assigned
1223  * on success.  These are pending indexes.  When the events are
1224  * actually programmed into the chip, these values will propagate
1225  * to the per-cpu cpuc->current_idx[] slots, see the code in
1226  * maybe_change_configuration() for details.
1227  */
1228 static int sparc_check_constraints(struct perf_event **evts,
1229 				   unsigned long *events, int n_ev)
1230 {
1231 	u8 msk0 = 0, msk1 = 0;
1232 	int idx0 = 0;
1233 
1234 	/* This case is possible when we are invoked from
1235 	 * hw_perf_group_sched_in().
1236 	 */
1237 	if (!n_ev)
1238 		return 0;
1239 
1240 	if (n_ev > sparc_pmu->max_hw_events)
1241 		return -1;
1242 
1243 	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1244 		int i;
1245 
1246 		for (i = 0; i < n_ev; i++)
1247 			evts[i]->hw.idx = i;
1248 		return 0;
1249 	}
1250 
1251 	msk0 = perf_event_get_msk(events[0]);
1252 	if (n_ev == 1) {
1253 		if (msk0 & PIC_LOWER)
1254 			idx0 = 1;
1255 		goto success;
1256 	}
1257 	BUG_ON(n_ev != 2);
1258 	msk1 = perf_event_get_msk(events[1]);
1259 
1260 	/* If both events can go on any counter, OK.  */
1261 	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1262 	    msk1 == (PIC_UPPER | PIC_LOWER))
1263 		goto success;
1264 
1265 	/* If one event is limited to a specific counter,
1266 	 * and the other can go on both, OK.
1267 	 */
1268 	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1269 	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1270 		if (msk0 & PIC_LOWER)
1271 			idx0 = 1;
1272 		goto success;
1273 	}
1274 
1275 	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1276 	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1277 		if (msk1 & PIC_UPPER)
1278 			idx0 = 1;
1279 		goto success;
1280 	}
1281 
1282 	/* If the events are fixed to different counters, OK.  */
1283 	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1284 	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1285 		if (msk0 & PIC_LOWER)
1286 			idx0 = 1;
1287 		goto success;
1288 	}
1289 
1290 	/* Otherwise, there is a conflict.  */
1291 	return -1;
1292 
1293 success:
1294 	evts[0]->hw.idx = idx0;
1295 	if (n_ev == 2)
1296 		evts[1]->hw.idx = idx0 ^ 1;
1297 	return 0;
1298 }
1299 
1300 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1301 {
1302 	int eu = 0, ek = 0, eh = 0;
1303 	struct perf_event *event;
1304 	int i, n, first;
1305 
1306 	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1307 		return 0;
1308 
1309 	n = n_prev + n_new;
1310 	if (n <= 1)
1311 		return 0;
1312 
1313 	first = 1;
1314 	for (i = 0; i < n; i++) {
1315 		event = evts[i];
1316 		if (first) {
1317 			eu = event->attr.exclude_user;
1318 			ek = event->attr.exclude_kernel;
1319 			eh = event->attr.exclude_hv;
1320 			first = 0;
1321 		} else if (event->attr.exclude_user != eu ||
1322 			   event->attr.exclude_kernel != ek ||
1323 			   event->attr.exclude_hv != eh) {
1324 			return -EAGAIN;
1325 		}
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static int collect_events(struct perf_event *group, int max_count,
1332 			  struct perf_event *evts[], unsigned long *events,
1333 			  int *current_idx)
1334 {
1335 	struct perf_event *event;
1336 	int n = 0;
1337 
1338 	if (!is_software_event(group)) {
1339 		if (n >= max_count)
1340 			return -1;
1341 		evts[n] = group;
1342 		events[n] = group->hw.event_base;
1343 		current_idx[n++] = PIC_NO_INDEX;
1344 	}
1345 	for_each_sibling_event(event, group) {
1346 		if (!is_software_event(event) &&
1347 		    event->state != PERF_EVENT_STATE_OFF) {
1348 			if (n >= max_count)
