xref: /openbmc/linux/arch/sparc/kernel/perf_event.c (revision b6dcefde)
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/kernel.h>
18 #include <linux/kdebug.h>
19 #include <linux/mutex.h>
20 
21 #include <asm/stacktrace.h>
22 #include <asm/cpudata.h>
23 #include <asm/uaccess.h>
24 #include <asm/atomic.h>
25 #include <asm/nmi.h>
26 #include <asm/pcr.h>
27 
28 #include "kstack.h"
29 
30 /* Sparc64 chips have two performance counters, 32-bits each, with
31  * overflow interrupts generated on transition from 0xffffffff to 0.
32  * The counters are accessed in one go using a 64-bit register.
33  *
34  * Both counters are controlled using a single control register.  The
35  * only way to stop all sampling is to clear all of the context (user,
36  * supervisor, hypervisor) sampling enable bits.  But these bits apply
37  * to both counters, thus the two counters can't be enabled/disabled
38  * individually.
39  *
40  * The control register has two event fields, one for each of the two
41  * counters.  It's thus nearly impossible to have one counter going
42  * while keeping the other one stopped.  Therefore it is possible to
43  * get overflow interrupts for counters not currently "in use" and
44  * that condition must be checked in the overflow interrupt handler.
45  *
46  * So we use a hack, in that we program inactive counters with the
47  * "sw_count0" and "sw_count1" events.  These count how many times
48  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
49  * unusual way to encode a NOP and therefore will not trigger in
50  * normal code.
51  */
52 
53 #define MAX_HWEVENTS			2
54 #define MAX_PERIOD			((1UL << 32) - 1)
55 
56 #define PIC_UPPER_INDEX			0
57 #define PIC_LOWER_INDEX			1
58 #define PIC_NO_INDEX			-1
59 
60 struct cpu_hw_events {
61 	/* Number of events currently scheduled onto this cpu.
62 	 * This tells how many entries in the arrays below
63 	 * are valid.
64 	 */
65 	int			n_events;
66 
67 	/* Number of new events added since the last hw_perf_disable().
68 	 * This works because the perf event layer always adds new
69 	 * events inside of a perf_{disable,enable}() sequence.
70 	 */
71 	int			n_added;
72 
73 	/* Array of events current scheduled on this cpu.  */
74 	struct perf_event	*event[MAX_HWEVENTS];
75 
76 	/* Array of encoded longs, specifying the %pcr register
77 	 * encoding and the mask of PIC counters this even can
78 	 * be scheduled on.  See perf_event_encode() et al.
79 	 */
80 	unsigned long		events[MAX_HWEVENTS];
81 
82 	/* The current counter index assigned to an event.  When the
83 	 * event hasn't been programmed into the cpu yet, this will
84 	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
85 	 * we ought to schedule the event.
86 	 */
87 	int			current_idx[MAX_HWEVENTS];
88 
89 	/* Software copy of %pcr register on this cpu.  */
90 	u64			pcr;
91 
92 	/* Enabled/disable state.  */
93 	int			enabled;
94 };
95 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
96 
97 /* An event map describes the characteristics of a performance
98  * counter event.  In particular it gives the encoding as well as
99  * a mask telling which counters the event can be measured on.
100  */
101 struct perf_event_map {
102 	u16	encoding;
103 	u8	pic_mask;
104 #define PIC_NONE	0x00
105 #define PIC_UPPER	0x01
106 #define PIC_LOWER	0x02
107 };
108 
109 /* Encode a perf_event_map entry into a long.  */
110 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
111 {
112 	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
113 }
114 
115 static u8 perf_event_get_msk(unsigned long val)
116 {
117 	return val & 0xff;
118 }
119 
120 static u64 perf_event_get_enc(unsigned long val)
121 {
122 	return val >> 16;
123 }
124 
125 #define C(x) PERF_COUNT_HW_CACHE_##x
126 
127 #define CACHE_OP_UNSUPPORTED	0xfffe
128 #define CACHE_OP_NONSENSE	0xffff
129 
130 typedef struct perf_event_map cache_map_t
131 				[PERF_COUNT_HW_CACHE_MAX]
132 				[PERF_COUNT_HW_CACHE_OP_MAX]
133 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
134 
135 struct sparc_pmu {
136 	const struct perf_event_map	*(*event_map)(int);
137 	const cache_map_t		*cache_map;
138 	int				max_events;
139 	int				upper_shift;
140 	int				lower_shift;
141 	int				event_mask;
142 	int				hv_bit;
143 	int				irq_bit;
144 	int				upper_nop;
145 	int				lower_nop;
146 };
147 
148 static const struct perf_event_map ultra3_perfmon_event_map[] = {
149 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
150 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
151 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
152 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
153 };
154 
155 static const struct perf_event_map *ultra3_event_map(int event_id)
156 {
157 	return &ultra3_perfmon_event_map[event_id];
158 }
159 
160 static const cache_map_t ultra3_cache_map = {
161 [C(L1D)] = {
162 	[C(OP_READ)] = {
163 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
164 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
165 	},
166 	[C(OP_WRITE)] = {
167 		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
168 		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
169 	},
170 	[C(OP_PREFETCH)] = {
171 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
172 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
173 	},
174 },
175 [C(L1I)] = {
176 	[C(OP_READ)] = {
177 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
178 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
179 	},
180 	[ C(OP_WRITE) ] = {
181 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
182 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
183 	},
184 	[ C(OP_PREFETCH) ] = {
185 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
186 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
187 	},
188 },
189 [C(LL)] = {
190 	[C(OP_READ)] = {
191 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
192 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
193 	},
194 	[C(OP_WRITE)] = {
195 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
196 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
197 	},
198 	[C(OP_PREFETCH)] = {
199 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
