xref: /openbmc/linux/arch/sparc/kernel/perf_event.c (revision 37185b33)
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21 
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28 #include <asm/perfctr.h>
29 #include <asm/cacheflush.h>
30 
31 #include "kernel.h"
32 #include "kstack.h"
33 
34 /* Sparc64 chips have two performance counters, 32-bits each, with
35  * overflow interrupts generated on transition from 0xffffffff to 0.
36  * The counters are accessed in one go using a 64-bit register.
37  *
38  * Both counters are controlled using a single control register.  The
39  * only way to stop all sampling is to clear all of the context (user,
40  * supervisor, hypervisor) sampling enable bits.  But these bits apply
41  * to both counters, thus the two counters can't be enabled/disabled
42  * individually.
43  *
44  * The control register has two event fields, one for each of the two
45  * counters.  It's thus nearly impossible to have one counter going
46  * while keeping the other one stopped.  Therefore it is possible to
47  * get overflow interrupts for counters not currently "in use" and
48  * that condition must be checked in the overflow interrupt handler.
49  *
50  * So we use a hack, in that we program inactive counters with the
51  * "sw_count0" and "sw_count1" events.  These count how many times
52  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
53  * unusual way to encode a NOP and therefore will not trigger in
54  * normal code.
55  */
56 
57 #define MAX_HWEVENTS			2
58 #define MAX_PERIOD			((1UL << 32) - 1)
59 
60 #define PIC_UPPER_INDEX			0
61 #define PIC_LOWER_INDEX			1
62 #define PIC_NO_INDEX			-1
63 
64 struct cpu_hw_events {
65 	/* Number of events currently scheduled onto this cpu.
66 	 * This tells how many entries in the arrays below
67 	 * are valid.
68 	 */
69 	int			n_events;
70 
71 	/* Number of new events added since the last hw_perf_disable().
72 	 * This works because the perf event layer always adds new
73 	 * events inside of a perf_{disable,enable}() sequence.
74 	 */
75 	int			n_added;
76 
77 	/* Array of events current scheduled on this cpu.  */
78 	struct perf_event	*event[MAX_HWEVENTS];
79 
80 	/* Array of encoded longs, specifying the %pcr register
81 	 * encoding and the mask of PIC counters this even can
82 	 * be scheduled on.  See perf_event_encode() et al.
83 	 */
84 	unsigned long		events[MAX_HWEVENTS];
85 
86 	/* The current counter index assigned to an event.  When the
87 	 * event hasn't been programmed into the cpu yet, this will
88 	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
89 	 * we ought to schedule the event.
90 	 */
91 	int			current_idx[MAX_HWEVENTS];
92 
93 	/* Software copy of %pcr register on this cpu.  */
94 	u64			pcr;
95 
96 	/* Enabled/disable state.  */
97 	int			enabled;
98 
99 	unsigned int		group_flag;
100 };
101 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
102 
103 /* An event map describes the characteristics of a performance
104  * counter event.  In particular it gives the encoding as well as
105  * a mask telling which counters the event can be measured on.