1349 				return -1;
1350 			evts[n] = event;
1351 			events[n] = event->hw.event_base;
1352 			current_idx[n++] = PIC_NO_INDEX;
1353 		}
1354 	}
1355 	return n;
1356 }
1357 
1358 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1359 {
1360 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361 	int n0, ret = -EAGAIN;
1362 	unsigned long flags;
1363 
1364 	local_irq_save(flags);
1365 
1366 	n0 = cpuc->n_events;
1367 	if (n0 >= sparc_pmu->max_hw_events)
1368 		goto out;
1369 
1370 	cpuc->event[n0] = event;
1371 	cpuc->events[n0] = event->hw.event_base;
1372 	cpuc->current_idx[n0] = PIC_NO_INDEX;
1373 
1374 	event->hw.state = PERF_HES_UPTODATE;
1375 	if (!(ef_flags & PERF_EF_START))
1376 		event->hw.state |= PERF_HES_STOPPED;
1377 
1378 	/*
1379 	 * If group events scheduling transaction was started,
1380 	 * skip the schedulability test here, it will be performed
1381 	 * at commit time(->commit_txn) as a whole
1382 	 */
1383 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1384 		goto nocheck;
1385 
1386 	if (check_excludes(cpuc->event, n0, 1))
1387 		goto out;
1388 	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389 		goto out;
1390 
1391 nocheck:
1392 	cpuc->n_events++;
1393 	cpuc->n_added++;
1394 
1395 	ret = 0;
1396 out:
1397 	local_irq_restore(flags);
1398 	return ret;
1399 }
1400 
1401 static int sparc_pmu_event_init(struct perf_event *event)
1402 {
1403 	struct perf_event_attr *attr = &event->attr;
1404 	struct perf_event *evts[MAX_HWEVENTS];
1405 	struct hw_perf_event *hwc = &event->hw;
1406 	unsigned long events[MAX_HWEVENTS];
1407 	int current_idx_dmy[MAX_HWEVENTS];
1408 	const struct perf_event_map *pmap;
1409 	int n;
1410 
1411 	if (atomic_read(&nmi_active) < 0)
1412 		return -ENODEV;
1413 
1414 	/* does not support taken branch sampling */
1415 	if (has_branch_stack(event))
1416 		return -EOPNOTSUPP;
1417 
1418 	switch (attr->type) {
1419 	case PERF_TYPE_HARDWARE:
1420 		if (attr->config >= sparc_pmu->max_events)
1421 			return -EINVAL;
1422 		pmap = sparc_pmu->event_map(attr->config);
1423 		break;
1424 
1425 	case PERF_TYPE_HW_CACHE:
1426 		pmap = sparc_map_cache_event(attr->config);
1427 		if (IS_ERR(pmap))
1428 			return PTR_ERR(pmap);
1429 		break;
1430 
1431 	case PERF_TYPE_RAW:
1432 		pmap = NULL;
1433 		break;
1434 
1435 	default:
1436 		return -ENOENT;
1437 
1438 	}
1439 
1440 	if (pmap) {
1441 		hwc->event_base = perf_event_encode(pmap);
1442 	} else {
1443 		/*
1444 		 * User gives us "(encoding << 16) | pic_mask" for
1445 		 * PERF_TYPE_RAW events.
1446 		 */
1447 		hwc->event_base = attr->config;
1448 	}
1449 
1450 	/* We save the enable bits in the config_base.  */
1451 	hwc->config_base = sparc_pmu->irq_bit;
1452 	if (!attr->exclude_user)
1453 		hwc->config_base |= sparc_pmu->user_bit;
1454 	if (!attr->exclude_kernel)
1455 		hwc->config_base |= sparc_pmu->priv_bit;
1456 	if (!attr->exclude_hv)
1457 		hwc->config_base |= sparc_pmu->hv_bit;
1458 
1459 	n = 0;
1460 	if (event->group_leader != event) {
1461 		n = collect_events(event->group_leader,
1462 				   sparc_pmu->max_hw_events - 1,
1463 				   evts, events, current_idx_dmy);
1464 		if (n < 0)
1465 			return -EINVAL;
1466 	}
1467 	events[n] = hwc->event_base;
1468 	evts[n] = event;
1469 
1470 	if (check_excludes(evts, n, 1))
1471 		return -EINVAL;
1472 
1473 	if (sparc_check_constraints(evts, events, n + 1))
1474 		return -EINVAL;
1475 
1476 	hwc->idx = PIC_NO_INDEX;
1477 
1478 	/* Try to do all error checking before this point, as unwinding
1479 	 * state after grabbing the PMC is difficult.