200 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
201 	},
202 },
203 [C(DTLB)] = {
204 	[C(OP_READ)] = {
205 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
206 		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
207 	},
208 	[ C(OP_WRITE) ] = {
209 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
210 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
211 	},
212 	[ C(OP_PREFETCH) ] = {
213 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
215 	},
216 },
217 [C(ITLB)] = {
218 	[C(OP_READ)] = {
219 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
220 		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
221 	},
222 	[ C(OP_WRITE) ] = {
223 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
224 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
225 	},
226 	[ C(OP_PREFETCH) ] = {
227 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
229 	},
230 },
231 [C(BPU)] = {
232 	[C(OP_READ)] = {
233 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
234 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
235 	},
236 	[ C(OP_WRITE) ] = {
237 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
238 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
239 	},
240 	[ C(OP_PREFETCH) ] = {
241 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
243 	},
244 },
245 };
246 
247 static const struct sparc_pmu ultra3_pmu = {
248 	.event_map	= ultra3_event_map,
249 	.cache_map	= &ultra3_cache_map,
250 	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
251 	.upper_shift	= 11,
252 	.lower_shift	= 4,
253 	.event_mask	= 0x3f,
254 	.upper_nop	= 0x1c,
255 	.lower_nop	= 0x14,
256 };
257 
258 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
259  * only instructions, so it is free running which creates all kinds of
260  * problems.  Some hardware designs make one wonder if the creator
261  * even looked at how this stuff gets used by software.
262  */
263 static const struct perf_event_map niagara1_perfmon_event_map[] = {
264 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
265 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
266 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
267 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
268 };
269 
270 static const struct perf_event_map *niagara1_event_map(int event_id)
271 {
272 	return &niagara1_perfmon_event_map[event_id];
273 }
274 
275 static const cache_map_t niagara1_cache_map = {
276 [C(L1D)] = {
277 	[C(OP_READ)] = {
278 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
279 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
280 	},
281 	[C(OP_WRITE)] = {
282 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
283 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
284 	},
285 	[C(OP_PREFETCH)] = {
286 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
287 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
288 	},
289 },
290 [C(L1I)] = {
291 	[C(OP_READ)] = {
292 		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
293 		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
294 	},
295 	[ C(OP_WRITE) ] = {
296 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
297 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
298 	},
299 	[ C(OP_PREFETCH) ] = {
300 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
301 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
302 	},
303 },
304 [C(LL)] = {
305 	[C(OP_READ)] = {
306 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
308 	},
309 	[C(OP_WRITE)] = {
310 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
311 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
312 	},
313 	[C(OP_PREFETCH)] = {
314 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
315 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
316 	},
317 },
318 [C(DTLB)] = {
319 	[C(OP_READ)] = {
320 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
321 		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
322 	},
323 	[ C(OP_WRITE) ] = {
324 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
325 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
326 	},
327 	[ C(OP_PREFETCH) ] = {
328 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
329 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
330 	},
331 },
332 [C(ITLB)] = {
333 	[C(OP_READ)] = {
334 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
335 		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
336 	},
337 	[ C(OP_WRITE) ] = {
338 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
339 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
340 	},
341 	[ C(OP_PREFETCH) ] = {
342 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
344 	},
345 },
346 [C(BPU)] = {
347 	[C(OP_READ)] = {
348 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
349 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
350 	},
351 	[ C(OP_WRITE) ] = {
352 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
353 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
354 	},
355 	[ C(OP_PREFETCH) ] = {
356 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
358 	},
359 },
360 };
361 
362 static const struct sparc_pmu niagara1_pmu = {
363 	.event_map	= niagara1_event_map,
364 	.cache_map	= &niagara1_cache_map,
365 	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
366 	.upper_shift	= 0,
367 	.lower_shift	= 4,
368 	.event_mask	= 0x7,
369 	.upper_nop	= 0x0,
370 	.lower_nop	= 0x0,
371 };
372 
373 static const struct perf_event_map niagara2_perfmon_event_map[] = {
374 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
375 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
376 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
377 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
378 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
379 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
380 };
381 
382 static const struct perf_event_map *niagara2_event_map(int event_id)
383 {
384 	return &niagara2_perfmon_event_map[event_id];
385 }
386 
387 static const cache_map_t niagara2_cache_map = {
388 [C(L1D)] = {
389 	[C(OP_READ)] = {
390 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
391 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
392 	},
