xref: /openbmc/linux/arch/sparc/kernel/perf_event.c (revision 9c1f8594)
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21 
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28 
29 #include "kernel.h"
30 #include "kstack.h"
31 
32 /* Sparc64 chips have two performance counters, 32-bits each, with
33  * overflow interrupts generated on transition from 0xffffffff to 0.
34  * The counters are accessed in one go using a 64-bit register.
35  *
36  * Both counters are controlled using a single control register.  The
37  * only way to stop all sampling is to clear all of the context (user,
38  * supervisor, hypervisor) sampling enable bits.  But these bits apply
39  * to both counters, thus the two counters can't be enabled/disabled
40  * individually.
41  *
42  * The control register has two event fields, one for each of the two
43  * counters.  It's thus nearly impossible to have one counter going
44  * while keeping the other one stopped.  Therefore it is possible to
45  * get overflow interrupts for counters not currently "in use" and
46  * that condition must be checked in the overflow interrupt handler.
47  *
48  * So we use a hack, in that we program inactive counters with the
49  * "sw_count0" and "sw_count1" events.  These count how many times
50  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
51  * unusual way to encode a NOP and therefore will not trigger in
52  * normal code.
53  */
54 
55 #define MAX_HWEVENTS			2
56 #define MAX_PERIOD			((1UL << 32) - 1)
57 
58 #define PIC_UPPER_INDEX			0
59 #define PIC_LOWER_INDEX			1
60 #define PIC_NO_INDEX			-1
61 
62 struct cpu_hw_events {
63 	/* Number of events currently scheduled onto this cpu.
64 	 * This tells how many entries in the arrays below
65 	 * are valid.
66 	 */
67 	int			n_events;
68 
69 	/* Number of new events added since the last hw_perf_disable().
70 	 * This works because the perf event layer always adds new
71 	 * events inside of a perf_{disable,enable}() sequence.
72 	 */
73 	int			n_added;
74 
75 	/* Array of events current scheduled on this cpu.  */
76 	struct perf_event	*event[MAX_HWEVENTS];
77 
78 	/* Array of encoded longs, specifying the %pcr register
79 	 * encoding and the mask of PIC counters this even can
80 	 * be scheduled on.  See perf_event_encode() et al.
81 	 */
82 	unsigned long		events[MAX_HWEVENTS];
83 
84 	/* The current counter index assigned to an event.  When the
85 	 * event hasn't been programmed into the cpu yet, this will
86 	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
87 	 * we ought to schedule the event.
88 	 */
89 	int			current_idx[MAX_HWEVENTS];
90 
91 	/* Software copy of %pcr register on this cpu.  */
92 	u64			pcr;
93 
94 	/* Enabled/disable state.  */
95 	int			enabled;
96 
97 	unsigned int		group_flag;
98 };
99 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
100 
101 /* An event map describes the characteristics of a performance
102  * counter event.  In particular it gives the encoding as well as
103  * a mask telling which counters the event can be measured on.
104  */
105 struct perf_event_map {
106 	u16	encoding;
107 	u8	pic_mask;
108 #define PIC_NONE	0x00
109 #define PIC_UPPER	0x01
110 #define PIC_LOWER	0x02
111 };
112 
113 /* Encode a perf_event_map entry into a long.  */
114 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
115 {
116 	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
117 }
118 
119 static u8 perf_event_get_msk(unsigned long val)
120 {
121 	return val & 0xff;
122 }
123 
124 static u64 perf_event_get_enc(unsigned long val)
125 {
126 	return val >> 16;
127 }
128 
129 #define C(x) PERF_COUNT_HW_CACHE_##x
130 
131 #define CACHE_OP_UNSUPPORTED	0xfffe
132 #define CACHE_OP_NONSENSE	0xffff
133 
134 typedef struct perf_event_map cache_map_t
135 				[PERF_COUNT_HW_CACHE_MAX]
136 				[PERF_COUNT_HW_CACHE_OP_MAX]
137 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
138 
139 struct sparc_pmu {
140 	const struct perf_event_map	*(*event_map)(int);
141 	const cache_map_t		*cache_map;
142 	int				max_events;
143 	int				upper_shift;
144 	int				lower_shift;
145 	int				event_mask;
146 	int				hv_bit;
147 	int				irq_bit;
148 	int				upper_nop;
149 	int				lower_nop;
150 };
151 
152 static const struct perf_event_map ultra3_perfmon_event_map[] = {
153 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
154 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
155 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
156 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
157 };
158 
159 static const struct perf_event_map *ultra3_event_map(int event_id)
160 {
161 	return &ultra3_perfmon_event_map[event_id];
162 }
163 
164 static const cache_map_t ultra3_cache_map = {
165 [C(L1D)] = {
166 	[C(OP_READ)] = {
167 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
168 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
169 	},
170 	[C(OP_WRITE)] = {
171 		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
172 		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
173 	},
174 	[C(OP_PREFETCH)] = {
175 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
176 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
177 	},
178 },
179 [C(L1I)] = {
180 	[C(OP_READ)] = {
181 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
182 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
183 	},
184 	[ C(OP_WRITE) ] = {
185 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
186 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
187 	},
188 	[ C(OP_PREFETCH) ] = {
189 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
190 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
191 	},
192 },
193 [C(LL)] = {
194 	[C(OP_READ)] = {
195 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
196 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
197 	},
198 	[C(OP_WRITE)] = {
199 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
200 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
201 	},
202 	[C(OP_PREFETCH)] = {
203 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
204 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
205 	},
206 },
207 [C(DTLB)] = {
208 	[C(OP_READ)] = {
209 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
210 		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
211 	},
212 	[ C(OP_WRITE) ] = {
213 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
215 	},
216 	[ C(OP_PREFETCH) ] = {
217 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
218 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
219 	},
220 },
221 [C(ITLB)] = {
222 	[C(OP_READ)] = {