106  */
107 struct perf_event_map {
108 	u16	encoding;
109 	u8	pic_mask;
110 #define PIC_NONE	0x00
111 #define PIC_UPPER	0x01
112 #define PIC_LOWER	0x02
113 };
114 
115 /* Encode a perf_event_map entry into a long.  */
116 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
117 {
118 	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
119 }
120 
121 static u8 perf_event_get_msk(unsigned long val)
122 {
123 	return val & 0xff;
124 }
125 
126 static u64 perf_event_get_enc(unsigned long val)
127 {
128 	return val >> 16;
129 }
130 
131 #define C(x) PERF_COUNT_HW_CACHE_##x
132 
133 #define CACHE_OP_UNSUPPORTED	0xfffe
134 #define CACHE_OP_NONSENSE	0xffff
135 
136 typedef struct perf_event_map cache_map_t
137 				[PERF_COUNT_HW_CACHE_MAX]
138 				[PERF_COUNT_HW_CACHE_OP_MAX]
139 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
140 
141 struct sparc_pmu {
142 	const struct perf_event_map	*(*event_map)(int);
143 	const cache_map_t		*cache_map;
144 	int				max_events;
145 	int				upper_shift;
146 	int				lower_shift;
147 	int				event_mask;
148 	int				hv_bit;
149 	int				irq_bit;
150 	int				upper_nop;
151 	int				lower_nop;
152 };
153 
154 static const struct perf_event_map ultra3_perfmon_event_map[] = {
155 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
156 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
157 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
158 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
159 };
160 
161 static const struct perf_event_map *ultra3_event_map(int event_id)
162 {
163 	return &ultra3_perfmon_event_map[event_id];
164 }
165 
166 static const cache_map_t ultra3_cache_map = {
167 [C(L1D)] = {
168 	[C(OP_READ)] = {
169 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
170 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
171 	},
172 	[C(OP_WRITE)] = {
173 		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
174 		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
175 	},
176 	[C(OP_PREFETCH)] = {
177 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
178 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
179 	},
180 },
181 [C(L1I)] = {
182 	[C(OP_READ)] = {
183 		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
184 		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
185 	},
186 	[ C(OP_WRITE) ] = {
187 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
188 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
189 	},
190 	[ C(OP_PREFETCH) ] = {
191 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
192 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
193 	},
194 },
195 [C(LL)] = {
196 	[C(OP_READ)] = {
197 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
198 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
199 	},
200 	[C(OP_WRITE)] = {
201 		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
202 		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
203 	},
204 	[C(OP_PREFETCH)] = {
205 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
206 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
207 	},
208 },
209 [C(DTLB)] = {
210 	[C(OP_READ)] = {
211 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
212 		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
213 	},
214 	[ C(OP_WRITE) ] = {
215 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
216 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
217 	},
218 	[ C(OP_PREFETCH) ] = {
219 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
220 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
221 	},
222 },
223 [C(ITLB)] = {
224 	[C(OP_READ)] = {
225 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
226 		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
227 	},
228 	[ C(OP_WRITE) ] = {
229 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
230 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
231 	},
232 	[ C(OP_PREFETCH) ] = {
233 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
234 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
235 	},
236 },
237 [C(BPU)] = {
238 	[C(OP_READ)] = {
239 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
240 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
241 	},
242 	[ C(OP_WRITE) ] = {
243 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
245 	},
246 	[ C(OP_PREFETCH) ] = {
247 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
248 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
249 	},
250 },
251 [C(NODE)] = {
252 	[C(OP_READ)] = {
253 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
254 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
255 	},
256 	[ C(OP_WRITE) ] = {
257 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
258 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
259 	},
260 	[ C(OP_PREFETCH) ] = {
261 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
262 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
263 	},
264 },
265 };
266 
267 static const struct sparc_pmu ultra3_pmu = {
268 	.event_map	= ultra3_event_map,
269 	.cache_map	= &ultra3_cache_map,
270 	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
271 	.upper_shift	= 11,
272 	.lower_shift	= 4,
273 	.event_mask	= 0x3f,
274 	.upper_nop	= 0x1c,
275 	.lower_nop	= 0x14,
276 };
277 
278 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
279  * only instructions, so it is free running which creates all kinds of
280  * problems.  Some hardware designs make one wonder if the creator
281  * even looked at how this stuff gets used by software.