393 	[C(OP_WRITE)] = {
394 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
395 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
396 	},
397 	[C(OP_PREFETCH)] = {
398 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
399 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
400 	},
401 },
402 [C(L1I)] = {
403 	[C(OP_READ)] = {
404 		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
405 		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
406 	},
407 	[ C(OP_WRITE) ] = {
408 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
409 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
410 	},
411 	[ C(OP_PREFETCH) ] = {
412 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
413 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
414 	},
415 },
416 [C(LL)] = {
417 	[C(OP_READ)] = {
418 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
419 		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
420 	},
421 	[C(OP_WRITE)] = {
422 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
423 		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
424 	},
425 	[C(OP_PREFETCH)] = {
426 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
427 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
428 	},
429 },
430 [C(DTLB)] = {
431 	[C(OP_READ)] = {
432 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
433 		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
434 	},
435 	[ C(OP_WRITE) ] = {
436 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
437 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
438 	},
439 	[ C(OP_PREFETCH) ] = {
440 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
441 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
442 	},
443 },
444 [C(ITLB)] = {
445 	[C(OP_READ)] = {
446 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
447 		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
448 	},
449 	[ C(OP_WRITE) ] = {
450 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
451 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
452 	},
453 	[ C(OP_PREFETCH) ] = {
454 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
455 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
456 	},
457 },
458 [C(BPU)] = {
459 	[C(OP_READ)] = {
460 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
461 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
462 	},
463 	[ C(OP_WRITE) ] = {
464 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
465 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
466 	},
467 	[ C(OP_PREFETCH) ] = {
468 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
470 	},
471 },
472 };
473 
474 static const struct sparc_pmu niagara2_pmu = {
475 	.event_map	= niagara2_event_map,
476 	.cache_map	= &niagara2_cache_map,
477 	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
478 	.upper_shift	= 19,
479 	.lower_shift	= 6,
480 	.event_mask	= 0xfff,
481 	.hv_bit		= 0x8,
482 	.irq_bit	= 0x30,
483 	.upper_nop	= 0x220,
484 	.lower_nop	= 0x220,
485 };
486 
487 static const struct sparc_pmu *sparc_pmu __read_mostly;
488 
489 static u64 event_encoding(u64 event_id, int idx)
490 {
491 	if (idx == PIC_UPPER_INDEX)
492 		event_id <<= sparc_pmu->upper_shift;
493 	else
494 		event_id <<= sparc_pmu->lower_shift;
495 	return event_id;
496 }
497 
498 static u64 mask_for_index(int idx)
499 {
500 	return event_encoding(sparc_pmu->event_mask, idx);
501 }
502 
503 static u64 nop_for_index(int idx)
504 {
505 	return event_encoding(idx == PIC_UPPER_INDEX ?
506 			      sparc_pmu->upper_nop :
507 			      sparc_pmu->lower_nop, idx);
508 }
509 
510 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
511 {
512 	u64 val, mask = mask_for_index(idx);
513 
514 	val = cpuc->pcr;
515 	val &= ~mask;
516 	val |= hwc->config;
517 	cpuc->pcr = val;
518 
519 	pcr_ops->write(cpuc->pcr);
520 }
521 
522 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
523 {
524 	u64 mask = mask_for_index(idx);
525 	u64 nop = nop_for_index(idx);
526 	u64 val;
527 
528 	val = cpuc->pcr;
529 	val &= ~mask;
530 	val |= nop;
531 	cpuc->pcr = val;
532 
533 	pcr_ops->write(cpuc->pcr);
534 }
535 
536 static u32 read_pmc(int idx)
537 {
538 	u64 val;
539 
540 	read_pic(val);
541 	if (idx == PIC_UPPER_INDEX)
542 		val >>= 32;
543 
544 	return val & 0xffffffff;
545 }
546 
547 static void write_pmc(int idx, u64 val)
548 {
549 	u64 shift, mask, pic;
550 
551 	shift = 0;
552 	if (idx == PIC_UPPER_INDEX)
553 		shift = 32;
554 
555 	mask = ((u64) 0xffffffff) << shift;
556 	val <<= shift;
557 
558 	read_pic(pic);
559 	pic &= ~mask;
560 	pic |= val;
561 	write_pic(pic);
562 }
563 
564 static u64 sparc_perf_event_update(struct perf_event *event,
565 				   struct hw_perf_event *hwc, int idx)
566 {
567 	int shift = 64 - 32;
568 	u64 prev_raw_count, new_raw_count;
569 	s64 delta;
570 
571 again:
572 	prev_raw_count = atomic64_read(&hwc->prev_count);
573 	new_raw_count = read_pmc(idx);
574 
575 	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
576 			     new_raw_count) != prev_raw_count)
577 		goto again;
578 
579 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
580 	delta >>= shift;
581 
582 	atomic64_add(delta, &event->count);
583 	atomic64_sub(delta, &hwc->period_left);
584 
585 	return new_raw_count;
586 }
587 
588 static int sparc_perf_event_set_period(struct perf_event *event,
589 				       struct hw_perf_event *hwc, int idx)
590 {
591 	s64 left = atomic64_read(&hwc->period_left);
592 	s64 period = hwc->sample_period;
593 	int ret = 0;
594 
595 	if (unlikely(left <= -period)) {
596 		left = period;
597 		atomic64_set(&hwc->period_left, left);
598 		hwc->last_period = period;
599 		ret = 1;
600 	}
601 
602 	if (unlikely(left <= 0)) {
603 		left += period;
604 		atomic64_set(&hwc->period_left, left);
605 		hwc->last_period = period;
606 		ret = 1;
607 	}
608 	if (left > MAX_PERIOD)
609 		left = MAX_PERIOD;
610 
611 	atomic64_set(&hwc->prev_count, (u64)-left);
612 
613 	write_pmc(idx, (u64)(-left) & 0xffffffff);
614 
615 	perf_event_update_userpage(event);
616 
617 	return ret;
618 }
619 
620 /* If performance event entries have been added, move existing
621  * events around (if necessary) and then assign new entries to
622  * counters.