1480 	 */
1481 	perf_event_grab_pmc();
1482 	event->destroy = hw_perf_event_destroy;
1483 
1484 	if (!hwc->sample_period) {
1485 		hwc->sample_period = MAX_PERIOD;
1486 		hwc->last_period = hwc->sample_period;
1487 		local64_set(&hwc->period_left, hwc->sample_period);
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 /*
1494  * Start group events scheduling transaction
1495  * Set the flag to make pmu::enable() not perform the
1496  * schedulability test, it will be performed at commit time
1497  */
1498 static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1499 {
1500 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1501 
1502 	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1503 
1504 	cpuhw->txn_flags = txn_flags;
1505 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1506 		return;
1507 
1508 	perf_pmu_disable(pmu);
1509 }
1510 
1511 /*
1512  * Stop group events scheduling transaction
1513  * Clear the flag and pmu::enable() will perform the
1514  * schedulability test.
1515  */
1516 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1517 {
1518 	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1519 	unsigned int txn_flags;
1520 
1521 	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1522 
1523 	txn_flags = cpuhw->txn_flags;
1524 	cpuhw->txn_flags = 0;
1525 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1526 		return;
1527 
1528 	perf_pmu_enable(pmu);
1529 }
1530 
1531 /*
1532  * Commit group events scheduling transaction
1533  * Perform the group schedulability test as a whole
1534  * Return 0 if success
1535  */
1536 static int sparc_pmu_commit_txn(struct pmu *pmu)
1537 {
1538 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1539 	int n;
1540 
1541 	if (!sparc_pmu)
1542 		return -EINVAL;
1543 
1544 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1545 
1546 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1547 		cpuc->txn_flags = 0;
1548 		return 0;
1549 	}
1550 
1551 	n = cpuc->n_events;
1552 	if (check_excludes(cpuc->event, 0, n))
1553 		return -EINVAL;
1554 	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1555 		return -EAGAIN;
1556 
1557 	cpuc->txn_flags = 0;
1558 	perf_pmu_enable(pmu);
1559 	return 0;
1560 }
1561 
1562 static struct pmu pmu = {
1563 	.pmu_enable	= sparc_pmu_enable,
1564 	.pmu_disable	= sparc_pmu_disable,
1565 	.event_init	= sparc_pmu_event_init,
1566 	.add		= sparc_pmu_add,
1567 	.del		= sparc_pmu_del,
1568 	.start		= sparc_pmu_start,
1569 	.stop		= sparc_pmu_stop,
1570 	.read		= sparc_pmu_read,
1571 	.start_txn	= sparc_pmu_start_txn,
1572 	.cancel_txn	= sparc_pmu_cancel_txn,
1573 	.commit_txn	= sparc_pmu_commit_txn,
1574 };
1575 
1576 void perf_event_print_debug(void)
1577 {
1578 	unsigned long flags;
1579 	int cpu, i;
1580 
1581 	if (!sparc_pmu)
1582 		return;
1583 
1584 	local_irq_save(flags);
1585 
1586 	cpu = smp_processor_id();
1587 
1588 	pr_info("\n");
1589 	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1590 		pr_info("CPU#%d: PCR%d[%016llx]\n",
1591 			cpu, i, pcr_ops->read_pcr(i));
1592 	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1593 		pr_info("CPU#%d: PIC%d[%016llx]\n",
1594 			cpu, i, pcr_ops->read_pic(i));
1595 
1596 	local_irq_restore(flags);
1597 }
1598 
1599 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1600 					    unsigned long cmd, void *__args)
1601 {
1602 	struct die_args *args = __args;
1603 	struct perf_sample_data data;
1604 	struct cpu_hw_events *cpuc;
1605 	struct pt_regs *regs;
1606 	int i;
1607 
1608 	if (!atomic_read(&active_events))
1609 		return NOTIFY_DONE;
1610 
1611 	switch (cmd) {
1612 	case DIE_NMI:
1613 		break;
1614 
1615 	default:
1616 		return NOTIFY_DONE;
1617 	}
1618 
1619 	regs = args->regs;
1620 
1621 	cpuc = this_cpu_ptr(&cpu_hw_events);
1622 
1623 	/* If the PMU has the TOE IRQ enable bits, we need to do a
1624 	 * dummy write to the %pcr to clear the overflow bits and thus
1625 	 * the interrupt.