282  */
283 static const struct perf_event_map niagara1_perfmon_event_map[] = {
284 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
285 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
286 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
287 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
288 };
289 
290 static const struct perf_event_map *niagara1_event_map(int event_id)
291 {
292 	return &niagara1_perfmon_event_map[event_id];
293 }
294 
295 static const cache_map_t niagara1_cache_map = {
296 [C(L1D)] = {
297 	[C(OP_READ)] = {
298 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
299 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
300 	},
301 	[C(OP_WRITE)] = {
302 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
303 		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
304 	},
305 	[C(OP_PREFETCH)] = {
306 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
308 	},
309 },
310 [C(L1I)] = {
311 	[C(OP_READ)] = {
312 		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
313 		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
314 	},
315 	[ C(OP_WRITE) ] = {
316 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
317 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
318 	},
319 	[ C(OP_PREFETCH) ] = {
320 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
321 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
322 	},
323 },
324 [C(LL)] = {
325 	[C(OP_READ)] = {
326 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
327 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
328 	},
329 	[C(OP_WRITE)] = {
330 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
331 		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
332 	},
333 	[C(OP_PREFETCH)] = {
334 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
335 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
336 	},
337 },
338 [C(DTLB)] = {
339 	[C(OP_READ)] = {
340 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
341 		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
342 	},
343 	[ C(OP_WRITE) ] = {
344 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
345 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
346 	},
347 	[ C(OP_PREFETCH) ] = {
348 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
349 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
350 	},
351 },
352 [C(ITLB)] = {
353 	[C(OP_READ)] = {
354 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
355 		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
356 	},
357 	[ C(OP_WRITE) ] = {
358 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
359 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
360 	},
361 	[ C(OP_PREFETCH) ] = {
362 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
363 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
364 	},
365 },
366 [C(BPU)] = {
367 	[C(OP_READ)] = {
368 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
369 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
370 	},
371 	[ C(OP_WRITE) ] = {
372 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
373 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
374 	},
375 	[ C(OP_PREFETCH) ] = {
376 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
377 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
378 	},
379 },
380 [C(NODE)] = {
381 	[C(OP_READ)] = {
382 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
383 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
384 	},
385 	[ C(OP_WRITE) ] = {
386 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
387 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
388 	},
389 	[ C(OP_PREFETCH) ] = {
390 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
391 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
392 	},
393 },
394 };
395 
396 static const struct sparc_pmu niagara1_pmu = {
397 	.event_map	= niagara1_event_map,
398 	.cache_map	= &niagara1_cache_map,
399 	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
400 	.upper_shift	= 0,
401 	.lower_shift	= 4,
402 	.event_mask	= 0x7,
403 	.upper_nop	= 0x0,
404 	.lower_nop	= 0x0,
405 };
406 
407 static const struct perf_event_map niagara2_perfmon_event_map[] = {
408 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
409 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
410 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
411 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
412 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
413 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
414 };
415 
416 static const struct perf_event_map *niagara2_event_map(int event_id)
417 {
418 	return &niagara2_perfmon_event_map[event_id];
419 }
420 
421 static const cache_map_t niagara2_cache_map = {
422 [C(L1D)] = {
423 	[C(OP_READ)] = {
424 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
425 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
426 	},
427 	[C(OP_WRITE)] = {
428 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
429 		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
430 	},
431 	[C(OP_PREFETCH)] = {
432 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
433 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
434 	},
435 },
436 [C(L1I)] = {
437 	[C(OP_READ)] = {
438 		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
439 		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
440 	},
441 	[ C(OP_WRITE) ] = {
442 		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
443 		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
444 	},
445 	[ C(OP_PREFETCH) ] = {
446 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
447 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
448 	},
449 },
450 [C(LL)] = {
451 	[C(OP_READ)] = {
452 		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
453 		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