623  */
624 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
625 {
626 	int i;
627 
628 	if (!cpuc->n_added)
629 		goto out;
630 
631 	/* Read in the counters which are moving.  */
632 	for (i = 0; i < cpuc->n_events; i++) {
633 		struct perf_event *cp = cpuc->event[i];
634 
635 		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
636 		    cpuc->current_idx[i] != cp->hw.idx) {
637 			sparc_perf_event_update(cp, &cp->hw,
638 						cpuc->current_idx[i]);
639 			cpuc->current_idx[i] = PIC_NO_INDEX;
640 		}
641 	}
642 
643 	/* Assign to counters all unassigned events.  */
644 	for (i = 0; i < cpuc->n_events; i++) {
645 		struct perf_event *cp = cpuc->event[i];
646 		struct hw_perf_event *hwc = &cp->hw;
647 		int idx = hwc->idx;
648 		u64 enc;
649 
650 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
651 			continue;
652 
653 		sparc_perf_event_set_period(cp, hwc, idx);
654 		cpuc->current_idx[i] = idx;
655 
656 		enc = perf_event_get_enc(cpuc->events[i]);
657 		pcr |= event_encoding(enc, idx);
658 	}
659 out:
660 	return pcr;
661 }
662 
663 void hw_perf_enable(void)
664 {
665 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
666 	u64 pcr;
667 
668 	if (cpuc->enabled)
669 		return;
670 
671 	cpuc->enabled = 1;
672 	barrier();
673 
674 	pcr = cpuc->pcr;
675 	if (!cpuc->n_events) {
676 		pcr = 0;
677 	} else {
678 		pcr = maybe_change_configuration(cpuc, pcr);
679 
680 		/* We require that all of the events have the same
681 		 * configuration, so just fetch the settings from the
682 		 * first entry.
683 		 */
684 		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
685 	}
686 
687 	pcr_ops->write(cpuc->pcr);
688 }
689 
690 void hw_perf_disable(void)
691 {
692 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
693 	u64 val;
694 
695 	if (!cpuc->enabled)
696 		return;
697 
698 	cpuc->enabled = 0;
699 	cpuc->n_added = 0;
700 
701 	val = cpuc->pcr;
702 	val &= ~(PCR_UTRACE | PCR_STRACE |
703 		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
704 	cpuc->pcr = val;
705 
706 	pcr_ops->write(cpuc->pcr);
707 }
708 
709 static void sparc_pmu_disable(struct perf_event *event)
710 {
711 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
712 	struct hw_perf_event *hwc = &event->hw;
713 	unsigned long flags;
714 	int i;
715 
716 	local_irq_save(flags);
717 	perf_disable();
718 
719 	for (i = 0; i < cpuc->n_events; i++) {
720 		if (event == cpuc->event[i]) {
721 			int idx = cpuc->current_idx[i];
722 
723 			/* Shift remaining entries down into
724 			 * the existing slot.
725 			 */
726 			while (++i < cpuc->n_events) {
727 				cpuc->event[i - 1] = cpuc->event[i];
728 				cpuc->events[i - 1] = cpuc->events[i];
729 				cpuc->current_idx[i - 1] =
730 					cpuc->current_idx[i];
731 			}
732 
733 			/* Absorb the final count and turn off the
734 			 * event.