223 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
224 		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
225 	},
226 	[ C(OP_WRITE) ] = {
227 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
229 	},
230 	[ C(OP_PREFETCH) ] = {
231 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
232 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
233 	},
234 },
235 [C(BPU)] = {
236 	[C(OP_READ)] = {
237 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
238 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
239 	},
240 	[ C(OP_WRITE) ] = {
241 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
243 	},
244 	[ C(OP_PREFETCH) ] = {
245 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
247 	},
248 },
249 [C(NODE)] = {
250 	[C(OP_READ)] = {
251 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
252 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
253 	},
254 	[ C(OP_WRITE) ] = {
255 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
256 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
257 	},
258 	[ C(OP_PREFETCH) ] = {
259 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
260 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
261 	},
262 },
263 };
264 
265 static const struct sparc_pmu ultra3_pmu = {
266 	.event_map	= ultra3_event_map,
267 	.cache_map	= &ultra3_cache_map,
268 	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
269 	.upper_shift	= 11,
270 	.lower_shift	= 4,
271 	.event_mask	= 0x3f,
272 	.upper_nop	= 0x1c,
273 	.lower_nop	= 0x14,
274 };
275 
276 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
277  * only instructions, so it is free running which creates all kinds of
278  * problems.  Some hardware designs make one wonder if the creator
279  * even looked at how this stuff gets used by software.
280  */
281 static const struct perf_event_map niagara1_perfmon_event_map[] = {
282 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
283 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
284 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
285 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
286 };
287 
288 static const struct perf_event_map *niagara1_event_map(int event_id)
289 {
290 	return &niagara1_perfmon_event_map[event_id];
291 }
292 
293 static const cache_map_t niagara1_cache_map = {
294 [C(L1D)] = {
295 	[C(OP_READ)] = {
296 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
297 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
298 	},
299 	[C(OP_WRITE)] = {
300 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
301 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
302 	},
303 	[C(OP_PREFETCH)] = {
304 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
305 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
306 	},
307 },
308 [C(L1I)] = {
309 	[C(OP_READ)] = {
310 		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
311 		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
312 	},
313 	[ C(OP_WRITE) ] = {
314 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
315 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
316 	},
317 	[ C(OP_PREFETCH) ] = {
318 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
319 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
320 	},
321 },
322 [C(LL)] = {
323 	[C(OP_READ)] = {
324 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
325 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
326 	},
327 	[C(OP_WRITE)] = {
328 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
329 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
330 	},
331 	[C(OP_PREFETCH)] = {
332 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
333 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
334 	},
335 },
336 [C(DTLB)] = {
337 	[C(OP_READ)] = {
338 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
339 		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
340 	},
341 	[ C(OP_WRITE) ] = {
342 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
344 	},
345 	[ C(OP_PREFETCH) ] = {
346 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
347 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
348 	},
349 },
350 [C(ITLB)] = {
351 	[C(OP_READ)] = {
352 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
353 		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
354 	},
355 	[ C(OP_WRITE) ] = {
356 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
358 	},
359 	[ C(OP_PREFETCH) ] = {
360 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
361 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
362 	},
363 },
364 [C(BPU)] = {
365 	[C(OP_READ)] = {
366 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
367 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
368 	},
369 	[ C(OP_WRITE) ] = {
370 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
371 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
372 	},
373 	[ C(OP_PREFETCH) ] = {
374 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
375 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
376 	},
377 },
378 [C(NODE)] = {
379 	[C(OP_READ)] = {
380 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
381 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
382 	},
383 	[ C(OP_WRITE) ] = {
384 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
385 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
386 	},
387 	[ C(OP_PREFETCH) ] = {
388 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
389 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
390 	},
391 },
392 };
393 
394 static const struct sparc_pmu niagara1_pmu = {
395 	.event_map	= niagara1_event_map,
396 	.cache_map	= &niagara1_cache_map,
397 	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
398 	.upper_shift	= 0,
399 	.lower_shift	= 4,
400 	.event_mask	= 0x7,
401 	.upper_nop	= 0x0,
402 	.lower_nop	= 0x0,
403 };
404 
405 static const struct perf_event_map niagara2_perfmon_event_map[] = {
406 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
407 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
408 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
409 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
410 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
411 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
412 };
413 
414 static const struct perf_event_map *niagara2_event_map(int event_id)
415 {
416 	return &niagara2_perfmon_event_map[event_id];
417 }
418 
419 static const cache_map_t niagara2_cache_map = {
420 [C(L1D)] = {
421 	[C(OP_READ)] = {
422 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
423 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
424 	},