454 	},
455 	[C(OP_WRITE)] = {
456 		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
457 		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
458 	},
459 	[C(OP_PREFETCH)] = {
460 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
461 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
462 	},
463 },
464 [C(DTLB)] = {
465 	[C(OP_READ)] = {
466 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
467 		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
468 	},
469 	[ C(OP_WRITE) ] = {
470 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
471 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
472 	},
473 	[ C(OP_PREFETCH) ] = {
474 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
475 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
476 	},
477 },
478 [C(ITLB)] = {
479 	[C(OP_READ)] = {
480 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
481 		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
482 	},
483 	[ C(OP_WRITE) ] = {
484 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
485 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
486 	},
487 	[ C(OP_PREFETCH) ] = {
488 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
489 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
490 	},
491 },
492 [C(BPU)] = {
493 	[C(OP_READ)] = {
494 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
495 		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
496 	},
497 	[ C(OP_WRITE) ] = {
498 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
499 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
500 	},
501 	[ C(OP_PREFETCH) ] = {
502 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
503 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
504 	},
505 },
506 [C(NODE)] = {
507 	[C(OP_READ)] = {
508 		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
509 		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
510 	},
511 	[ C(OP_WRITE) ] = {
512 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
513 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
514 	},
515 	[ C(OP_PREFETCH) ] = {
516 		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517 		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
518 	},
519 },
520 };
521 
522 static const struct sparc_pmu niagara2_pmu = {
523 	.event_map	= niagara2_event_map,
524 	.cache_map	= &niagara2_cache_map,
525 	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
526 	.upper_shift	= 19,
527 	.lower_shift	= 6,
528 	.event_mask	= 0xfff,
529 	.hv_bit		= 0x8,
530 	.irq_bit	= 0x30,
531 	.upper_nop	= 0x220,
532 	.lower_nop	= 0x220,
533 };
534 
535 static const struct sparc_pmu *sparc_pmu __read_mostly;
536 
537 static u64 event_encoding(u64 event_id, int idx)
538 {
539 	if (idx == PIC_UPPER_INDEX)
540 		event_id <<= sparc_pmu->upper_shift;
541 	else
542 		event_id <<= sparc_pmu->lower_shift;
543 	return event_id;
544 }
545 
546 static u64 mask_for_index(int idx)
547 {
548 	return event_encoding(sparc_pmu->event_mask, idx);
549 }
550 
551 static u64 nop_for_index(int idx)
552 {
553 	return event_encoding(idx == PIC_UPPER_INDEX ?
554 			      sparc_pmu->upper_nop :
555 			      sparc_pmu->lower_nop, idx);
556 }
557 
558 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
559 {
560 	u64 val, mask = mask_for_index(idx);
561 
562 	val = cpuc->pcr;
563 	val &= ~mask;
564 	val |= hwc->config;
565 	cpuc->pcr = val;
566 
567 	pcr_ops->write(cpuc->pcr);
568 }
569 
570 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
571 {
572 	u64 mask = mask_for_index(idx);
573 	u64 nop = nop_for_index(idx);
574 	u64 val;
575 
576 	val = cpuc->pcr;
577 	val &= ~mask;
578 	val |= nop;
579 	cpuc->pcr = val;
580 
581 	pcr_ops->write(cpuc->pcr);
582 }
583 
584 static u32 read_pmc(int idx)
585 {
586 	u64 val;
587 
588 	read_pic(val);
589 	if (idx == PIC_UPPER_INDEX)
590 		val >>= 32;
591 
592 	return val & 0xffffffff;
593 }
594 
595 static void write_pmc(int idx, u64 val)
596 {
597 	u64 shift, mask, pic;
598 
599 	shift = 0;
600 	if (idx == PIC_UPPER_INDEX)
601 		shift = 32;
602 
603 	mask = ((u64) 0xffffffff) << shift;
604 	val <<= shift;
605 
606 	read_pic(pic);
607 	pic &= ~mask;
608 	pic |= val;
609 	write_pic(pic);
610 }
611 
612 static u64 sparc_perf_event_update(struct perf_event *event,
613 				   struct hw_perf_event *hwc, int idx)
614 {
615 	int shift = 64 - 32;
616 	u64 prev_raw_count, new_raw_count;
617 	s64 delta;
618 
619 again:
620 	prev_raw_count = local64_read(&hwc->prev_count);
621 	new_raw_count = read_pmc(idx);
622 
623 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
624 			     new_raw_count) != prev_raw_count)
625 		goto again;
626 
627 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
628 	delta >>= shift;
629 
630 	local64_add(delta, &event->count);
631 	local64_sub(delta, &hwc->period_left);
632 
633 	return new_raw_count;
634 }
635 
636 static int sparc_perf_event_set_period(struct perf_event *event,
637 				       struct hw_perf_event *hwc, int idx)
638 {
639 	s64 left = local64_read(&hwc->period_left);
640 	s64 period = hwc->sample_period;
641 	int ret = 0;
642 
643 	if (unlikely(left <= -period)) {
644 		left = period;
645 		local64_set(&hwc->period_left, left);
646 		hwc->last_period = period;
647 		ret = 1;
648 	}
649 
650 	if (unlikely(left <= 0)) {
651 		left += period;
652 		local64_set(&hwc->period_left, left);
653 		hwc->last_period = period;
654 		ret = 1;
655 	}
656 	if (left > MAX_PERIOD)
657 		left = MAX_PERIOD;
658 
659 	local64_set(&hwc->prev_count, (u64)-left);
660 
661 	write_pmc(idx, (u64)(-left) & 0xffffffff);
662 
663 	perf_event_update_userpage(event);
664 
665 	return ret;
666 }
667 
668 /* If performance event entries have been added, move existing
669  * events around (if necessary) and then assign new entries to
670  * counters.