735 			 */
736 			sparc_pmu_disable_event(cpuc, hwc, idx);
737 			barrier();
738 			sparc_perf_event_update(event, hwc, idx);
739 
740 			perf_event_update_userpage(event);
741 
742 			cpuc->n_events--;
743 			break;
744 		}
745 	}
746 
747 	perf_enable();
748 	local_irq_restore(flags);
749 }
750 
751 static int active_event_index(struct cpu_hw_events *cpuc,
752 			      struct perf_event *event)
753 {
754 	int i;
755 
756 	for (i = 0; i < cpuc->n_events; i++) {
757 		if (cpuc->event[i] == event)
758 			break;
759 	}
760 	BUG_ON(i == cpuc->n_events);
761 	return cpuc->current_idx[i];
762 }
763 
764 static void sparc_pmu_read(struct perf_event *event)
765 {
766 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
767 	int idx = active_event_index(cpuc, event);
768 	struct hw_perf_event *hwc = &event->hw;
769 
770 	sparc_perf_event_update(event, hwc, idx);
771 }
772 
773 static void sparc_pmu_unthrottle(struct perf_event *event)
774 {
775 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
776 	int idx = active_event_index(cpuc, event);
777 	struct hw_perf_event *hwc = &event->hw;
778 
779 	sparc_pmu_enable_event(cpuc, hwc, idx);
780 }
781 
782 static atomic_t active_events = ATOMIC_INIT(0);
783 static DEFINE_MUTEX(pmc_grab_mutex);
784 
785 static void perf_stop_nmi_watchdog(void *unused)
786 {
787 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
788 
789 	stop_nmi_watchdog(NULL);
790 	cpuc->pcr = pcr_ops->read();
791 }
792 
793 void perf_event_grab_pmc(void)
794 {
795 	if (atomic_inc_not_zero(&active_events))
796 		return;
797 
798 	mutex_lock(&pmc_grab_mutex);
799 	if (atomic_read(&active_events) == 0) {
800 		if (atomic_read(&nmi_active) > 0) {
801 			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
802 			BUG_ON(atomic_read(&nmi_active) != 0);
803 		}
804 		atomic_inc(&active_events);
805 	}
806 	mutex_unlock(&pmc_grab_mutex);
807 }
808 
809 void perf_event_release_pmc(void)
810 {
811 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
812 		if (atomic_read(&nmi_active) == 0)
813 			on_each_cpu(start_nmi_watchdog, NULL, 1);
814 		mutex_unlock(&pmc_grab_mutex);
815 	}
816 }
817 
818 static const struct perf_event_map *sparc_map_cache_event(u64 config)
819 {
820 	unsigned int cache_type, cache_op, cache_result;
821 	const struct perf_event_map *pmap;
822 
823 	if (!sparc_pmu->cache_map)
824 		return ERR_PTR(-ENOENT);
825 
826 	cache_type = (config >>  0) & 0xff;
827 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
828 		return ERR_PTR(-EINVAL);
829 
830 	cache_op = (config >>  8) & 0xff;
831 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
832 		return ERR_PTR(-EINVAL);
833 
834 	cache_result = (config >> 16) & 0xff;
835 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
836 		return ERR_PTR(-EINVAL);
837 
838 	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
839 
840 	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
841 		return ERR_PTR(-ENOENT);
842 
843 	if (pmap->encoding == CACHE_OP_NONSENSE)
844 		return ERR_PTR(-EINVAL);
845 
846 	return pmap;
847 }
848 
849 static void hw_perf_event_destroy(struct perf_event *event)
850 {
851 	perf_event_release_pmc();
852 }
853 
854 /* Make sure all events can be scheduled into the hardware at
855  * the same time.  This is simplified by the fact that we only
856  * need to support 2 simultaneous HW events.
857  *
858  * As a side effect, the evts[]->hw.idx values will be assigned
859  * on success.  These are pending indexes.  When the events are
860  * actually programmed into the chip, these values will propagate
861  * to the per-cpu cpuc->current_idx[] slots, see the code in
862  * maybe_change_configuration() for details.
863  */
864 static int sparc_check_constraints(struct perf_event **evts,
865 				   unsigned long *events, int n_ev)
866 {
867 	u8 msk0 = 0, msk1 = 0;
868 	int idx0 = 0;
869 
870 	/* This case is possible when we are invoked from
871 	 * hw_perf_group_sched_in().
872 	 */
873 	if (!n_ev)
874 		return 0;
875 
876 	if (n_ev > perf_max_events)
877 		return -1;
878 
879 	msk0 = perf_event_get_msk(events[0]);
880 	if (n_ev == 1) {
881 		if (msk0 & PIC_LOWER)
882 			idx0 = 1;
883 		goto success;
884 	}
885 	BUG_ON(n_ev != 2);
886 	msk1 = perf_event_get_msk(events[1]);
887 
888 	/* If both events can go on any counter, OK.  */
889 	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
890 	    msk1 == (PIC_UPPER | PIC_LOWER))
891 		goto success;
892 
893 	/* If one event is limited to a specific counter,
894 	 * and the other can go on both, OK.