425 	[C(OP_WRITE)] = {
426 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
427 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
428 	},
429 	[C(OP_PREFETCH)] = {
430 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432 	},
433 },
434 [C(L1I)] = {
435 	[C(OP_READ)] = {
436 		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
437 		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
438 	},
439 	[ C(OP_WRITE) ] = {
440 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
441 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
442 	},
443 	[ C(OP_PREFETCH) ] = {
444 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
445 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
446 	},
447 },
448 [C(LL)] = {
449 	[C(OP_READ)] = {
450 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
451 		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
452 	},
453 	[C(OP_WRITE)] = {
454 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
455 		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
456 	},
457 	[C(OP_PREFETCH)] = {
458 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
459 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
460 	},
461 },
462 [C(DTLB)] = {
463 	[C(OP_READ)] = {
464 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
465 		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
466 	},
467 	[ C(OP_WRITE) ] = {
468 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
470 	},
471 	[ C(OP_PREFETCH) ] = {
472 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
473 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
474 	},
475 },
476 [C(ITLB)] = {
477 	[C(OP_READ)] = {
478 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
479 		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
480 	},
481 	[ C(OP_WRITE) ] = {
482 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
483 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
484 	},
485 	[ C(OP_PREFETCH) ] = {
486 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
487 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
488 	},
489 },
490 [C(BPU)] = {
491 	[C(OP_READ)] = {
492 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
493 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
494 	},
495 	[ C(OP_WRITE) ] = {
496 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
497 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
498 	},
499 	[ C(OP_PREFETCH) ] = {
500 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
501 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
502 	},
503 },
504 [C(NODE)] = {
505 	[C(OP_READ)] = {
506 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
507 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
508 	},
509 	[ C(OP_WRITE) ] = {
510 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
511 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
512 	},
513 	[ C(OP_PREFETCH) ] = {
514 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
515 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
516 	},
517 },
518 };
519 
520 static const struct sparc_pmu niagara2_pmu = {
521 	.event_map	= niagara2_event_map,
522 	.cache_map	= &niagara2_cache_map,
523 	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
524 	.upper_shift	= 19,
525 	.lower_shift	= 6,
526 	.event_mask	= 0xfff,
527 	.hv_bit		= 0x8,
528 	.irq_bit	= 0x30,
529 	.upper_nop	= 0x220,
530 	.lower_nop	= 0x220,
531 };
532 
533 static const struct sparc_pmu *sparc_pmu __read_mostly;
534 
535 static u64 event_encoding(u64 event_id, int idx)
536 {
537 	if (idx == PIC_UPPER_INDEX)
538 		event_id <<= sparc_pmu->upper_shift;
539 	else
540 		event_id <<= sparc_pmu->lower_shift;
541 	return event_id;
542 }
543 
544 static u64 mask_for_index(int idx)
545 {
546 	return event_encoding(sparc_pmu->event_mask, idx);
547 }
548 
549 static u64 nop_for_index(int idx)
550 {
551 	return event_encoding(idx == PIC_UPPER_INDEX ?
552 			      sparc_pmu->upper_nop :
553 			      sparc_pmu->lower_nop, idx);
554 }
555 
556 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
557 {
558 	u64 val, mask = mask_for_index(idx);
559 
560 	val = cpuc->pcr;
561 	val &= ~mask;
562 	val |= hwc->config;
563 	cpuc->pcr = val;
564 
565 	pcr_ops->write(cpuc->pcr);
566 }
567 
568 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
569 {
570 	u64 mask = mask_for_index(idx);
571 	u64 nop = nop_for_index(idx);
572 	u64 val;
573 
574 	val = cpuc->pcr;
575 	val &= ~mask;
576 	val |= nop;
577 	cpuc->pcr = val;
578 
579 	pcr_ops->write(cpuc->pcr);
580 }
581 
582 static u32 read_pmc(int idx)
583 {
584 	u64 val;
585 
586 	read_pic(val);
587 	if (idx == PIC_UPPER_INDEX)
588 		val >>= 32;
589 
590 	return val & 0xffffffff;
591 }
592 
593 static void write_pmc(int idx, u64 val)
594 {
595 	u64 shift, mask, pic;
596 
597 	shift = 0;
598 	if (idx == PIC_UPPER_INDEX)
599 		shift = 32;
600 
601 	mask = ((u64) 0xffffffff) << shift;
602 	val <<= shift;
603 
604 	read_pic(pic);
605 	pic &= ~mask;
606 	pic |= val;
607 	write_pic(pic);
608 }
609 
610 static u64 sparc_perf_event_update(struct perf_event *event,
611 				   struct hw_perf_event *hwc, int idx)
612 {
613 	int shift = 64 - 32;
614 	u64 prev_raw_count, new_raw_count;
615 	s64 delta;
616 
617 again:
618 	prev_raw_count = local64_read(&hwc->prev_count);
619 	new_raw_count = read_pmc(idx);
620 
621 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
622 			     new_raw_count) != prev_raw_count)
623 		goto again;
624 
625 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
626 	delta >>= shift;
627 
628 	local64_add(delta, &event->count);
629 	local64_sub(delta, &hwc->period_left);
630 
631 	return new_raw_count;
632 }
633 
634 static int sparc_perf_event_set_period(struct perf_event *event,
635 				       struct hw_perf_event *hwc, int idx)
636 {
637 	s64 left = local64_read(&hwc->period_left);
638 	s64 period = hwc->sample_period;
639 	int ret = 0;
640 
641 	if (unlikely(left <= -period)) {
642 		left = period;
643 		local64_set(&hwc->period_left, left);
644 		hwc->last_period = period;
645 		ret = 1;
646 	}
647 
648 	if (unlikely(left <= 0)) {
649 		left += period;
650 		local64_set(&hwc->period_left, left);
651 		hwc->last_period = period;
652 		ret = 1;
653 	}
654 	if (left > MAX_PERIOD)
655 		left = MAX_PERIOD;
656 
657 	local64_set(&hwc->prev_count, (u64)-left);
658 
659 	write_pmc(idx, (u64)(-left) & 0xffffffff);
660 
661 	perf_event_update_userpage(event);
662 
663 	return ret;
664 }
665 
666 /* If performance event entries have been added, move existing
667  * events around (if necessary) and then assign new entries to
668  * counters.
