1 // SPDX-License-Identifier: GPL-2.0 2 /* Performance event support for sparc64. 3 * 4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net> 5 * 6 * This code is based almost entirely upon the x86 perf event 7 * code, which is: 8 * 9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar 11 * Copyright (C) 2009 Jaswinder Singh Rajput 12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter 13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra 14 */ 15 16 #include <linux/perf_event.h> 17 #include <linux/kprobes.h> 18 #include <linux/ftrace.h> 19 #include <linux/kernel.h> 20 #include <linux/kdebug.h> 21 #include <linux/mutex.h> 22 23 #include <asm/stacktrace.h> 24 #include <asm/cpudata.h> 25 #include <linux/uaccess.h> 26 #include <linux/atomic.h> 27 #include <asm/nmi.h> 28 #include <asm/pcr.h> 29 #include <asm/cacheflush.h> 30 31 #include "kernel.h" 32 #include "kstack.h" 33 34 /* Two classes of sparc64 chips currently exist. All of which have 35 * 32-bit counters which can generate overflow interrupts on the 36 * transition from 0xffffffff to 0. 37 * 38 * All chips upto and including SPARC-T3 have two performance 39 * counters. The two 32-bit counters are accessed in one go using a 40 * single 64-bit register. 41 * 42 * On these older chips both counters are controlled using a single 43 * control register. The only way to stop all sampling is to clear 44 * all of the context (user, supervisor, hypervisor) sampling enable 45 * bits. But these bits apply to both counters, thus the two counters 46 * can't be enabled/disabled individually. 47 * 48 * Furthermore, the control register on these older chips have two 49 * event fields, one for each of the two counters. It's thus nearly 50 * impossible to have one counter going while keeping the other one 51 * stopped. Therefore it is possible to get overflow interrupts for 52 * counters not currently "in use" and that condition must be checked 53 * in the overflow interrupt handler. 54 * 55 * So we use a hack, in that we program inactive counters with the 56 * "sw_count0" and "sw_count1" events. These count how many times 57 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an 58 * unusual way to encode a NOP and therefore will not trigger in 59 * normal code. 60 * 61 * Starting with SPARC-T4 we have one control register per counter. 62 * And the counters are stored in individual registers. The registers 63 * for the counters are 64-bit but only a 32-bit counter is 64 * implemented. The event selections on SPARC-T4 lack any 65 * restrictions, therefore we can elide all of the complicated 66 * conflict resolution code we have for SPARC-T3 and earlier chips. 67 */ 68 69 #define MAX_HWEVENTS 4 70 #define MAX_PCRS 4 71 #define MAX_PERIOD ((1UL << 32) - 1) 72 73 #define PIC_UPPER_INDEX 0 74 #define PIC_LOWER_INDEX 1 75 #define PIC_NO_INDEX -1 76 77 struct cpu_hw_events { 78 /* Number of events currently scheduled onto this cpu. 79 * This tells how many entries in the arrays below 80 * are valid. 81 */ 82 int n_events; 83 84 /* Number of new events added since the last hw_perf_disable(). 85 * This works because the perf event layer always adds new 86 * events inside of a perf_{disable,enable}() sequence. 87 */ 88 int n_added; 89 90 /* Array of events current scheduled on this cpu. */ 91 struct perf_event *event[MAX_HWEVENTS]; 92 93 /* Array of encoded longs, specifying the %pcr register 94 * encoding and the mask of PIC counters this even can 95 * be scheduled on. See perf_event_encode() et al. 96 */ 97 unsigned long events[MAX_HWEVENTS]; 98 99 /* The current counter index assigned to an event. When the 100 * event hasn't been programmed into the cpu yet, this will 101 * hold PIC_NO_INDEX. The event->hw.idx value tells us where 102 * we ought to schedule the event. 103 */ 104 int current_idx[MAX_HWEVENTS]; 105 106 /* Software copy of %pcr register(s) on this cpu. */ 107 u64 pcr[MAX_HWEVENTS]; 108 109 /* Enabled/disable state. */ 110 int enabled; 111 112 unsigned int txn_flags; 113 }; 114 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, }; 115 116 /* An event map describes the characteristics of a performance 117 * counter event. In particular it gives the encoding as well as 118 * a mask telling which counters the event can be measured on. 119 * 120 * The mask is unused on SPARC-T4 and later. 121 */ 122 struct perf_event_map { 123 u16 encoding; 124 u8 pic_mask; 125 #define PIC_NONE 0x00 126 #define PIC_UPPER 0x01 127 #define PIC_LOWER 0x02 128 }; 129 130 /* Encode a perf_event_map entry into a long. */ 131 static unsigned long perf_event_encode(const struct perf_event_map *pmap) 132 { 133 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask; 134 } 135 136 static u8 perf_event_get_msk(unsigned long val) 137 { 138 return val & 0xff; 139 } 140 141 static u64 perf_event_get_enc(unsigned long val) 142 { 143 return val >> 16; 144 } 145 146 #define C(x) PERF_COUNT_HW_CACHE_##x 147 148 #define CACHE_OP_UNSUPPORTED 0xfffe 149 #define CACHE_OP_NONSENSE 0xffff 150 151 typedef struct perf_event_map cache_map_t 152 [PERF_COUNT_HW_CACHE_MAX] 153 [PERF_COUNT_HW_CACHE_OP_MAX] 154 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 155 156 struct sparc_pmu { 157 const struct perf_event_map *(*event_map)(int); 158 const cache_map_t *cache_map; 159 int max_events; 160 u32 (*read_pmc)(int); 161 void (*write_pmc)(int, u64); 162 int upper_shift; 163 int lower_shift; 164 int event_mask; 165 int user_bit; 166 int priv_bit; 167 int hv_bit; 168 int irq_bit; 169 int upper_nop; 170 int lower_nop; 171 unsigned int flags; 172 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001 173 #define SPARC_PMU_HAS_CONFLICTS 0x00000002 174 int max_hw_events; 175 int num_pcrs; 176 int num_pic_regs; 177 }; 178 179 static u32 sparc_default_read_pmc(int idx) 180 { 181 u64 val; 182 183 val = pcr_ops->read_pic(0); 184 if (idx == PIC_UPPER_INDEX) 185 val >>= 32; 186 187 return val & 0xffffffff; 188 } 189 190 static void sparc_default_write_pmc(int idx, u64 val) 191 { 192 u64 shift, mask, pic; 193 194 shift = 0; 195 if (idx == PIC_UPPER_INDEX) 196 shift = 32; 197 198 mask = ((u64) 0xffffffff) << shift; 199 val <<= shift; 200 201 pic = pcr_ops->read_pic(0); 202 pic &= ~mask; 203 pic |= val; 204 pcr_ops->write_pic(0, pic); 205 } 206 207 static const struct perf_event_map ultra3_perfmon_event_map[] = { 208 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER }, 209 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER }, 210 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER }, 211 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER }, 212 }; 213 214 static const struct perf_event_map *ultra3_event_map(int event_id) 215 { 216 return &ultra3_perfmon_event_map[event_id]; 217 } 218 219 static const cache_map_t ultra3_cache_map = { 220 [C(L1D)] = { 221 [C(OP_READ)] = { 222 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, 223 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, 224 }, 225 [C(OP_WRITE)] = { 226 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER }, 227 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER }, 228 }, 229 [C(OP_PREFETCH)] = { 230 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 231 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 232 }, 233 }, 234 [C(L1I)] = { 235 [C(OP_READ)] = { 236 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, 237 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, 238 }, 239 [ C(OP_WRITE) ] = { 240 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, 241 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, 242 }, 243 [ C(OP_PREFETCH) ] = { 244 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 245 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 246 }, 247 }, 248 [C(LL)] = { 249 [C(OP_READ)] = { 250 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, }, 251 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, }, 252 }, 253 [C(OP_WRITE)] = { 254 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER }, 255 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER }, 256 }, 257 [C(OP_PREFETCH)] = { 258 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 259 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 260 }, 261 }, 262 [C(DTLB)] = { 263 [C(OP_READ)] = { 264 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 265 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, }, 266 }, 267 [ C(OP_WRITE) ] = { 268 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 269 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 270 }, 271 [ C(OP_PREFETCH) ] = { 272 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 273 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 274 }, 275 }, 276 [C(ITLB)] = { 277 [C(OP_READ)] = { 278 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 279 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, }, 280 }, 281 [ C(OP_WRITE) ] = { 282 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 283 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 284 }, 285 [ C(OP_PREFETCH) ] = { 286 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 287 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 288 }, 289 }, 290 [C(BPU)] = { 291 [C(OP_READ)] = { 292 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 293 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 294 }, 295 [ C(OP_WRITE) ] = { 296 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 297 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 298 }, 299 [ C(OP_PREFETCH) ] = { 300 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 301 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 302 }, 303 }, 304 [C(NODE)] = { 305 [C(OP_READ)] = { 306 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 307 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 308 }, 309 [ C(OP_WRITE) ] = { 310 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 311 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 312 }, 313 [ C(OP_PREFETCH) ] = { 314 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 315 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 316 }, 317 }, 318 }; 319 320 static const struct sparc_pmu ultra3_pmu = { 321 .event_map = ultra3_event_map, 322 .cache_map = &ultra3_cache_map, 323 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map), 324 .read_pmc = sparc_default_read_pmc, 325 .write_pmc = sparc_default_write_pmc, 326 .upper_shift = 11, 327 .lower_shift = 4, 328 .event_mask = 0x3f, 329 .user_bit = PCR_UTRACE, 330 .priv_bit = PCR_STRACE, 331 .upper_nop = 0x1c, 332 .lower_nop = 0x14, 333 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | 334 SPARC_PMU_HAS_CONFLICTS), 335 .max_hw_events = 2, 336 .num_pcrs = 1, 337 .num_pic_regs = 1, 338 }; 339 340 /* Niagara1 is very limited. The upper PIC is hard-locked to count 341 * only instructions, so it is free running which creates all kinds of 342 * problems. Some hardware designs make one wonder if the creator 343 * even looked at how this stuff gets used by software. 344 */ 345 static const struct perf_event_map niagara1_perfmon_event_map[] = { 346 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER }, 347 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER }, 348 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE }, 349 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER }, 350 }; 351 352 static const struct perf_event_map *niagara1_event_map(int event_id) 353 { 354 return &niagara1_perfmon_event_map[event_id]; 355 } 356 357 static const cache_map_t niagara1_cache_map = { 358 [C(L1D)] = { 359 [C(OP_READ)] = { 360 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 361 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, 362 }, 363 [C(OP_WRITE)] = { 364 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 365 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, 366 }, 367 [C(OP_PREFETCH)] = { 368 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 369 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 370 }, 371 }, 372 [C(L1I)] = { 373 [C(OP_READ)] = { 374 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER }, 375 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, }, 376 }, 377 [ C(OP_WRITE) ] = { 378 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, 379 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, 380 }, 381 [ C(OP_PREFETCH) ] = { 382 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 383 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 384 }, 385 }, 386 [C(LL)] = { 387 [C(OP_READ)] = { 388 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 389 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, 390 }, 391 [C(OP_WRITE)] = { 392 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 393 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, 394 }, 395 [C(OP_PREFETCH)] = { 396 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 397 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 398 }, 399 }, 400 [C(DTLB)] = { 401 [C(OP_READ)] = { 402 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 403 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, }, 404 }, 405 [ C(OP_WRITE) ] = { 406 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 407 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 408 }, 409 [ C(OP_PREFETCH) ] = { 410 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 411 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 412 }, 413 }, 414 [C(ITLB)] = { 415 [C(OP_READ)] = { 