895 	 */
896 	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
897 	    msk1 == (PIC_UPPER | PIC_LOWER)) {
898 		if (msk0 & PIC_LOWER)
899 			idx0 = 1;
900 		goto success;
901 	}
902 
903 	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
904 	    msk0 == (PIC_UPPER | PIC_LOWER)) {
905 		if (msk1 & PIC_UPPER)
906 			idx0 = 1;
907 		goto success;
908 	}
909 
910 	/* If the events are fixed to different counters, OK.  */
911 	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
912 	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
913 		if (msk0 & PIC_LOWER)
914 			idx0 = 1;
915 		goto success;
916 	}
917 
918 	/* Otherwise, there is a conflict.  */
919 	return -1;
920 
921 success:
922 	evts[0]->hw.idx = idx0;
923 	if (n_ev == 2)
924 		evts[1]->hw.idx = idx0 ^ 1;
925 	return 0;
926 }
927 
928 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
929 {
930 	int eu = 0, ek = 0, eh = 0;
931 	struct perf_event *event;
932 	int i, n, first;
933 
934 	n = n_prev + n_new;
935 	if (n <= 1)
936 		return 0;
937 
938 	first = 1;
939 	for (i = 0; i < n; i++) {
940 		event = evts[i];
941 		if (first) {
942 			eu = event->attr.exclude_user;
943 			ek = event->attr.exclude_kernel;
944 			eh = event->attr.exclude_hv;
945 			first = 0;
946 		} else if (event->attr.exclude_user != eu ||
947 			   event->attr.exclude_kernel != ek ||
948 			   event->attr.exclude_hv != eh) {
949 			return -EAGAIN;
950 		}
951 	}
952 
953 	return 0;
954 }
955 
956 static int collect_events(struct perf_event *group, int max_count,
957 			  struct perf_event *evts[], unsigned long *events,
958 			  int *current_idx)
959 {
960 	struct perf_event *event;
961 	int n = 0;
962 
963 	if (!is_software_event(group)) {
964 		if (n >= max_count)
965 			return -1;
966 		evts[n] = group;
967 		events[n] = group->hw.event_base;
968 		current_idx[n++] = PIC_NO_INDEX;
969 	}
970 	list_for_each_entry(event, &group->sibling_list, group_entry) {
971 		if (!is_software_event(event) &&
972 		    event->state != PERF_EVENT_STATE_OFF) {
973 			if (n >= max_count)
974 				return -1;
975 			evts[n] = event;
976 			events[n] = event->hw.event_base;
977 			current_idx[n++] = PIC_NO_INDEX;
978 		}
979 	}
980 	return n;
981 }
982 
983 static void event_sched_in(struct perf_event *event, int cpu)
984 {
985 	event->state = PERF_EVENT_STATE_ACTIVE;
986 	event->oncpu = cpu;
987 	event->tstamp_running += event->ctx->time - event->tstamp_stopped;
988 	if (is_software_event(event))
989 		event->pmu->enable(event);
990 }
991 
992 int hw_perf_group_sched_in(struct perf_event *group_leader,
993 			   struct perf_cpu_context *cpuctx,
994 			   struct perf_event_context *ctx, int cpu)
995 {
996 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
997 	struct perf_event *sub;
998 	int n0, n;
999 
1000 	if (!sparc_pmu)
1001 		return 0;
1002 
1003 	n0 = cpuc->n_events;
1004 	n = collect_events(group_leader, perf_max_events - n0,
1005 			   &cpuc->event[n0], &cpuc->events[n0],
1006 			   &cpuc->current_idx[n0]);
1007 	if (n < 0)
1008 		return -EAGAIN;
1009 	if (check_excludes(cpuc->event, n0, n))
1010 		return -EINVAL;
1011 	if (sparc_check_constraints(cpuc->event, cpuc->events, n + n0))
1012 		return -EAGAIN;
1013 	cpuc->n_events = n0 + n;
1014 	cpuc->n_added += n;
1015 
1016 	cpuctx->active_oncpu += n;
1017 	n = 1;
1018 	event_sched_in(group_leader, cpu);
1019 	list_for_each_entry(sub, &group_leader->sibling_list, group_entry) {
1020 		if (sub->state != PERF_EVENT_STATE_OFF) {
1021 			event_sched_in(sub, cpu);
1022 			n++;
1023 		}
1024 	}
1025 	ctx->nr_active += n;
1026 
1027 	return 1;
1028 }
1029 
1030 static int sparc_pmu_enable(struct perf_event *event)
1031 {
1032 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1033 	int n0, ret = -EAGAIN;
1034 	unsigned long flags;
1035 
1036 	local_irq_save(flags);
1037 	perf_disable();
1038 
1039 	n0 = cpuc->n_events;
1040 	if (n0 >= perf_max_events)
1041 		goto out;
1042 
1043 	cpuc->event[n0] = event;
1044 	cpuc->events[n0] = event->hw.event_base;
1045 	cpuc->current_idx[n0] = PIC_NO_INDEX;
1046 