669  */
670 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
671 {
672 	int i;
673 
674 	if (!cpuc->n_added)
675 		goto out;
676 
677 	/* Read in the counters which are moving.  */
678 	for (i = 0; i < cpuc->n_events; i++) {
679 		struct perf_event *cp = cpuc->event[i];
680 
681 		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
682 		    cpuc->current_idx[i] != cp->hw.idx) {
683 			sparc_perf_event_update(cp, &cp->hw,
684 						cpuc->current_idx[i]);
685 			cpuc->current_idx[i] = PIC_NO_INDEX;
686 		}
687 	}
688 
689 	/* Assign to counters all unassigned events.  */
690 	for (i = 0; i < cpuc->n_events; i++) {
691 		struct perf_event *cp = cpuc->event[i];
692 		struct hw_perf_event *hwc = &cp->hw;
693 		int idx = hwc->idx;
694 		u64 enc;
695 
696 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
697 			continue;
698 
699 		sparc_perf_event_set_period(cp, hwc, idx);
700 		cpuc->current_idx[i] = idx;
701 
702 		enc = perf_event_get_enc(cpuc->events[i]);
703 		pcr &= ~mask_for_index(idx);
704 		if (hwc->state & PERF_HES_STOPPED)
705 			pcr |= nop_for_index(idx);
706 		else
707 			pcr |= event_encoding(enc, idx);
708 	}
709 out:
710 	return pcr;
711 }
712 
713 static void sparc_pmu_enable(struct pmu *pmu)
714 {
715 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
716 	u64 pcr;
717 
718 	if (cpuc->enabled)
719 		return;
720 
721 	cpuc->enabled = 1;
722 	barrier();
723 
724 	pcr = cpuc->pcr;
725 	if (!cpuc->n_events) {
726 		pcr = 0;
727 	} else {
728 		pcr = maybe_change_configuration(cpuc, pcr);
729 
730 		/* We require that all of the events have the same
731 		 * configuration, so just fetch the settings from the
732 		 * first entry.
733 		 */
734 		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
735 	}
736 
737 	pcr_ops->write(cpuc->pcr);
738 }
739 
740 static void sparc_pmu_disable(struct pmu *pmu)
741 {
742 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
743 	u64 val;
744 
745 	if (!cpuc->enabled)
746 		return;
747 
748 	cpuc->enabled = 0;
749 	cpuc->n_added = 0;
750 
751 	val = cpuc->pcr;
752 	val &= ~(PCR_UTRACE | PCR_STRACE |
753 		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
754 	cpuc->pcr = val;
755 
756 	pcr_ops->write(cpuc->pcr);
757 }
758 
759 static int active_event_index(struct cpu_hw_events *cpuc,
760 			      struct perf_event *event)
761 {
762 	int i;
763 
764 	for (i = 0; i < cpuc->n_events; i++) {
765 		if (cpuc->event[i] == event)
766 			break;
767 	}
768 	BUG_ON(i == cpuc->n_events);
769 	return cpuc->current_idx[i];
770 }
771 
772 static void sparc_pmu_start(struct perf_event *event, int flags)
773 {
774 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
775 	int idx = active_event_index(cpuc, event);
776 
777 	if (flags & PERF_EF_RELOAD) {
778 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
779 		sparc_perf_event_set_period(event, &event->hw, idx);
780 	}
781 
782 	event->hw.state = 0;
783 
784 	sparc_pmu_enable_event(cpuc, &event->hw, idx);
785 }
786 
787 static void sparc_pmu_stop(struct perf_event *event, int flags)
788 {
789 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
790 	int idx = active_event_index(cpuc, event);
791 
792 	if (!(event->hw.state & PERF_HES_STOPPED)) {
793 		sparc_pmu_disable_event(cpuc, &event->hw, idx);
794 		event->hw.state |= PERF_HES_STOPPED;
795 	}
796 
797 	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
798 		sparc_perf_event_update(event, &event->hw, idx);
799 		event->hw.state |= PERF_HES_UPTODATE;
800 	}
801 }
802 
803 static void sparc_pmu_del(struct perf_event *event, int _flags)
804 {
805 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
806 	unsigned long flags;
807 	int i;
808 
809 	local_irq_save(flags);
810 	perf_pmu_disable(event->pmu);
811 
812 	for (i = 0; i < cpuc->n_events; i++) {
813 		if (event == cpuc->event[i]) {
814 			/* Absorb the final count and turn off the
815 			 * event.