1626 	 *
1627 	 * Do this before we peek at the counters to determine
1628 	 * overflow so we don't lose any events.
1629 	 */
1630 	if (sparc_pmu->irq_bit &&
1631 	    sparc_pmu->num_pcrs == 1)
1632 		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1633 
1634 	for (i = 0; i < cpuc->n_events; i++) {
1635 		struct perf_event *event = cpuc->event[i];
1636 		int idx = cpuc->current_idx[i];
1637 		struct hw_perf_event *hwc;
1638 		u64 val;
1639 
1640 		if (sparc_pmu->irq_bit &&
1641 		    sparc_pmu->num_pcrs > 1)
1642 			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1643 
1644 		hwc = &event->hw;
1645 		val = sparc_perf_event_update(event, hwc, idx);
1646 		if (val & (1ULL << 31))
1647 			continue;
1648 
1649 		perf_sample_data_init(&data, 0, hwc->last_period);
1650 		if (!sparc_perf_event_set_period(event, hwc, idx))
1651 			continue;
1652 
1653 		if (perf_event_overflow(event, &data, regs))
1654 			sparc_pmu_stop(event, 0);
1655 	}
1656 
1657 	return NOTIFY_STOP;
1658 }
1659 
1660 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1661 	.notifier_call		= perf_event_nmi_handler,
1662 };
1663 
1664 static bool __init supported_pmu(void)
1665 {
1666 	if (!strcmp(sparc_pmu_type, "ultra3") ||
1667 	    !strcmp(sparc_pmu_type, "ultra3+") ||
1668 	    !strcmp(sparc_pmu_type, "ultra3i") ||
1669 	    !strcmp(sparc_pmu_type, "ultra4+")) {
1670 		sparc_pmu = &ultra3_pmu;
1671 		return true;
1672 	}
1673 	if (!strcmp(sparc_pmu_type, "niagara")) {
1674 		sparc_pmu = &niagara1_pmu;
1675 		return true;
1676 	}
1677 	if (!strcmp(sparc_pmu_type, "niagara2") ||
1678 	    !strcmp(sparc_pmu_type, "niagara3")) {
1679 		sparc_pmu = &niagara2_pmu;
1680 		return true;
1681 	}
1682 	if (!strcmp(sparc_pmu_type, "niagara4") ||
1683 	    !strcmp(sparc_pmu_type, "niagara5")) {
1684 		sparc_pmu = &niagara4_pmu;
1685 		return true;
1686 	}
1687 	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1688 		sparc_pmu = &sparc_m7_pmu;
1689 		return true;
1690 	}
1691 	return false;
1692 }
1693 
1694 static int __init init_hw_perf_events(void)
1695 {
1696 	int err;
1697 
1698 	pr_info("Performance events: ");
1699 
1700 	err = pcr_arch_init();
1701 	if (err || !supported_pmu()) {
1702 		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1703 		return 0;
1704 	}
1705 
1706 	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1707 
1708 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1709 	register_die_notifier(&perf_event_nmi_notifier);
1710 
1711 	return 0;
1712 }
1713 pure_initcall(init_hw_perf_events);
1714 
1715 void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1716 			   struct pt_regs *regs)
1717 {
1718 	unsigned long ksp, fp;
1719 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1720 	int graph = 0;
1721 #endif
1722 
1723 	stack_trace_flush();
1724 
1725 	perf_callchain_store(entry, regs->tpc);
1726 
1727 	ksp = regs->u_regs[UREG_I6];
1728 	fp = ksp + STACK_BIAS;
1729 	do {
1730 		struct sparc_stackf *sf;
1731 		struct pt_regs *regs;
1732 		unsigned long pc;
1733 
1734 		if (!kstack_valid(current_thread_info(), fp))
1735 			break;
1736 
1737 		sf = (struct sparc_stackf *) fp;
1738 		regs = (struct pt_regs *) (sf + 1);
1739 
1740 		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1741 			if (user_mode(regs))
1742 				break;
1743 			pc = regs->tpc;