1047 	if (check_excludes(cpuc->event, n0, 1))
1048 		goto out;
1049 	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1050 		goto out;
1051 
1052 	cpuc->n_events++;
1053 	cpuc->n_added++;
1054 
1055 	ret = 0;
1056 out:
1057 	perf_enable();
1058 	local_irq_restore(flags);
1059 	return ret;
1060 }
1061 
1062 static int __hw_perf_event_init(struct perf_event *event)
1063 {
1064 	struct perf_event_attr *attr = &event->attr;
1065 	struct perf_event *evts[MAX_HWEVENTS];
1066 	struct hw_perf_event *hwc = &event->hw;
1067 	unsigned long events[MAX_HWEVENTS];
1068 	int current_idx_dmy[MAX_HWEVENTS];
1069 	const struct perf_event_map *pmap;
1070 	int n;
1071 
1072 	if (atomic_read(&nmi_active) < 0)
1073 		return -ENODEV;
1074 
1075 	if (attr->type == PERF_TYPE_HARDWARE) {
1076 		if (attr->config >= sparc_pmu->max_events)
1077 			return -EINVAL;
1078 		pmap = sparc_pmu->event_map(attr->config);
1079 	} else if (attr->type == PERF_TYPE_HW_CACHE) {
1080 		pmap = sparc_map_cache_event(attr->config);
1081 		if (IS_ERR(pmap))
1082 			return PTR_ERR(pmap);
1083 	} else
1084 		return -EOPNOTSUPP;
1085 
1086 	/* We save the enable bits in the config_base.  */
1087 	hwc->config_base = sparc_pmu->irq_bit;
1088 	if (!attr->exclude_user)
1089 		hwc->config_base |= PCR_UTRACE;
1090 	if (!attr->exclude_kernel)
1091 		hwc->config_base |= PCR_STRACE;
1092 	if (!attr->exclude_hv)
1093 		hwc->config_base |= sparc_pmu->hv_bit;
1094 
1095 	hwc->event_base = perf_event_encode(pmap);
1096 
1097 	n = 0;
1098 	if (event->group_leader != event) {
1099 		n = collect_events(event->group_leader,
1100 				   perf_max_events - 1,
1101 				   evts, events, current_idx_dmy);
1102 		if (n < 0)
1103 			return -EINVAL;
1104 	}
1105 	events[n] = hwc->event_base;
1106 	evts[n] = event;
1107 
1108 	if (check_excludes(evts, n, 1))
1109 		return -EINVAL;
1110 
1111 	if (sparc_check_constraints(evts, events, n + 1))
1112 		return -EINVAL;
1113 
1114 	hwc->idx = PIC_NO_INDEX;
1115 
1116 	/* Try to do all error checking before this point, as unwinding
1117 	 * state after grabbing the PMC is difficult.
1118 	 */
1119 	perf_event_grab_pmc();
1120 	event->destroy = hw_perf_event_destroy;
1121 
1122 	if (!hwc->sample_period) {
1123 		hwc->sample_period = MAX_PERIOD;
1124 		hwc->last_period = hwc->sample_period;
1125 		atomic64_set(&hwc->period_left, hwc->sample_period);
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static const struct pmu pmu = {
1132 	.enable		= sparc_pmu_enable,
1133 	.disable	= sparc_pmu_disable,
1134 	.read		= sparc_pmu_read,
1135 	.unthrottle	= sparc_pmu_unthrottle,
1136 };
1137 
1138 const struct pmu *hw_perf_event_init(struct perf_event *event)
1139 {
1140 	int err = __hw_perf_event_init(event);
1141 
1142 	if (err)
1143 		return ERR_PTR(err);
1144 	return &pmu;
1145 }
1146 
1147 void perf_event_print_debug(void)
1148 {
1149 	unsigned long flags;
1150 	u64 pcr, pic;
1151 	int cpu;
1152 
1153 	if (!sparc_pmu)
1154 		return;
1155 
1156 	local_irq_save(flags);
1157 
1158 	cpu = smp_processor_id();
1159 
1160 	pcr = pcr_ops->read();
1161 	read_pic(pic);
1162 
1163 	pr_info("\n");
1164 	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1165 		cpu, pcr, pic);
1166 
1167 	local_irq_restore(flags);
1168 }
1169 
1170 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1171 					    unsigned long cmd, void *__args)
1172 {
1173 	struct die_args *args = __args;
1174 	struct perf_sample_data data;
1175 	struct cpu_hw_events *cpuc;
1176 	struct pt_regs *regs;
1177 	int i;
1178 
1179 	if (!atomic_read(&active_events))
1180 		return NOTIFY_DONE;
1181 
1182 	switch (cmd) {
1183 	case DIE_NMI:
1184 		break;
1185 
1186 	default:
1187 		return NOTIFY_DONE;
1188 	}
1189 
1190 	regs = args->regs;
1191 
1192 	data.addr = 0;
1193 
1194 	cpuc = &__get_cpu_var(cpu_hw_events);
1195 
1196 	/* If the PMU has the TOE IRQ enable bits, we need to do a
1197 	 * dummy write to the %pcr to clear the overflow bits and thus
1198 	 * the interrupt.
1199 	 *
1200 	 * Do this before we peek at the counters to determine
1201 	 * overflow so we don't lose any events.