816 			 */
817 			sparc_pmu_stop(event, PERF_EF_UPDATE);
818 
819 			/* Shift remaining entries down into
820 			 * the existing slot.
821 			 */
822 			while (++i < cpuc->n_events) {
823 				cpuc->event[i - 1] = cpuc->event[i];
824 				cpuc->events[i - 1] = cpuc->events[i];
825 				cpuc->current_idx[i - 1] =
826 					cpuc->current_idx[i];
827 			}
828 
829 			perf_event_update_userpage(event);
830 
831 			cpuc->n_events--;
832 			break;
833 		}
834 	}
835 
836 	perf_pmu_enable(event->pmu);
837 	local_irq_restore(flags);
838 }
839 
840 static void sparc_pmu_read(struct perf_event *event)
841 {
842 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
843 	int idx = active_event_index(cpuc, event);
844 	struct hw_perf_event *hwc = &event->hw;
845 
846 	sparc_perf_event_update(event, hwc, idx);
847 }
848 
849 static atomic_t active_events = ATOMIC_INIT(0);
850 static DEFINE_MUTEX(pmc_grab_mutex);
851 
852 static void perf_stop_nmi_watchdog(void *unused)
853 {
854 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
855 
856 	stop_nmi_watchdog(NULL);
857 	cpuc->pcr = pcr_ops->read();
858 }
859 
860 void perf_event_grab_pmc(void)
861 {
862 	if (atomic_inc_not_zero(&active_events))
863 		return;
864 
865 	mutex_lock(&pmc_grab_mutex);
866 	if (atomic_read(&active_events) == 0) {
867 		if (atomic_read(&nmi_active) > 0) {
868 			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
869 			BUG_ON(atomic_read(&nmi_active) != 0);
870 		}
871 		atomic_inc(&active_events);
872 	}
873 	mutex_unlock(&pmc_grab_mutex);
874 }
875 
876 void perf_event_release_pmc(void)
877 {
878 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
879 		if (atomic_read(&nmi_active) == 0)
880 			on_each_cpu(start_nmi_watchdog, NULL, 1);
881 		mutex_unlock(&pmc_grab_mutex);
882 	}
883 }
884 
885 static const struct perf_event_map *sparc_map_cache_event(u64 config)
886 {
887 	unsigned int cache_type, cache_op, cache_result;
888 	const struct perf_event_map *pmap;
889 
890 	if (!sparc_pmu->cache_map)
891 		return ERR_PTR(-ENOENT);
892 
893 	cache_type = (config >>  0) & 0xff;
894 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
895 		return ERR_PTR(-EINVAL);
896 
897 	cache_op = (config >>  8) & 0xff;
898 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
899 		return ERR_PTR(-EINVAL);
900 
901 	cache_result = (config >> 16) & 0xff;
902 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
903 		return ERR_PTR(-EINVAL);
904 
905 	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
906 
907 	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
908 		return ERR_PTR(-ENOENT);
909 
910 	if (pmap->encoding == CACHE_OP_NONSENSE)
911 		return ERR_PTR(-EINVAL);
912 
913 	return pmap;
914 }
915 
916 static void hw_perf_event_destroy(struct perf_event *event)
917 {
918 	perf_event_release_pmc();
919 }
920 
921 /* Make sure all events can be scheduled into the hardware at
922  * the same time.  This is simplified by the fact that we only
923  * need to support 2 simultaneous HW events.
924  *
925  * As a side effect, the evts[]->hw.idx values will be assigned
926  * on success.  These are pending indexes.  When the events are
927  * actually programmed into the chip, these values will propagate
928  * to the per-cpu cpuc->current_idx[] slots, see the code in
929  * maybe_change_configuration() for details.
930  */
931 static int sparc_check_constraints(struct perf_event **evts,
932 				   unsigned long *events, int n_ev)
933 {
934 	u8 msk0 = 0, msk1 = 0;
935 	int idx0 = 0;
936 
937 	/* This case is possible when we are invoked from
938 	 * hw_perf_group_sched_in().
939 	 */
940 	if (!n_ev)
941 		return 0;
942 
943 	if (n_ev > MAX_HWEVENTS)
944 		return -1;
945 
946 	msk0 = perf_event_get_msk(events[0]);
947 	if (n_ev == 1) {
948 		if (msk0 & PIC_LOWER)
949 			idx0 = 1;
950 		goto success;
951 	}
952 	BUG_ON(n_ev != 2);
953 	msk1 = perf_event_get_msk(events[1]);
954 
955 	/* If both events can go on any counter, OK.  */
956 	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
957 	    msk1 == (PIC_UPPER | PIC_LOWER))
958 		goto success;
959 
960 	/* If one event is limited to a specific counter,
961 	 * and the other can go on both, OK.