671  */
672 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
673 {
674 	int i;
675 
676 	if (!cpuc->n_added)
677 		goto out;
678 
679 	/* Read in the counters which are moving.  */
680 	for (i = 0; i < cpuc->n_events; i++) {
681 		struct perf_event *cp = cpuc->event[i];
682 
683 		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
684 		    cpuc->current_idx[i] != cp->hw.idx) {
685 			sparc_perf_event_update(cp, &cp->hw,
686 						cpuc->current_idx[i]);
687 			cpuc->current_idx[i] = PIC_NO_INDEX;
688 		}
689 	}
690 
691 	/* Assign to counters all unassigned events.  */
692 	for (i = 0; i < cpuc->n_events; i++) {
693 		struct perf_event *cp = cpuc->event[i];
694 		struct hw_perf_event *hwc = &cp->hw;
695 		int idx = hwc->idx;
696 		u64 enc;
697 
698 		if (cpuc->current_idx[i] != PIC_NO_INDEX)
699 			continue;
700 
701 		sparc_perf_event_set_period(cp, hwc, idx);
702 		cpuc->current_idx[i] = idx;
703 
704 		enc = perf_event_get_enc(cpuc->events[i]);
705 		pcr &= ~mask_for_index(idx);
706 		if (hwc->state & PERF_HES_STOPPED)
707 			pcr |= nop_for_index(idx);
708 		else
709 			pcr |= event_encoding(enc, idx);
710 	}
711 out:
712 	return pcr;
713 }
714 
715 static void sparc_pmu_enable(struct pmu *pmu)
716 {
717 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
718 	u64 pcr;
719 
720 	if (cpuc->enabled)
721 		return;
722 
723 	cpuc->enabled = 1;
724 	barrier();
725 
726 	pcr = cpuc->pcr;
727 	if (!cpuc->n_events) {
728 		pcr = 0;
729 	} else {
730 		pcr = maybe_change_configuration(cpuc, pcr);
731 
732 		/* We require that all of the events have the same
733 		 * configuration, so just fetch the settings from the
734 		 * first entry.