1202 	 */
1203 	if (sparc_pmu->irq_bit)
1204 		pcr_ops->write(cpuc->pcr);
1205 
1206 	for (i = 0; i < cpuc->n_events; i++) {
1207 		struct perf_event *event = cpuc->event[i];
1208 		int idx = cpuc->current_idx[i];
1209 		struct hw_perf_event *hwc;
1210 		u64 val;
1211 
1212 		hwc = &event->hw;
1213 		val = sparc_perf_event_update(event, hwc, idx);
1214 		if (val & (1ULL << 31))
1215 			continue;
1216 
1217 		data.period = event->hw.last_period;
1218 		if (!sparc_perf_event_set_period(event, hwc, idx))
1219 			continue;
1220 
1221 		if (perf_event_overflow(event, 1, &data, regs))
1222 			sparc_pmu_disable_event(cpuc, hwc, idx);
1223 	}
1224 
1225 	return NOTIFY_STOP;
1226 }
1227 
1228 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1229 	.notifier_call		= perf_event_nmi_handler,
1230 };
1231 
1232 static bool __init supported_pmu(void)
1233 {
1234 	if (!strcmp(sparc_pmu_type, "ultra3") ||
1235 	    !strcmp(sparc_pmu_type, "ultra3+") ||
1236 	    !strcmp(sparc_pmu_type, "ultra3i") ||
1237 	    !strcmp(sparc_pmu_type, "ultra4+")) {
1238 		sparc_pmu = &ultra3_pmu;
1239 		return true;
1240 	}
1241 	if (!strcmp(sparc_pmu_type, "niagara")) {
1242 		sparc_pmu = &niagara1_pmu;
1243 		return true;
1244 	}
1245 	if (!strcmp(sparc_pmu_type, "niagara2")) {
1246 		sparc_pmu = &niagara2_pmu;
1247 		return true;
1248 	}
1249 	return false;
1250 }
1251 
1252 void __init init_hw_perf_events(void)
1253 {
1254 	pr_info("Performance events: ");
1255 
1256 	if (!supported_pmu()) {
1257 		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1258 		return;
1259 	}
1260 
1261 	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1262 
1263 	/* All sparc64 PMUs currently have 2 events.  */
1264 	perf_max_events = 2;
1265 
1266 	register_die_notifier(&perf_event_nmi_notifier);
1267 }
1268 
1269 static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1270 {
1271 	if (entry->nr < PERF_MAX_STACK_DEPTH)
1272 		entry->ip[entry->nr++] = ip;
1273 }
1274 
1275 static void perf_callchain_kernel(struct pt_regs *regs,
1276 				  struct perf_callchain_entry *entry)
1277 {
1278 	unsigned long ksp, fp;
1279 
1280 	callchain_store(entry, PERF_CONTEXT_KERNEL);
1281 	callchain_store(entry, regs->tpc);
1282 
1283 	ksp = regs->u_regs[UREG_I6];
1284 	fp = ksp + STACK_BIAS;
1285 	do {
1286 		struct sparc_stackf *sf;
1287 		struct pt_regs *regs;
1288 		unsigned long pc;
1289 
1290 		if (!kstack_valid(current_thread_info(), fp))
1291 			break;
1292 
1293 		sf = (struct sparc_stackf *) fp;
1294 		regs = (struct pt_regs *) (sf + 1);
1295 
1296 		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1297 			if (user_mode(regs))
1298 				break;
1299 			pc = regs->tpc;
1300 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1301 		} else {
1302 			pc = sf->callers_pc;
1303 			fp = (unsigned long)sf->fp + STACK_BIAS;
1304 		}
1305 		callchain_store(entry, pc);
1306 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1307 }
1308 
1309 static void perf_callchain_user_64(struct pt_regs *regs,
1310 				   struct perf_callchain_entry *entry)
1311 {
1312 	unsigned long ufp;
1313 
1314 	callchain_store(entry, PERF_CONTEXT_USER);
1315 	callchain_store(entry, regs->tpc);
1316 
1317 	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1318 	do {
1319 		struct sparc_stackf *usf, sf;
1320 		unsigned long pc;
1321 
1322 		usf = (struct sparc_stackf *) ufp;
1323 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1324 			break;
1325 
1326 		pc = sf.callers_pc;
1327 		ufp = (unsigned long)sf.fp + STACK_BIAS;
1328 		callchain_store(entry, pc);
1329 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1330 }
1331 
1332 static void perf_callchain_user_32(struct pt_regs *regs,
1333 				   struct perf_callchain_entry *entry)
1334 {
1335 	unsigned long ufp;
1336 
1337 	callchain_store(entry, PERF_CONTEXT_USER);
1338 	callchain_store(entry, regs->tpc);
1339 
1340 	ufp = regs->u_regs[UREG_I6];
1341 	do {
1342 		struct sparc_stackf32 *usf, sf;
1343 		unsigned long pc;
1344 
1345 		usf = (struct sparc_stackf32 *) ufp;
1346 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1347 			break;
1348 
1349 		pc = sf.callers_pc;
1350 		ufp = (unsigned long)sf.fp;
1351 		callchain_store(entry, pc);
1352 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1353 }
1354 
1355 /* Like powerpc we can't get PMU interrupts within the PMU handler,
1356  * so no need for seperate NMI and IRQ chains as on x86.
1357  */
1358 static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
1359 
1360 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1361 {
1362 	struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
1363 
1364 	entry->nr = 0;
1365 	if (!user_mode(regs)) {
1366 		stack_trace_flush();
1367 		perf_callchain_kernel(regs, entry);
1368 		if (current->mm)
1369 			regs = task_pt_regs(current);
1370 		else
1371 			regs = NULL;
1372 	}
1373 	if (regs) {
1374 		flushw_user();
1375 		if (test_thread_flag(TIF_32BIT))
1376 			perf_callchain_user_32(regs, entry);
1377 		else
1378 			perf_callchain_user_64(regs, entry);
1379 	}
1380 	return entry;
1381 }
1382