962 	 */
963 	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
964 	    msk1 == (PIC_UPPER | PIC_LOWER)) {
965 		if (msk0 & PIC_LOWER)
966 			idx0 = 1;
967 		goto success;
968 	}
969 
970 	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
971 	    msk0 == (PIC_UPPER | PIC_LOWER)) {
972 		if (msk1 & PIC_UPPER)
973 			idx0 = 1;
974 		goto success;
975 	}
976 
977 	/* If the events are fixed to different counters, OK.  */
978 	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
979 	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
980 		if (msk0 & PIC_LOWER)
981 			idx0 = 1;
982 		goto success;
983 	}
984 
985 	/* Otherwise, there is a conflict.  */
986 	return -1;
987 
988 success:
989 	evts[0]->hw.idx = idx0;
990 	if (n_ev == 2)
991 		evts[1]->hw.idx = idx0 ^ 1;
992 	return 0;
993 }
994 
995 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
996 {
997 	int eu = 0, ek = 0, eh = 0;
998 	struct perf_event *event;
999 	int i, n, first;
1000 
1001 	n = n_prev + n_new;
1002 	if (n <= 1)
1003 		return 0;
1004 
1005 	first = 1;
1006 	for (i = 0; i < n; i++) {
1007 		event = evts[i];
1008 		if (first) {
1009 			eu = event->attr.exclude_user;
1010 			ek = event->attr.exclude_kernel;
1011 			eh = event->attr.exclude_hv;
1012 			first = 0;
1013 		} else if (event->attr.exclude_user != eu ||
1014 			   event->attr.exclude_kernel != ek ||
1015 			   event->attr.exclude_hv != eh) {
1016 			return -EAGAIN;
1017 		}
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int collect_events(struct perf_event *group, int max_count,
1024 			  struct perf_event *evts[], unsigned long *events,
1025 			  int *current_idx)
1026 {
1027 	struct perf_event *event;
1028 	int n = 0;
1029 
1030 	if (!is_software_event(group)) {
1031 		if (n >= max_count)
1032 			return -1;
1033 		evts[n] = group;
1034 		events[n] = group->hw.event_base;
1035 		current_idx[n++] = PIC_NO_INDEX;
1036 	}
1037 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1038 		if (!is_software_event(event) &&
1039 		    event->state != PERF_EVENT_STATE_OFF) {
1040 			if (n >= max_count)
1041 				return -1;
1042 			evts[n] = event;
1043 			events[n] = event->hw.event_base;
1044 			current_idx[n++] = PIC_NO_INDEX;
1045 		}
1046 	}
1047 	return n;
1048 }
1049 
1050 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1051 {
1052 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1053 	int n0, ret = -EAGAIN;
1054 	unsigned long flags;
1055 
1056 	local_irq_save(flags);
1057 	perf_pmu_disable(event->pmu);
1058 
1059 	n0 = cpuc->n_events;
1060 	if (n0 >= MAX_HWEVENTS)
1061 		goto out;
1062 
1063 	cpuc->event[n0] = event;
1064 	cpuc->events[n0] = event->hw.event_base;
1065 	cpuc->current_idx[n0] = PIC_NO_INDEX;
1066 
1067 	event->hw.state = PERF_HES_UPTODATE;
1068 	if (!(ef_flags & PERF_EF_START))
1069 		event->hw.state |= PERF_HES_STOPPED;
1070 
1071 	/*
1072 	 * If group events scheduling transaction was started,
1073 	 * skip the schedulability test here, it will be performed
1074 	 * at commit time(->commit_txn) as a whole
1075 	 */
1076 	if (cpuc->group_flag & PERF_EVENT_TXN)
1077 		goto nocheck;
1078 
1079 	if (check_excludes(cpuc->event, n0, 1))
1080 		goto out;
1081 	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1082 		goto out;
1083 
1084 nocheck:
1085 	cpuc->n_events++;
1086 	cpuc->n_added++;
1087 
1088 	ret = 0;
1089 out:
1090 	perf_pmu_enable(event->pmu);
1091 	local_irq_restore(flags);
1092 	return ret;
1093 }
1094 
1095 static int sparc_pmu_event_init(struct perf_event *event)
1096 {
1097 	struct perf_event_attr *attr = &event->attr;
1098 	struct perf_event *evts[MAX_HWEVENTS];
1099 	struct hw_perf_event *hwc = &event->hw;
1100 	unsigned long events[MAX_HWEVENTS];
1101 	int current_idx_dmy[MAX_HWEVENTS];
1102 	const struct perf_event_map *pmap;
1103 	int n;
1104 
1105 	if (atomic_read(&nmi_active) < 0)
1106 		return -ENODEV;
1107 
1108 	switch (attr->type) {
1109 	case PERF_TYPE_HARDWARE:
1110 		if (attr->config >= sparc_pmu->max_events)
1111 			return -EINVAL;
1112 		pmap = sparc_pmu->event_map(attr->config);
1113 		break;
1114 
1115 	case PERF_TYPE_HW_CACHE:
1116 		pmap = sparc_map_cache_event(attr->config);
1117 		if (IS_ERR(pmap))
1118 			return PTR_ERR(pmap);
1119 		break;
1120 
1121 	case PERF_TYPE_RAW:
1122 		pmap = NULL;
1123 		break;
1124 
1125 	default:
1126 		return -ENOENT;
1127 
1128 	}
1129 
1130 	if (pmap) {
1131 		hwc->event_base = perf_event_encode(pmap);
1132 	} else {
1133 		/*
1134 		 * User gives us "(encoding << 16) | pic_mask" for
1135 		 * PERF_TYPE_RAW events.