1744 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1745 		} else {
1746 			pc = sf->callers_pc;
1747 			fp = (unsigned long)sf->fp + STACK_BIAS;
1748 		}
1749 		perf_callchain_store(entry, pc);
1750 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1751 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1752 			int index = current->curr_ret_stack;
1753 			if (current->ret_stack && index >= graph) {
1754 				pc = current->ret_stack[index - graph].ret;
1755 				perf_callchain_store(entry, pc);
1756 				graph++;
1757 			}
1758 		}
1759 #endif
1760 	} while (entry->nr < entry->max_stack);
1761 }
1762 
1763 static inline int
1764 valid_user_frame(const void __user *fp, unsigned long size)
1765 {
1766 	/* addresses should be at least 4-byte aligned */
1767 	if (((unsigned long) fp) & 3)
1768 		return 0;
1769 
1770 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1771 }
1772 
1773 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1774 				   struct pt_regs *regs)
1775 {
1776 	unsigned long ufp;
1777 
1778 	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1779 	do {
1780 		struct sparc_stackf __user *usf;
1781 		struct sparc_stackf sf;
1782 		unsigned long pc;
1783 
1784 		usf = (struct sparc_stackf __user *)ufp;
1785 		if (!valid_user_frame(usf, sizeof(sf)))
1786 			break;
1787 
1788 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1789 			break;
1790 
1791 		pc = sf.callers_pc;
1792 		ufp = (unsigned long)sf.fp + STACK_BIAS;
1793 		perf_callchain_store(entry, pc);
1794 	} while (entry->nr < entry->max_stack);
1795 }
1796 
1797 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1798 				   struct pt_regs *regs)
1799 {
1800 	unsigned long ufp;
1801 
1802 	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1803 	do {
1804 		unsigned long pc;
1805 
1806 		if (thread32_stack_is_64bit(ufp)) {
1807 			struct sparc_stackf __user *usf;
1808 			struct sparc_stackf sf;
1809 
1810 			ufp += STACK_BIAS;
1811 			usf = (struct sparc_stackf __user *)ufp;
1812 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813 				break;
1814 			pc = sf.callers_pc & 0xffffffff;
1815 			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1816 		} else {
1817 			struct sparc_stackf32 __user *usf;
1818 			struct sparc_stackf32 sf;
1819 			usf = (struct sparc_stackf32 __user *)ufp;
1820 			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1821 				break;
1822 			pc = sf.callers_pc;
1823 			ufp = (unsigned long)sf.fp;
1824 		}
1825 		perf_callchain_store(entry, pc);
1826 	} while (entry->nr < entry->max_stack);
1827 }
1828 
1829 void
1830 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1831 {
1832 	u64 saved_fault_address = current_thread_info()->fault_address;
1833 	u8 saved_fault_code = get_thread_fault_code();
1834 	mm_segment_t old_fs;
1835 
1836 	perf_callchain_store(entry, regs->tpc);
1837 
1838 	if (!current->mm)
1839 		return;
1840 
1841 	old_fs = get_fs();
1842 	set_fs(USER_DS);
1843 
1844 	flushw_user();
1845 
1846 	pagefault_disable();
1847 
1848 	if (test_thread_flag(TIF_32BIT))
1849 		perf_callchain_user_32(entry, regs);
1850 	else
1851 		perf_callchain_user_64(entry, regs);
1852 
1853 	pagefault_enable();
1854 
1855 	set_fs(old_fs);
1856 	set_thread_fault_code(saved_fault_code);
1857 	current_thread_info()->fault_address = saved_fault_address;
1858 }
1859