735 		 */
736 		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
737 	}
738 
739 	pcr_ops->write(cpuc->pcr);
740 }
741 
742 static void sparc_pmu_disable(struct pmu *pmu)
743 {
744 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
745 	u64 val;
746 
747 	if (!cpuc->enabled)
748 		return;
749 
750 	cpuc->enabled = 0;
751 	cpuc->n_added = 0;
752 
753 	val = cpuc->pcr;
754 	val &= ~(PCR_UTRACE | PCR_STRACE |
755 		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
756 	cpuc->pcr = val;
757 
758 	pcr_ops->write(cpuc->pcr);
759 }
760 
761 static int active_event_index(struct cpu_hw_events *cpuc,
762 			      struct perf_event *event)
763 {
764 	int i;
765 
766 	for (i = 0; i < cpuc->n_events; i++) {
767 		if (cpuc->event[i] == event)
768 			break;
769 	}
770 	BUG_ON(i == cpuc->n_events);
771 	return cpuc->current_idx[i];
772 }
773 
774 static void sparc_pmu_start(struct perf_event *event, int flags)
775 {
776 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
777 	int idx = active_event_index(cpuc, event);
778 
779 	if (flags & PERF_EF_RELOAD) {
780 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
781 		sparc_perf_event_set_period(event, &event->hw, idx);
782 	}
783 
784 	event->hw.state = 0;
785 
786 	sparc_pmu_enable_event(cpuc, &event->hw, idx);
787 }
788 
789 static void sparc_pmu_stop(struct perf_event *event, int flags)
790 {
791 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
792 	int idx = active_event_index(cpuc, event);
793 
794 	if (!(event->hw.state & PERF_HES_STOPPED)) {
795 		sparc_pmu_disable_event(cpuc, &event->hw, idx);
796 		event->hw.state |= PERF_HES_STOPPED;
797 	}
798 
799 	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
800 		sparc_perf_event_update(event, &event->hw, idx);
801 		event->hw.state |= PERF_HES_UPTODATE;
802 	}
803 }
804 
805 static void sparc_pmu_del(struct perf_event *event, int _flags)
806 {
807 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
808 	unsigned long flags;
809 	int i;
810 
811 	local_irq_save(flags);
812 	perf_pmu_disable(event->pmu);
813 
814 	for (i = 0; i < cpuc->n_events; i++) {
815 		if (event == cpuc->event[i]) {
816 			/* Absorb the final count and turn off the
817 			 * event.
818 			 */
819 			sparc_pmu_stop(event, PERF_EF_UPDATE);
820 
821 			/* Shift remaining entries down into
822 			 * the existing slot.
823 			 */
824 			while (++i < cpuc->n_events) {
825 				cpuc->event[i - 1] = cpuc->event[i];
826 				cpuc->events[i - 1] = cpuc->events[i];
827 				cpuc->current_idx[i - 1] =
828 					cpuc->current_idx[i];
829 			}
830 
831 			perf_event_update_userpage(event);
832 
833 			cpuc->n_events--;
834 			break;
835 		}
836 	}
837 
838 	perf_pmu_enable(event->pmu);
839 	local_irq_restore(flags);
840 }
841 
842 static void sparc_pmu_read(struct perf_event *event)
843 {
844 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
845 	int idx = active_event_index(cpuc, event);
846 	struct hw_perf_event *hwc = &event->hw;
847 
848 	sparc_perf_event_update(event, hwc, idx);
849 }
850 
851 static atomic_t active_events = ATOMIC_INIT(0);
852 static DEFINE_MUTEX(pmc_grab_mutex);
853 
854 static void perf_stop_nmi_watchdog(void *unused)
855 {
856 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
857 
858 	stop_nmi_watchdog(NULL);
859 	cpuc->pcr = pcr_ops->read();
860 }
861 
862 void perf_event_grab_pmc(void)
863 {
864 	if (atomic_inc_not_zero(&active_events))
865 		return;
866 
867 	mutex_lock(&pmc_grab_mutex);
868 	if (atomic_read(&active_events) == 0) {
869 		if (atomic_read(&nmi_active) > 0) {
870 			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
871 			BUG_ON(atomic_read(&nmi_active) != 0);
872 		}
873 		atomic_inc(&active_events);
874 	}
875 	mutex_unlock(&pmc_grab_mutex);
876 }
877 
878 void perf_event_release_pmc(void)
879 {
880 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
881 		if (atomic_read(&nmi_active) == 0)
882 			on_each_cpu(start_nmi_watchdog, NULL, 1);
883 		mutex_unlock(&pmc_grab_mutex);
884 	}
885 }
886 
887 static const struct perf_event_map *sparc_map_cache_event(u64 config)
888 {
889 	unsigned int cache_type, cache_op, cache_result;
890 	const struct perf_event_map *pmap;
891 
892 	if (!sparc_pmu->cache_map)
893 		return ERR_PTR(-ENOENT);
894 
895 	cache_type = (config >>  0) & 0xff;
896 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
897 		return ERR_PTR(-EINVAL);
898 
899 	cache_op = (config >>  8) & 0xff;
900 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
901 		return ERR_PTR(-EINVAL);
902 
903 	cache_result = (config >> 16) & 0xff;
904 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
905 		return ERR_PTR(-EINVAL);
906 
907 	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
908 
909 	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
910 		return ERR_PTR(-ENOENT);
911 
912 	if (pmap->encoding == CACHE_OP_NONSENSE)
913 		return ERR_PTR(-EINVAL);
914 
915 	return pmap;
916 }
917 
918 static void hw_perf_event_destroy(struct perf_event *event)
919 {
920 	perf_event_release_pmc();
921 }
922 
923 /* Make sure all events can be scheduled into the hardware at
924  * the same time.  This is simplified by the fact that we only
925  * need to support 2 simultaneous HW events.