1136 		 */
1137 		hwc->event_base = attr->config;
1138 	}
1139 
1140 	/* We save the enable bits in the config_base.  */
1141 	hwc->config_base = sparc_pmu->irq_bit;
1142 	if (!attr->exclude_user)
1143 		hwc->config_base |= PCR_UTRACE;
1144 	if (!attr->exclude_kernel)
1145 		hwc->config_base |= PCR_STRACE;
1146 	if (!attr->exclude_hv)
1147 		hwc->config_base |= sparc_pmu->hv_bit;
1148 
1149 	n = 0;
1150 	if (event->group_leader != event) {
1151 		n = collect_events(event->group_leader,
1152 				   MAX_HWEVENTS - 1,
1153 				   evts, events, current_idx_dmy);
1154 		if (n < 0)
1155 			return -EINVAL;
1156 	}
1157 	events[n] = hwc->event_base;
1158 	evts[n] = event;
1159 
1160 	if (check_excludes(evts, n, 1))
1161 		return -EINVAL;
1162 
1163 	if (sparc_check_constraints(evts, events, n + 1))
1164 		return -EINVAL;
1165 
1166 	hwc->idx = PIC_NO_INDEX;
1167 
1168 	/* Try to do all error checking before this point, as unwinding
1169 	 * state after grabbing the PMC is difficult.
1170 	 */
1171 	perf_event_grab_pmc();
1172 	event->destroy = hw_perf_event_destroy;
1173 
1174 	if (!hwc->sample_period) {
1175 		hwc->sample_period = MAX_PERIOD;
1176 		hwc->last_period = hwc->sample_period;
1177 		local64_set(&hwc->period_left, hwc->sample_period);
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 /*
1184  * Start group events scheduling transaction
1185  * Set the flag to make pmu::enable() not perform the
1186  * schedulability test, it will be performed at commit time
1187  */
1188 static void sparc_pmu_start_txn(struct pmu *pmu)
1189 {
1190 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1191 
1192 	perf_pmu_disable(pmu);
1193 	cpuhw->group_flag |= PERF_EVENT_TXN;
1194 }
1195 
1196 /*
1197  * Stop group events scheduling transaction
1198  * Clear the flag and pmu::enable() will perform the
1199  * schedulability test.
1200  */
1201 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1202 {
1203 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1204 
1205 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1206 	perf_pmu_enable(pmu);
1207 }
1208 
1209 /*
1210  * Commit group events scheduling transaction
1211  * Perform the group schedulability test as a whole
1212  * Return 0 if success
1213  */
1214 static int sparc_pmu_commit_txn(struct pmu *pmu)
1215 {
1216 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1217 	int n;
1218 
1219 	if (!sparc_pmu)
1220 		return -EINVAL;
1221 
1222 	cpuc = &__get_cpu_var(cpu_hw_events);
1223 	n = cpuc->n_events;
1224 	if (check_excludes(cpuc->event, 0, n))
1225 		return -EINVAL;
1226 	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1227 		return -EAGAIN;
1228 
1229 	cpuc->group_flag &= ~PERF_EVENT_TXN;
1230 	perf_pmu_enable(pmu);
1231 	return 0;
1232 }
1233 
1234 static struct pmu pmu = {
1235 	.pmu_enable	= sparc_pmu_enable,
1236 	.pmu_disable	= sparc_pmu_disable,
1237 	.event_init	= sparc_pmu_event_init,
1238 	.add		= sparc_pmu_add,
1239 	.del		= sparc_pmu_del,
1240 	.start		= sparc_pmu_start,
1241 	.stop		= sparc_pmu_stop,
1242 	.read		= sparc_pmu_read,
1243 	.start_txn	= sparc_pmu_start_txn,
1244 	.cancel_txn	= sparc_pmu_cancel_txn,
1245 	.commit_txn	= sparc_pmu_commit_txn,
1246 };
1247 
1248 void perf_event_print_debug(void)
1249 {
1250 	unsigned long flags;
1251 	u64 pcr, pic;
1252 	int cpu;
1253 
1254 	if (!sparc_pmu)
1255 		return;
1256 
1257 	local_irq_save(flags);
1258 
1259 	cpu = smp_processor_id();
1260 
1261 	pcr = pcr_ops->read();
1262 	read_pic(pic);
1263 
1264 	pr_info("\n");
1265 	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1266 		cpu, pcr, pic);
1267 
1268 	local_irq_restore(flags);
1269 }
1270 
1271 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1272 					    unsigned long cmd, void *__args)
1273 {
1274 	struct die_args *args = __args;
1275 	struct perf_sample_data data;
1276 	struct cpu_hw_events *cpuc;
1277 	struct pt_regs *regs;
1278 	int i;
1279 
1280 	if (!atomic_read(&active_events))
1281 		return NOTIFY_DONE;
1282 
1283 	switch (cmd) {
1284 	case DIE_NMI:
1285 		break;
1286 
1287 	default:
1288 		return NOTIFY_DONE;
1289 	}
1290 
1291 	regs = args->regs;
1292 
1293 	perf_sample_data_init(&data, 0);
1294 
1295 	cpuc = &__get_cpu_var(cpu_hw_events);
1296 
1297 	/* If the PMU has the TOE IRQ enable bits, we need to do a
1298 	 * dummy write to the %pcr to clear the overflow bits and thus
1299 	 * the interrupt.
1300 	 *
1301 	 * Do this before we peek at the counters to determine
1302 	 * overflow so we don't lose any events.