416 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 417 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, }, 418 }, 419 [ C(OP_WRITE) ] = { 420 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 421 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 422 }, 423 [ C(OP_PREFETCH) ] = { 424 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 425 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 426 }, 427 }, 428 [C(BPU)] = { 429 [C(OP_READ)] = { 430 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 431 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 432 }, 433 [ C(OP_WRITE) ] = { 434 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 435 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 436 }, 437 [ C(OP_PREFETCH) ] = { 438 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 439 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 440 }, 441 }, 442 [C(NODE)] = { 443 [C(OP_READ)] = { 444 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 445 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 446 }, 447 [ C(OP_WRITE) ] = { 448 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 449 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 450 }, 451 [ C(OP_PREFETCH) ] = { 452 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 453 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 454 }, 455 }, 456 }; 457 458 static const struct sparc_pmu niagara1_pmu = { 459 .event_map = niagara1_event_map, 460 .cache_map = &niagara1_cache_map, 461 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map), 462 .read_pmc = sparc_default_read_pmc, 463 .write_pmc = sparc_default_write_pmc, 464 .upper_shift = 0, 465 .lower_shift = 4, 466 .event_mask = 0x7, 467 .user_bit = PCR_UTRACE, 468 .priv_bit = PCR_STRACE, 469 .upper_nop = 0x0, 470 .lower_nop = 0x0, 471 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | 472 SPARC_PMU_HAS_CONFLICTS), 473 .max_hw_events = 2, 474 .num_pcrs = 1, 475 .num_pic_regs = 1, 476 }; 477 478 static const struct perf_event_map niagara2_perfmon_event_map[] = { 479 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER }, 480 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER }, 481 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER }, 482 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER }, 483 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER }, 484 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER }, 485 }; 486 487 static const struct perf_event_map *niagara2_event_map(int event_id) 488 { 489 return &niagara2_perfmon_event_map[event_id]; 490 } 491 492 static const cache_map_t niagara2_cache_map = { 493 [C(L1D)] = { 494 [C(OP_READ)] = { 495 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, 496 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, 497 }, 498 [C(OP_WRITE)] = { 499 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, 500 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, 501 }, 502 [C(OP_PREFETCH)] = { 503 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 504 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 505 }, 506 }, 507 [C(L1I)] = { 508 [C(OP_READ)] = { 509 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, }, 510 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, }, 511 }, 512 [ C(OP_WRITE) ] = { 513 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, 514 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, 515 }, 516 [ C(OP_PREFETCH) ] = { 517 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 518 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 519 }, 520 }, 521 [C(LL)] = { 522 [C(OP_READ)] = { 523 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, 524 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, }, 525 }, 526 [C(OP_WRITE)] = { 527 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, 528 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, }, 529 }, 530 [C(OP_PREFETCH)] = { 531 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 532 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 533 }, 534 }, 535 [C(DTLB)] = { 536 [C(OP_READ)] = { 537 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 538 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, }, 539 }, 540 [ C(OP_WRITE) ] = { 541 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 542 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 543 }, 544 [ C(OP_PREFETCH) ] = { 545 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 546 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 547 }, 548 }, 549 [C(ITLB)] = { 550 [C(OP_READ)] = { 551 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 552 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, }, 553 }, 554 [ C(OP_WRITE) ] = { 555 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 556 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 557 }, 558 [ C(OP_PREFETCH) ] = { 559 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 560 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 561 }, 562 }, 563 [C(BPU)] = { 564 [C(OP_READ)] = { 565 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 566 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 567 }, 568 [ C(OP_WRITE) ] = { 569 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 570 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 571 }, 572 [ C(OP_PREFETCH) ] = { 573 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 574 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 575 }, 576 }, 577 [C(NODE)] = { 578 [C(OP_READ)] = { 579 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 580 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 581 }, 582 [ C(OP_WRITE) ] = { 583 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 584 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 585 }, 586 [ C(OP_PREFETCH) ] = { 587 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 588 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 589 }, 590 }, 591 }; 592 593 static const struct sparc_pmu niagara2_pmu = { 594 .event_map = niagara2_event_map, 595 .cache_map = &niagara2_cache_map, 596 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map), 597 .read_pmc = sparc_default_read_pmc, 598 .write_pmc = sparc_default_write_pmc, 599 .upper_shift = 19, 600 .lower_shift = 6, 601 .event_mask = 0xfff, 602 .user_bit = PCR_UTRACE, 603 .priv_bit = PCR_STRACE, 604 .hv_bit = PCR_N2_HTRACE, 605 .irq_bit = 0x30, 606 .upper_nop = 0x220, 607 .lower_nop = 0x220, 608 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | 609 SPARC_PMU_HAS_CONFLICTS), 610 .max_hw_events = 2, 611 .num_pcrs = 1, 612 .num_pic_regs = 1, 613 }; 614 615 static const struct perf_event_map niagara4_perfmon_event_map[] = { 616 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) }, 