926  *
927  * As a side effect, the evts[]->hw.idx values will be assigned
928  * on success.  These are pending indexes.  When the events are
929  * actually programmed into the chip, these values will propagate
930  * to the per-cpu cpuc->current_idx[] slots, see the code in
931  * maybe_change_configuration() for details.
932  */
933 static int sparc_check_constraints(struct perf_event **evts,
934 				   unsigned long *events, int n_ev)
935 {
936 	u8 msk0 = 0, msk1 = 0;
937 	int idx0 = 0;
938 
939 	/* This case is possible when we are invoked from
940 	 * hw_perf_group_sched_in().
941 	 */
942 	if (!n_ev)
943 		return 0;
944 
945 	if (n_ev > MAX_HWEVENTS)
946 		return -1;
947 
948 	msk0 = perf_event_get_msk(events[0]);
949 	if (n_ev == 1) {
950 		if (msk0 & PIC_LOWER)
951 			idx0 = 1;
952 		goto success;
953 	}
954 	BUG_ON(n_ev != 2);
955 	msk1 = perf_event_get_msk(events[1]);
956 
957 	/* If both events can go on any counter, OK.  */
958 	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
959 	    msk1 == (PIC_UPPER | PIC_LOWER))
960 		goto success;
961 
962 	/* If one event is limited to a specific counter,
963 	 * and the other can go on both, OK.
964 	 */
965 	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
966 	    msk1 == (PIC_UPPER | PIC_LOWER)) {
967 		if (msk0 & PIC_LOWER)
968 			idx0 = 1;
969 		goto success;
970 	}
971 
972 	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
973 	    msk0 == (PIC_UPPER | PIC_LOWER)) {
974 		if (msk1 & PIC_UPPER)
975 			idx0 = 1;
976 		goto success;
977 	}
978 
979 	/* If the events are fixed to different counters, OK.  */
980 	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
981 	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
982 		if (msk0 & PIC_LOWER)
983 			idx0 = 1;
984 		goto success;
985 	}
986 
987 	/* Otherwise, there is a conflict.  */
988 	return -1;
989 
990 success:
991 	evts[0]->hw.idx = idx0;
992 	if (n_ev == 2)
993 		evts[1]->hw.idx = idx0 ^ 1;
994 	return 0;
995 }
996 
997 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
998 {
999 	int eu = 0, ek = 0, eh = 0;
1000 	struct perf_event *event;
1001 	int i, n, first;
1002 
1003 	n = n_prev + n_new;
1004 	if (n <= 1)
1005 		return 0;
1006 
1007 	first = 1;
1008 	for (i = 0; i < n; i++) {
1009 		event = evts[i];
1010 		if (first) {
1011 			eu = event->attr.exclude_user;
1012 			ek = event->attr.exclude_kernel;
1013 			eh = event->attr.exclude_hv;
1014 			first = 0;
1015 		} else if (event->attr.exclude_user != eu ||
1016 			   event->attr.exclude_kernel != ek ||
1017 			   event->attr.exclude_hv != eh) {
1018 			return -EAGAIN;
1019 		}
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 static int collect_events(struct perf_event *group, int max_count,
1026 			  struct perf_event *evts[], unsigned long *events,
1027 			  int *current_idx)
1028 {
1029 	struct perf_event *event;
1030 	int n = 0;