1303 	 */
1304 	if (sparc_pmu->irq_bit)
1305 		pcr_ops->write(cpuc->pcr);
1306 
1307 	for (i = 0; i < cpuc->n_events; i++) {
1308 		struct perf_event *event = cpuc->event[i];
1309 		int idx = cpuc->current_idx[i];
1310 		struct hw_perf_event *hwc;
1311 		u64 val;
1312 
1313 		hwc = &event->hw;
1314 		val = sparc_perf_event_update(event, hwc, idx);
1315 		if (val & (1ULL << 31))
1316 			continue;
1317 
1318 		data.period = event->hw.last_period;
1319 		if (!sparc_perf_event_set_period(event, hwc, idx))
1320 			continue;
1321 
1322 		if (perf_event_overflow(event, &data, regs))
1323 			sparc_pmu_stop(event, 0);
1324 	}
1325 
1326 	return NOTIFY_STOP;
1327 }
1328 
1329 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1330 	.notifier_call		= perf_event_nmi_handler,
1331 };
1332 
1333 static bool __init supported_pmu(void)
1334 {
1335 	if (!strcmp(sparc_pmu_type, "ultra3") ||
1336 	    !strcmp(sparc_pmu_type, "ultra3+") ||
1337 	    !strcmp(sparc_pmu_type, "ultra3i") ||
1338 	    !strcmp(sparc_pmu_type, "ultra4+")) {
1339 		sparc_pmu = &ultra3_pmu;
1340 		return true;
1341 	}
1342 	if (!strcmp(sparc_pmu_type, "niagara")) {
1343 		sparc_pmu = &niagara1_pmu;
1344 		return true;
1345 	}
1346 	if (!strcmp(sparc_pmu_type, "niagara2") ||
1347 	    !strcmp(sparc_pmu_type, "niagara3")) {
1348 		sparc_pmu = &niagara2_pmu;
1349 		return true;
1350 	}
1351 	return false;
1352 }
1353 
1354 int __init init_hw_perf_events(void)
1355 {
1356 	pr_info("Performance events: ");
1357 
1358 	if (!supported_pmu()) {
1359 		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1360 		return 0;
1361 	}
1362 
1363 	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1364 
1365 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1366 	register_die_notifier(&perf_event_nmi_notifier);
1367 
1368 	return 0;
1369 }
1370 early_initcall(init_hw_perf_events);
1371 
1372 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1373 			   struct pt_regs *regs)
1374 {
1375 	unsigned long ksp, fp;
1376 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1377 	int graph = 0;
1378 #endif
1379 
1380 	stack_trace_flush();
1381 
1382 	perf_callchain_store(entry, regs->tpc);
1383 
1384 	ksp = regs->u_regs[UREG_I6];
1385 	fp = ksp + STACK_BIAS;
1386 	do {
1387 		struct sparc_stackf *sf;
1388 		struct pt_regs *regs;
1389 		unsigned long pc;
1390 
1391 		if (!kstack_valid(current_thread_info(), fp))
1392 			break;
1393 
1394 		sf = (struct sparc_stackf *) fp;
1395 		regs = (struct pt_regs *) (sf + 1);
1396 
1397 		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1398 			if (user_mode(regs))
1399 				break;
1400 			pc = regs->tpc;
1401 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1402 		} else {
1403 			pc = sf->callers_pc;
1404 			fp = (unsigned long)sf->fp + STACK_BIAS;
1405 		}
1406 		perf_callchain_store(entry, pc);
1407 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1408 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1409 			int index = current->curr_ret_stack;
1410 			if (current->ret_stack && index >= graph) {
1411 				pc = current->ret_stack[index - graph].ret;
1412 				perf_callchain_store(entry, pc);
1413 				graph++;
1414 			}
1415 		}
1416 #endif
1417 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1418 }
1419 
1420 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1421 				   struct pt_regs *regs)
1422 {
1423 	unsigned long ufp;
1424 
1425 	perf_callchain_store(entry, regs->tpc);
1426 
1427 	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1428 	do {
1429 		struct sparc_stackf *usf, sf;
1430 		unsigned long pc;
1431 
1432 		usf = (struct sparc_stackf *) ufp;
1433 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1434 			break;
1435 
1436 		pc = sf.callers_pc;
1437 		ufp = (unsigned long)sf.fp + STACK_BIAS;
1438 		perf_callchain_store(entry, pc);
1439 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1440 }
1441 
1442 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1443 				   struct pt_regs *regs)
1444 {
1445 	unsigned long ufp;
1446 
1447 	perf_callchain_store(entry, regs->tpc);
1448 
1449 	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1450 	do {
1451 		struct sparc_stackf32 *usf, sf;
1452 		unsigned long pc;
1453 
1454 		usf = (struct sparc_stackf32 *) ufp;
1455 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1456 			break;
1457 
1458 		pc = sf.callers_pc;
1459 		ufp = (unsigned long)sf.fp;
1460 		perf_callchain_store(entry, pc);
1461 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1462 }
1463 
1464 void
1465 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1466 {
1467 	flushw_user();
1468 	if (test_thread_flag(TIF_32BIT))
1469 		perf_callchain_user_32(entry, regs);
1470 	else
1471 		perf_callchain_user_64(entry, regs);
1472 }
1473