617 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f }, 618 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 }, 619 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 }, 620 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 }, 621 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f }, 622 }; 623 624 static const struct perf_event_map *niagara4_event_map(int event_id) 625 { 626 return &niagara4_perfmon_event_map[event_id]; 627 } 628 629 static const cache_map_t niagara4_cache_map = { 630 [C(L1D)] = { 631 [C(OP_READ)] = { 632 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, 633 [C(RESULT_MISS)] = { (16 << 6) | 0x07 }, 634 }, 635 [C(OP_WRITE)] = { 636 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, 637 [C(RESULT_MISS)] = { (16 << 6) | 0x07 }, 638 }, 639 [C(OP_PREFETCH)] = { 640 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 641 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 642 }, 643 }, 644 [C(L1I)] = { 645 [C(OP_READ)] = { 646 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f }, 647 [C(RESULT_MISS)] = { (11 << 6) | 0x03 }, 648 }, 649 [ C(OP_WRITE) ] = { 650 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, 651 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, 652 }, 653 [ C(OP_PREFETCH) ] = { 654 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 655 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 656 }, 657 }, 658 [C(LL)] = { 659 [C(OP_READ)] = { 660 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, 661 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 662 }, 663 [C(OP_WRITE)] = { 664 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, 665 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 666 }, 667 [C(OP_PREFETCH)] = { 668 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 669 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 670 }, 671 }, 672 [C(DTLB)] = { 673 [C(OP_READ)] = { 674 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 675 [C(RESULT_MISS)] = { (17 << 6) | 0x3f }, 676 }, 677 [ C(OP_WRITE) ] = { 678 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 679 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 680 }, 681 [ C(OP_PREFETCH) ] = { 682 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 683 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 684 }, 685 }, 686 [C(ITLB)] = { 687 [C(OP_READ)] = { 688 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 689 [C(RESULT_MISS)] = { (6 << 6) | 0x3f }, 690 }, 691 [ C(OP_WRITE) ] = { 692 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 693 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 694 }, 695 [ C(OP_PREFETCH) ] = { 696 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 697 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 698 }, 699 }, 700 [C(BPU)] = { 701 [C(OP_READ)] = { 702 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 703 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, 704 }, 705 [ C(OP_WRITE) ] = { 706 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 707 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 708 }, 709 [ C(OP_PREFETCH) ] = { 710 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 711 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 712 }, 713 }, 714 [C(NODE)] = { 715 [C(OP_READ)] = { 716 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, 717 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 718 }, 719 [ C(OP_WRITE) ] = { 720 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 721 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 722 }, 723 [ C(OP_PREFETCH) ] = { 724 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, 725 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, 726 }, 727 }, 728 }; 729 730 static u32 sparc_vt_read_pmc(int idx) 731 { 732 u64 val = pcr_ops->read_pic(idx); 733 734 return val & 0xffffffff; 735 } 736 737 static void sparc_vt_write_pmc(int idx, u64 val) 738 { 739 u64 pcr; 740 741 pcr = pcr_ops->read_pcr(idx); 742 /* ensure ov and ntc are reset */ 743 pcr &= ~(PCR_N4_OV | PCR_N4_NTC); 744 745 pcr_ops->write_pic(idx, val & 0xffffffff); 746 747 pcr_ops->write_pcr(idx, pcr); 748 } 749 750 static const struct sparc_pmu niagara4_pmu = { 751 .event_map = niagara4_event_map, 752 .cache_map = &niagara4_cache_map, 753 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map), 754 .read_pmc = sparc_vt_read_pmc, 755 .write_pmc = sparc_vt_write_pmc, 756 .upper_shift = 5, 757 .lower_shift = 5, 758 .event_mask = 0x7ff, 759 .user_bit = PCR_N4_UTRACE, 760 .priv_bit = PCR_N4_STRACE, 761 762 /* We explicitly don't support hypervisor tracing. The T4 763 * generates the overflow event for precise events via a trap 764 * which will not be generated (ie. it's completely lost) if 765 * we happen to be in the hypervisor when the event triggers. 766 * Essentially, the overflow event reporting is completely 767 * unusable when you have hypervisor mode tracing enabled. 768 */ 769 .hv_bit = 0, 770 771 .irq_bit = PCR_N4_TOE, 772 .upper_nop = 0, 773 .lower_nop = 0, 774 .flags = 0, 775 .max_hw_events = 4, 776 .num_pcrs = 4, 777 .num_pic_regs = 4, 778 }; 779 780 static const struct sparc_pmu sparc_m7_pmu = { 781 .event_map = niagara4_event_map, 782 .cache_map = &niagara4_cache_map, 783 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map), 784 .read_pmc = sparc_vt_read_pmc, 785 .write_pmc = sparc_vt_write_pmc, 786 .upper_shift = 5, 787 .lower_shift = 5, 788 .event_mask = 0x7ff, 789 .user_bit = PCR_N4_UTRACE, 790 .priv_bit = PCR_N4_STRACE, 791 792 /* We explicitly don't support hypervisor tracing. */ 793 .hv_bit = 0, 794 795 .irq_bit = PCR_N4_TOE, 796 .upper_nop = 0, 797 .lower_nop = 0, 798 .flags = 0, 799 .max_hw_events = 4, 800 .num_pcrs = 4, 801 .num_pic_regs = 4, 802 }; 803 static const struct sparc_pmu *sparc_pmu __read_mostly; 804 805 static u64 event_encoding(u64 event_id, int idx) 806 { 807 if (idx == PIC_UPPER_INDEX) 808 event_id <<= sparc_pmu->upper_shift; 809 else 810 event_id <<= sparc_pmu->lower_shift; 811 return event_id; 812 } 813 814 static u64 mask_for_index(int idx) 815 { 816 return event_encoding(sparc_pmu->event_mask, idx); 817 } 818 819 static u64 nop_for_index(int idx) 820 { 821 return event_encoding(idx == PIC_UPPER_INDEX ? 822 sparc_pmu->upper_nop : 823 sparc_pmu->lower_nop, idx); 824 } 825 826 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) 827 { 828 u64 enc, val, mask = mask_for_index(idx); 829 int pcr_index = 0; 830 831 if (sparc_pmu->num_pcrs > 1) 832 pcr_index = idx; 833 834 enc = perf_event_get_enc(cpuc->events[idx]); 835 836 val = cpuc->pcr[pcr_index]; 837 val &= ~mask; 838 val |= event_encoding(enc, idx); 839 cpuc->pcr[pcr_index] = val; 840 841 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); 842 } 843 844 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) 845 { 846 u64 mask = mask_for_index(idx); 847 u64 nop = nop_for_index(idx); 848 int pcr_index = 0; 849 u64 val; 850 851 if (sparc_pmu->num_pcrs > 1) 852 pcr_index = idx; 853 854 val = cpuc->pcr[pcr_index]; 855 val &= ~mask; 856 val |= nop; 857 cpuc->pcr[pcr_index] = val; 858 859 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); 860 } 861 862 static u64 sparc_perf_event_update(struct perf_event *event, 863 struct hw_perf_event *hwc, int idx) 864 { 865 int shift = 64 - 32; 866 u64 prev_raw_count, new_raw_count; 867 s64 delta; 868 869 again: 870 prev_raw_count = local64_read(&hwc->prev_count); 871 new_raw_count = sparc_pmu->read_pmc(idx); 872 873 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 874 new_raw_count) != prev_raw_count) 875 goto again; 876 877 delta = (new_raw_count << shift) - (prev_raw_count << shift); 878 delta >>= shift; 879 880 local64_add(delta, &event->count); 881 local64_sub(delta, &hwc->period_left); 882 883 return new_raw_count; 884 } 885 886 static int sparc_perf_event_set_period(struct perf_event *event, 887 struct hw_perf_event *hwc, int idx) 888 { 889 s64 left = local64_read(&hwc->period_left); 890 s64 period = hwc->sample_period; 891 int ret = 0; 892 893 if (unlikely(left <= -period)) { 894 left = period; 895 local64_set(&hwc->period_left, left); 896 hwc->last_period = period; 897 ret = 1; 898 } 899 900 if (unlikely(left <= 0)) { 901 left += period; 902 local64_set(&hwc->period_left, left); 903 hwc->last_period = period; 904 ret = 1; 905 } 906 if (left > MAX_PERIOD) 907 left = MAX_PERIOD; 908 909 local64_set(&hwc->prev_count, (u64)-left); 910 911 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff); 912 913 perf_event_update_userpage(event); 914 915 return ret; 916 } 917 918 static void read_in_all_counters(struct cpu_hw_events *cpuc) 919 { 920 int i; 921 922 for (i = 0; i < cpuc->n_events; i++) { 923 struct perf_event *cp = cpuc->event[i]; 924 925 if (cpuc->current_idx[i] != PIC_NO_INDEX && 926 cpuc->current_idx[i] != cp->hw.idx) { 927 sparc_perf_event_update(cp, &cp->hw, 928 cpuc->current_idx[i]); 929 cpuc->current_idx[i] = PIC_NO_INDEX; 930 } 931 } 932 } 933 934 /* On this PMU all PICs are programmed using a single PCR. Calculate 935 * the combined control register value. 936 * 937 * For such chips we require that all of the events have the same 938 * configuration, so just fetch the settings from the first entry. 939 */ 940 static void calculate_single_pcr(struct cpu_hw_events *cpuc) 941 { 942 int i; 943 944 if (!cpuc->n_added) 945 goto out; 946 947 /* Assign to counters all unassigned events. */ 948 for (i = 0; i < cpuc->n_events; i++) { 949 struct perf_event *cp = cpuc->event[i]; 950 struct hw_perf_event *hwc = &cp->hw; 951 int idx = hwc->idx; 952 u64 enc; 953 954 if (cpuc->current_idx[i] != PIC_NO_INDEX) 955 continue; 956 957 sparc_perf_event_set_period(cp, hwc, idx); 958 cpuc->current_idx[i] = idx; 959 960 enc = perf_event_get_enc(cpuc->events[i]); 961 cpuc->pcr[0] &= ~mask_for_index(idx); 962 if (hwc->state & PERF_HES_STOPPED) 963 cpuc->pcr[0] |= nop_for_index(idx); 964 else 965 cpuc->pcr[0] |= event_encoding(enc, idx); 966 } 967 out: 968 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base; 969 } 970 971 static void sparc_pmu_start(struct perf_event *event, int flags); 972 973 /* On this PMU each PIC has it's own PCR control register. */ 974 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc) 975 { 976 int i; 977 978 if (!cpuc->n_added) 979 goto out; 980 981 for (i = 0; i < cpuc->n_events; i++) { 982 struct perf_event *cp = cpuc->event[i]; 983 struct hw_perf_event *hwc = &cp->hw; 984 int idx = hwc->idx; 985 986 if (cpuc->current_idx[i] != PIC_NO_INDEX) 987 continue; 988 989 cpuc->current_idx[i] = idx; 990 991 sparc_pmu_start(cp, PERF_EF_RELOAD); 992 } 993 out: 994 for (i = 0; i < cpuc->n_events; i++) { 995 struct perf_event *cp = cpuc->event[i]; 996 int idx = cp->hw.idx; 997 998 cpuc->pcr[idx] |= cp->hw.config_base; 999 } 1000 } 1001 1002 /* If performance event entries have been added, move existing events 1003 * around (if necessary) and then assign new entries to counters. 1004 */ 1005 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc) 1006 { 1007 if (cpuc->n_added) 1008 read_in_all_counters(cpuc); 1009 1010 if (sparc_pmu->num_pcrs == 1) { 1011 calculate_single_pcr(cpuc); 1012 } else { 1013 calculate_multiple_pcrs(cpuc); 1014 } 1015 } 1016 1017 static void sparc_pmu_enable(struct pmu *pmu) 1018 { 1019 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1020 int i; 1021 1022 if (cpuc->enabled) 1023 return; 1024 1025 cpuc->enabled = 1; 1026 barrier(); 1027 1028 if (cpuc->n_events) 1029 update_pcrs_for_enable(cpuc); 1030 1031 for (i = 0; i < sparc_pmu->num_pcrs; i++) 1032 pcr_ops->write_pcr(i, cpuc->pcr[i]); 1033 } 1034 1035 static void sparc_pmu_disable(struct pmu *pmu) 1036 { 1037 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1038 int i; 1039 1040 if (!cpuc->enabled) 1041 return; 1042 1043 cpuc->enabled = 0; 1044 cpuc->n_added = 0; 1045 1046 for (i = 0; i < sparc_pmu->num_pcrs; i++) { 1047 u64 val = cpuc->pcr[i]; 1048 1049 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit | 1050 sparc_pmu->hv_bit | sparc_pmu->irq_bit); 1051 cpuc->pcr[i] = val; 1052 pcr_ops->write_pcr(i, cpuc->pcr[i]); 1053 } 1054 } 1055 1056 static int active_event_index(struct cpu_hw_events *cpuc, 1057 struct perf_event *event) 1058 { 1059 int i; 1060 1061 for (i = 0; i < cpuc->n_events; i++) { 1062 if (cpuc->event[i] == event) 1063 break; 1064 } 1065 BUG_ON(i == cpuc->n_events); 1066 return cpuc->current_idx[i]; 1067 } 1068 1069 static void sparc_pmu_start(struct perf_event *event, int flags) 1070 { 1071 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1072 int idx = active_event_index(cpuc, event); 1073 1074 if (flags & PERF_EF_RELOAD) { 1075 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1076 sparc_perf_event_set_period(event, &event->hw, idx); 1077 } 1078 1079 event->hw.state = 0; 1080 1081 sparc_pmu_enable_event(cpuc, &event->hw, idx); 1082 } 1083 1084 static void sparc_pmu_stop(struct perf_event *event, int flags) 1085 { 1086 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1087 int idx = active_event_index(cpuc, event); 1088 1089 if (!(event->hw.state & PERF_HES_STOPPED)) { 1090 sparc_pmu_disable_event(cpuc, &event->hw, idx); 1091 event->hw.state |= PERF_HES_STOPPED; 1092 } 1093 1094 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) { 1095 sparc_perf_event_update(event, &event->hw, idx); 1096 event->hw.state |= PERF_HES_UPTODATE; 1097 } 1098 } 1099 1100 static void sparc_pmu_del(struct perf_event *event, int _flags) 1101 { 1102 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1103 unsigned long flags; 1104 int i; 1105 1106 local_irq_save(flags); 1107 1108 for (i = 0; i < cpuc->n_events; i++) { 1109 if (event == cpuc->event[i]) { 1110 /* Absorb the final count and turn off the 1111 * event. 1112 */ 1113 sparc_pmu_stop(event, PERF_EF_UPDATE); 1114 1115 /* Shift remaining entries down into 1116 * the existing slot. 1117 */ 1118 while (++i < cpuc->n_events) { 1119 cpuc->event[i - 1] = cpuc->event[i]; 1120 cpuc->events[i - 1] = cpuc->events[i]; 1121 cpuc->current_idx[i - 1] = 1122 cpuc->current_idx[i]; 1123 } 1124 1125 perf_event_update_userpage(event); 1126 1127 cpuc->n_events--; 1128 break; 1129 } 1130 } 1131 1132 local_irq_restore(flags); 1133 } 1134 1135 static void sparc_pmu_read(struct perf_event *event) 1136 { 1137 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1138 int idx = active_event_index(cpuc, event); 1139 struct hw_perf_event *hwc = &event->hw; 1140 1141 sparc_perf_event_update(event, hwc, idx); 1142 } 1143 1144 static atomic_t active_events = ATOMIC_INIT(0); 1145 static DEFINE_MUTEX(pmc_grab_mutex); 1146 1147 static void perf_stop_nmi_watchdog(void *unused) 1148 { 1149 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1150 int i; 1151 1152 stop_nmi_watchdog(NULL); 1153 for (i = 0; i < sparc_pmu->num_pcrs; i++) 1154 cpuc->pcr[i] = pcr_ops->read_pcr(i); 1155 } 1156 1157 static void perf_event_grab_pmc(void) 1158 { 1159 if (atomic_inc_not_zero(&active_events)) 1160 return; 1161 1162 mutex_lock(&pmc_grab_mutex); 1163 if (atomic_read(&active_events) == 0) { 1164 if (atomic_read(&nmi_active) > 0) { 1165 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1); 1166 BUG_ON(atomic_read(&nmi_active) != 0); 1167 } 1168 atomic_inc(&active_events); 1169 } 1170 mutex_unlock(&pmc_grab_mutex); 1171 } 1172 1173 static void perf_event_release_pmc(void) 1174 { 1175 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) { 1176 if (atomic_read(&nmi_active) == 0) 1177 on_each_cpu(start_nmi_watchdog, NULL, 1); 1178 mutex_unlock(&pmc_grab_mutex); 1179 } 1180 } 1181 1182 static const struct perf_event_map *sparc_map_cache_event(u64 config) 1183 { 1184 unsigned int cache_type, cache_op, cache_result; 1185 const struct perf_event_map *pmap; 1186 1187 if (!sparc_pmu->cache_map) 1188 return ERR_PTR(-ENOENT); 1189 1190 cache_type = (config >> 0) & 0xff; 1191 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 1192 return ERR_PTR(-EINVAL); 1193 1194 cache_op = (config >> 8) & 0xff; 1195 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 1196 return ERR_PTR(-EINVAL); 1197 1198 cache_result = (config >> 16) & 0xff; 1199 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1200 return ERR_PTR(-EINVAL); 1201 1202 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]); 1203 1204 if (pmap->encoding == CACHE_OP_UNSUPPORTED) 1205 return ERR_PTR(-ENOENT); 1206 1207 if (pmap->encoding == CACHE_OP_NONSENSE) 1208 return ERR_PTR(-EINVAL); 1209 1210 return pmap; 1211 } 1212 1213 static void hw_perf_event_destroy(struct perf_event *event) 1214 { 1215 perf_event_release_pmc(); 1216 } 1217 1218 /* Make sure all events can be scheduled into the hardware at 1219 * the same time. This is simplified by the fact that we only 1220 * need to support 2 simultaneous HW events. 1221 * 1222 * As a side effect, the evts[]->hw.idx values will be assigned 1223 * on success. These are pending indexes. When the events are 1224 * actually programmed into the chip, these values will propagate 1225 * to the per-cpu cpuc->current_idx[] slots, see the code in 1226 * maybe_change_configuration() for details. 1227 */ 1228 static int sparc_check_constraints(struct perf_event **evts, 1229 unsigned long *events, int n_ev) 1230 { 1231 u8 msk0 = 0, msk1 = 0; 1232 int idx0 = 0; 1233 1234 /* This case is possible when we are invoked from 1235 * hw_perf_group_sched_in(). 1236 */ 1237 if (!n_ev) 1238 return 0; 1239 1240 if (n_ev > sparc_pmu->max_hw_events) 1241 return -1; 1242 1243 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) { 1244 int i; 1245 1246 for (i = 0; i < n_ev; i++) 1247 evts[i]->hw.idx = i; 1248 return 0; 1249 } 1250 1251 msk0 = perf_event_get_msk(events[0]); 1252 if (n_ev == 1) { 1253 if (msk0 & PIC_LOWER) 1254 idx0 = 1; 1255 goto success; 1256 } 1257 BUG_ON(n_ev != 2); 1258 msk1 = perf_event_get_msk(events[1]); 1259 1260 /* If both events can go on any counter, OK. */ 1261 if (msk0 == (PIC_UPPER | PIC_LOWER) && 1262 msk1 == (PIC_UPPER | PIC_LOWER)) 1263 goto success; 1264 1265 /* If one event is limited to a specific counter, 1266 * and the other can go on both, OK. 1267 */ 1268 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) && 1269 msk1 == (PIC_UPPER | PIC_LOWER)) { 1270 if (msk0 & PIC_LOWER) 1271 idx0 = 1; 1272 goto success; 1273 } 1274 1275 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) && 1276 msk0 == (PIC_UPPER | PIC_LOWER)) { 1277 if (msk1 & PIC_UPPER) 1278 idx0 = 1; 1279 goto success; 1280 } 1281 1282 /* If the events are fixed to different counters, OK. */ 1283 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) || 1284 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) { 1285 if (msk0 & PIC_LOWER) 1286 idx0 = 1; 1287 goto success; 1288 } 1289 1290 /* Otherwise, there is a conflict. */ 1291 return -1; 1292 1293 success: 1294 evts[0]->hw.idx = idx0; 1295 if (n_ev == 2) 1296 evts[1]->hw.idx = idx0 ^ 1; 1297 return 0; 1298 } 1299 1300 static int check_excludes(struct perf_event **evts, int n_prev, int n_new) 1301 { 1302 int eu = 0, ek = 0, eh = 0; 1303 struct perf_event *event; 1304 int i, n, first; 1305 1306 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME)) 1307 return 0; 1308 1309 n = n_prev + n_new; 1310 if (n <= 1) 1311 return 0; 1312 1313 first = 1; 1314 for (i = 0; i < n; i++) { 1315 event = evts[i]; 1316 if (first) { 1317 eu = event->attr.exclude_user; 1318 ek = event->attr.exclude_kernel; 1319 eh = event->attr.exclude_hv; 1320 first = 0; 1321 } else if (event->attr.exclude_user != eu || 1322 event->attr.exclude_kernel != ek || 1323 event->attr.exclude_hv != eh) { 1324 return -EAGAIN; 1325 } 1326 } 1327 1328 return 0; 1329 } 1330 1331 static int collect_events(struct perf_event *group, int max_count, 1332 struct perf_event *evts[], unsigned long *events, 1333 int *current_idx) 1334 { 1335 struct perf_event *event; 1336 int n = 0; 1337 1338 if (!is_software_event(group)) { 1339 if (n >= max_count) 1340 return -1; 1341 evts[n] = group; 1342 events[n] = group->hw.event_base; 1343 current_idx[n++] = PIC_NO_INDEX; 1344 } 1345 list_for_each_entry(event, &group->sibling_list, group_entry) { 1346 if (!is_software_event(event) && 1347 event->state != PERF_EVENT_STATE_OFF) { 1348 if (n >= max_count) 1349 return -1; 1350 evts[n] = event; 1351 events[n] = event->hw.event_base; 1352 current_idx[n++] = PIC_NO_INDEX; 1353 } 1354 } 1355 return n; 1356 } 1357 1358 static int sparc_pmu_add(struct perf_event *event, int ef_flags) 1359 { 1360 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1361 int n0, ret = -EAGAIN; 1362 unsigned long flags; 1363 1364 local_irq_save(flags); 1365 1366 n0 = cpuc->n_events; 1367 if (n0 >= sparc_pmu->max_hw_events) 1368 goto out; 1369 1370 cpuc->event[n0] = event; 1371 cpuc->events[n0] = event->hw.event_base; 1372 cpuc->current_idx[n0] = PIC_NO_INDEX; 1373 1374 event->hw.state = PERF_HES_UPTODATE; 1375 if (!(ef_flags & PERF_EF_START)) 1376 event->hw.state |= PERF_HES_STOPPED; 1377 1378 /* 1379 * If group events scheduling transaction was started, 1380 * skip the schedulability test here, it will be performed 1381 * at commit time(->commit_txn) as a whole 1382 */ 1383 if (cpuc->txn_flags & PERF_PMU_TXN_ADD) 1384 goto nocheck; 1385 1386 if (check_excludes(cpuc->event, n0, 1)) 1387 goto out; 1388 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1)) 1389 goto out; 1390 1391 nocheck: 1392 cpuc->n_events++; 1393 cpuc->n_added++; 1394 1395 ret = 0; 1396 out: 1397 local_irq_restore(flags); 1398 return ret; 1399 } 1400 1401 static int sparc_pmu_event_init(struct perf_event *event) 1402 { 1403 struct perf_event_attr *attr = &event->attr; 1404 struct perf_event *evts[MAX_HWEVENTS]; 1405 struct hw_perf_event *hwc = &event->hw; 1406 unsigned long events[MAX_HWEVENTS]; 1407 int current_idx_dmy[MAX_HWEVENTS]; 1408 const struct perf_event_map *pmap; 1409 int n; 1410 1411 if (atomic_read(&nmi_active) < 0) 1412 return -ENODEV; 1413 1414 /* does not support taken branch sampling */ 1415 if (has_branch_stack(event)) 1416 return -EOPNOTSUPP; 1417 1418 switch (attr->type) { 1419 case PERF_TYPE_HARDWARE: 1420 if (attr->config >= sparc_pmu->max_events) 1421 return -EINVAL; 1422 pmap = sparc_pmu->event_map(attr->config); 1423 break; 1424 1425 case PERF_TYPE_HW_CACHE: 1426 pmap = sparc_map_cache_event(attr->config); 1427 if (IS_ERR(pmap)) 1428 return PTR_ERR(pmap); 1429 break; 1430 1431 case PERF_TYPE_RAW: 1432 pmap = NULL; 1433 break; 1434 1435 default: 1436 return -ENOENT; 1437 1438 } 1439 1440 if (pmap) { 1441 hwc->event_base = perf_event_encode(pmap); 1442 } else { 1443 /* 1444 * User gives us "(encoding << 16) | pic_mask" for 1445 * PERF_TYPE_RAW events. 1446 */ 1447 hwc->event_base = attr->config; 1448 } 1449 1450 /* We save the enable bits in the config_base. */ 1451 hwc->config_base = sparc_pmu->irq_bit; 1452 if (!attr->exclude_user) 1453 hwc->config_base |= sparc_pmu->user_bit; 1454 if (!attr->exclude_kernel) 1455 hwc->config_base |= sparc_pmu->priv_bit; 1456 if (!attr->exclude_hv) 1457 hwc->config_base |= sparc_pmu->hv_bit; 1458 1459 n = 0; 1460 if (event->group_leader != event) { 1461 n = collect_events(event->group_leader, 1462 sparc_pmu->max_hw_events - 1, 1463 evts, events, current_idx_dmy); 1464 if (n < 0) 1465 return -EINVAL; 1466 } 1467 events[n] = hwc->event_base; 1468 evts[n] = event; 1469 1470 if (check_excludes(evts, n, 1)) 1471 return -EINVAL; 1472 1473 if (sparc_check_constraints(evts, events, n + 1)) 1474 return -EINVAL; 1475 1476 hwc->idx = PIC_NO_INDEX; 1477 1478 /* Try to do all error checking before this point, as unwinding 1479 * state after grabbing the PMC is difficult. 1480 */ 1481 perf_event_grab_pmc(); 1482 event->destroy = hw_perf_event_destroy; 1483 1484 if (!hwc->sample_period) { 1485 hwc->sample_period = MAX_PERIOD; 1486 hwc->last_period = hwc->sample_period; 1487 local64_set(&hwc->period_left, hwc->sample_period); 1488 } 1489 1490 return 0; 1491 } 1492 1493 /* 1494 * Start group events scheduling transaction 1495 * Set the flag to make pmu::enable() not perform the 1496 * schedulability test, it will be performed at commit time 1497 */ 1498 static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1499 { 1500 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1501 1502 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1503 1504 cpuhw->txn_flags = txn_flags; 1505 if (txn_flags & ~PERF_PMU_TXN_ADD) 1506 return; 1507 1508 perf_pmu_disable(pmu); 1509 } 1510 1511 /* 1512 * Stop group events scheduling transaction 1513 * Clear the flag and pmu::enable() will perform the 1514 * schedulability test. 1515 */ 1516 static void sparc_pmu_cancel_txn(struct pmu *pmu) 1517 { 1518 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1519 unsigned int txn_flags; 1520 1521 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1522 1523 txn_flags = cpuhw->txn_flags; 1524 cpuhw->txn_flags = 0; 1525 if (txn_flags & ~PERF_PMU_TXN_ADD) 1526 return; 1527 1528 perf_pmu_enable(pmu); 1529 } 1530 1531 /* 1532 * Commit group events scheduling transaction 1533 * Perform the group schedulability test as a whole 1534 * Return 0 if success 1535 */ 1536 static int sparc_pmu_commit_txn(struct pmu *pmu) 1537 { 1538 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1539 int n; 1540 1541 if (!sparc_pmu) 1542 return -EINVAL; 1543 1544 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ 1545 1546 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { 1547 cpuc->txn_flags = 0; 1548 return 0; 1549 } 1550 1551 n = cpuc->n_events; 1552 if (check_excludes(cpuc->event, 0, n)) 1553 return -EINVAL; 1554 if (sparc_check_constraints(cpuc->event, cpuc->events, n)) 1555 return -EAGAIN; 1556 1557 cpuc->txn_flags = 0; 1558 perf_pmu_enable(pmu); 1559 return 0; 1560 } 1561 1562 static struct pmu pmu = { 1563 .pmu_enable = sparc_pmu_enable, 1564 .pmu_disable = sparc_pmu_disable, 1565 .event_init = sparc_pmu_event_init, 1566 .add = sparc_pmu_add, 1567 .del = sparc_pmu_del, 1568 .start = sparc_pmu_start, 1569 .stop = sparc_pmu_stop, 1570 .read = sparc_pmu_read, 1571 .start_txn = sparc_pmu_start_txn, 1572 .cancel_txn = sparc_pmu_cancel_txn, 1573 .commit_txn = sparc_pmu_commit_txn, 1574 }; 1575 1576 void perf_event_print_debug(void) 1577 { 1578 unsigned long flags; 1579 int cpu, i; 1580 1581 if (!sparc_pmu) 1582 return; 1583 1584 local_irq_save(flags); 1585 1586 cpu = smp_processor_id(); 1587 1588 pr_info("\n"); 1589 for (i = 0; i < sparc_pmu->num_pcrs; i++) 1590 pr_info("CPU#%d: PCR%d[%016llx]\n", 1591 cpu, i, pcr_ops->read_pcr(i)); 1592 for (i = 0; i < sparc_pmu->num_pic_regs; i++) 1593 pr_info("CPU#%d: PIC%d[%016llx]\n", 1594 cpu, i, pcr_ops->read_pic(i)); 1595 1596 local_irq_restore(flags); 1597 } 1598 1599 static int __kprobes perf_event_nmi_handler(struct notifier_block *self, 1600 unsigned long cmd, void *__args) 1601 { 1602 struct die_args *args = __args; 1603 struct perf_sample_data data; 1604 struct cpu_hw_events *cpuc; 1605 struct pt_regs *regs; 1606 int i; 1607 1608 if (!atomic_read(&active_events)) 1609 return NOTIFY_DONE; 1610 1611 switch (cmd) { 1612 case DIE_NMI: 1613 break; 1614 1615 default: 1616 return NOTIFY_DONE; 1617 } 1618 1619 regs = args->regs; 1620 1621 cpuc = this_cpu_ptr(&cpu_hw_events); 1622 1623 /* If the PMU has the TOE IRQ enable bits, we need to do a 1624 * dummy write to the %pcr to clear the overflow bits and thus 1625 * the interrupt. 1626 * 1627 * Do this before we peek at the counters to determine 1628 * overflow so we don't lose any events. 1629 */ 1630 if (sparc_pmu->irq_bit && 1631 sparc_pmu->num_pcrs == 1) 1632 pcr_ops->write_pcr(0, cpuc->pcr[0]); 1633 1634 for (i = 0; i < cpuc->n_events; i++) { 1635 struct perf_event *event = cpuc->event[i]; 1636 int idx = cpuc->current_idx[i]; 1637 struct hw_perf_event *hwc; 1638 u64 val; 1639 1640 if (sparc_pmu->irq_bit && 1641 sparc_pmu->num_pcrs > 1) 1642 pcr_ops->write_pcr(idx, cpuc->pcr[idx]); 1643 1644 hwc = &event->hw; 1645 val = sparc_perf_event_update(event, hwc, idx); 1646 if (val & (1ULL << 31)) 1647 continue; 1648 1649 perf_sample_data_init(&data, 0, hwc->last_period); 1650 if (!sparc_perf_event_set_period(event, hwc, idx)) 1651 continue; 1652 1653 if (perf_event_overflow(event, &data, regs)) 1654 sparc_pmu_stop(event, 0); 1655 } 1656 1657 return NOTIFY_STOP; 1658 } 1659 1660 static __read_mostly struct notifier_block perf_event_nmi_notifier = { 1661 .notifier_call = perf_event_nmi_handler, 1662 }; 1663 1664 static bool __init supported_pmu(void) 1665 { 1666 if (!strcmp(sparc_pmu_type, "ultra3") || 1667 !strcmp(sparc_pmu_type, "ultra3+") || 1668 !strcmp(sparc_pmu_type, "ultra3i") || 1669 !strcmp(sparc_pmu_type, "ultra4+")) { 1670 sparc_pmu = &ultra3_pmu; 1671 return true; 1672 } 1673 if (!strcmp(sparc_pmu_type, "niagara")) { 1674 sparc_pmu = &niagara1_pmu; 1675 return true; 1676 } 1677 if (!strcmp(sparc_pmu_type, "niagara2") || 1678 !strcmp(sparc_pmu_type, "niagara3")) { 1679 sparc_pmu = &niagara2_pmu; 1680 return true; 1681 } 1682 if (!strcmp(sparc_pmu_type, "niagara4") || 1683 !strcmp(sparc_pmu_type, "niagara5")) { 1684 sparc_pmu = &niagara4_pmu; 1685 return true; 1686 } 1687 if (!strcmp(sparc_pmu_type, "sparc-m7")) { 1688 sparc_pmu = &sparc_m7_pmu; 1689 return true; 1690 } 1691 return false; 1692 } 1693 1694 static int __init init_hw_perf_events(void) 1695 { 1696 int err; 1697 1698 pr_info("Performance events: "); 1699 1700 err = pcr_arch_init(); 1701 if (err || !supported_pmu()) { 1702 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type); 1703 return 0; 1704 } 1705 1706 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type); 1707 1708 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 1709 register_die_notifier(&perf_event_nmi_notifier); 1710 1711 return 0; 1712 } 1713 pure_initcall(init_hw_perf_events); 1714 1715 void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, 1716 struct pt_regs *regs) 1717 { 1718 unsigned long ksp, fp; 1719 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1720 int graph = 0; 1721 #endif 1722 1723 stack_trace_flush(); 1724 1725 perf_callchain_store(entry, regs->tpc); 1726 1727 ksp = regs->u_regs[UREG_I6]; 1728 fp = ksp + STACK_BIAS; 1729 do { 1730 struct sparc_stackf *sf; 1731 struct pt_regs *regs; 1732 unsigned long pc; 1733 1734 if (!kstack_valid(current_thread_info(), fp)) 1735 break; 1736 1737 sf = (struct sparc_stackf *) fp; 1738 regs = (struct pt_regs *) (sf + 1); 1739 1740 if (kstack_is_trap_frame(current_thread_info(), regs)) { 1741 if (user_mode(regs)) 1742 break; 1743 pc = regs->tpc; 1744 fp = regs->u_regs[UREG_I6] + STACK_BIAS; 1745 } else { 1746 pc = sf->callers_pc; 1747 fp = (unsigned long)sf->fp + STACK_BIAS; 1748 } 1749 perf_callchain_store(entry, pc); 1750 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1751 if ((pc + 8UL) == (unsigned long) &return_to_handler) { 1752 int index = current->curr_ret_stack; 1753 if (current->ret_stack && index >= graph) { 1754 pc = current->ret_stack[index - graph].ret; 1755 perf_callchain_store(entry, pc); 1756 graph++; 1757 } 1758 } 1759 #endif 1760 } while (entry->nr < entry->max_stack); 1761 } 1762 1763 static inline int 1764 valid_user_frame(const void __user *fp, unsigned long size) 1765 { 1766 /* addresses should be at least 4-byte aligned */ 1767 if (((unsigned long) fp) & 3) 1768 return 0; 1769 1770 return (__range_not_ok(fp, size, TASK_SIZE) == 0); 1771 } 1772 1773 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry, 1774 struct pt_regs *regs) 1775 { 1776 unsigned long ufp; 1777 1778 ufp = regs->u_regs[UREG_FP] + STACK_BIAS; 1779 do { 1780 struct sparc_stackf __user *usf; 1781 struct sparc_stackf sf; 1782 unsigned long pc; 1783 1784 usf = (struct sparc_stackf __user *)ufp; 1785 if (!valid_user_frame(usf, sizeof(sf))) 1786 break; 1787 1788 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) 1789 break; 1790 1791 pc = sf.callers_pc; 1792 ufp = (unsigned long)sf.fp + STACK_BIAS; 1793 perf_callchain_store(entry, pc); 1794 } while (entry->nr < entry->max_stack); 1795 } 1796 1797 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry, 1798 struct pt_regs *regs) 1799 { 1800 unsigned long ufp; 1801 1802 ufp = regs->u_regs[UREG_FP] & 0xffffffffUL; 1803 do { 1804 unsigned long pc; 1805 1806 if (thread32_stack_is_64bit(ufp)) { 1807 struct sparc_stackf __user *usf; 1808 struct sparc_stackf sf; 1809 1810 ufp += STACK_BIAS; 1811 usf = (struct sparc_stackf __user *)ufp; 1812 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) 1813 break; 1814 pc = sf.callers_pc & 0xffffffff; 1815 ufp = ((unsigned long) sf.fp) & 0xffffffff; 1816 } else { 1817 struct sparc_stackf32 __user *usf; 1818 struct sparc_stackf32 sf; 1819 usf = (struct sparc_stackf32 __user *)ufp; 1820 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) 1821 break; 1822 pc = sf.callers_pc; 1823 ufp = (unsigned long)sf.fp; 1824 } 1825 perf_callchain_store(entry, pc); 1826 } while (entry->nr < entry->max_stack); 1827 } 1828 1829 void 1830 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) 1831 { 1832 u64 saved_fault_address = current_thread_info()->fault_address; 1833 u8 saved_fault_code = get_thread_fault_code(); 1834 mm_segment_t old_fs; 1835 1836 perf_callchain_store(entry, regs->tpc); 1837 1838 if (!current->mm) 1839 return; 1840 1841 old_fs = get_fs(); 1842 set_fs(USER_DS); 1843 1844 flushw_user(); 1845 1846 pagefault_disable(); 1847 1848 if (test_thread_flag(TIF_32BIT)) 1849 perf_callchain_user_32(entry, regs); 1850 else 1851 perf_callchain_user_64(entry, regs); 1852 1853 pagefault_enable(); 1854 1855 set_fs(old_fs); 1856 set_thread_fault_code(saved_fault_code); 1857 current_thread_info()->fault_address = saved_fault_address; 1858 } 1859