1031 
1032 	if (!is_software_event(group)) {
1033 		if (n >= max_count)
1034 			return -1;
1035 		evts[n] = group;
1036 		events[n] = group->hw.event_base;
1037 		current_idx[n++] = PIC_NO_INDEX;
1038 	}
1039 	list_for_each_entry(event, &group->sibling_list, group_entry) {
1040 		if (!is_software_event(event) &&
1041 		    event->state != PERF_EVENT_STATE_OFF) {
1042 			if (n >= max_count)
1043 				return -1;
1044 			evts[n] = event;
1045 			events[n] = event->hw.event_base;
1046 			current_idx[n++] = PIC_NO_INDEX;
1047 		}
1048 	}
1049 	return n;
1050 }
1051 
1052 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1053 {
1054 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1055 	int n0, ret = -EAGAIN;
1056 	unsigned long flags;
1057 
1058 	local_irq_save(flags);
1059 	perf_pmu_disable(event->pmu);
1060 
1061 	n0 = cpuc->n_events;
1062 	if (n0 >= MAX_HWEVENTS)
1063 		goto out;
1064 
1065 	cpuc->event[n0] = event;
1066 	cpuc->events[n0] = event->hw.event_base;
1067 	cpuc->current_idx[n0] = PIC_NO_INDEX;
1068 
1069 	event->hw.state = PERF_HES_UPTODATE;
1070 	if (!(ef_flags & PERF_EF_START))
1071 		event->hw.state |= PERF_HES_STOPPED;
1072 
1073 	/*
1074 	 * If group events scheduling transaction was started,
1075 	 * skip the schedulability test here, it will be performed
1076 	 * at commit time(->commit_txn) as a whole
1077 	 */
1078 	if (cpuc->group_flag & PERF_EVENT_TXN)
1079 		goto nocheck;
1080 
1081 	if (check_excludes(cpuc->event, n0, 1))
1082 		goto out;
1083 	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1084 		goto out;
1085 
1086 nocheck:
1087 	cpuc->n_events++;
1088 	cpuc->n_added++;
1089 
1090 	ret = 0;
1091 out:
1092 	perf_pmu_enable(event->pmu);
1093 	local_irq_restore(flags);
1094 	return ret;
1095 }
1096 
1097 static int sparc_pmu_event_init(struct perf_event *event)
1098 {
1099 	struct perf_event_attr *attr = &event->attr;
1100 	struct perf_event *evts[MAX_HWEVENTS];
1101 	struct hw_perf_event *hwc = &event->hw;
1102 	unsigned long events[MAX_HWEVENTS];
1103 	int current_idx_dmy[MAX_HWEVENTS];
1104 	const struct perf_event_map *pmap;
1105 	int n;
1106 
1107 	if (atomic_read(&nmi_active) < 0)
1108 		return -ENODEV;
1109 
1110 	/* does not support taken branch sampling */
1111 	if (has_branch_stack(event))
1112 		return -EOPNOTSUPP;
1113 
1114 	switch (attr->type) {
1115 	case PERF_TYPE_HARDWARE:
1116 		if (attr->config >= sparc_pmu->max_events)
1117 			return -EINVAL;
1118 		pmap = sparc_pmu->event_map(attr->config);
1119 		break;
1120 
1121 	case PERF_TYPE_HW_CACHE:
1122 		pmap = sparc_map_cache_event(attr->config);
1123 		if (IS_ERR(pmap))
1124 			return PTR_ERR(pmap);
1125 		break;
1126 
1127 	case PERF_TYPE_RAW:
1128 		pmap = NULL;
1129 		break;
1130 
1131 	default:
1132 		return -ENOENT;
1133 
1134 	}
1135 
1136 	if (pmap) {
1137 		hwc->event_base = perf_event_encode(pmap);
1138 	} else {
1139 		/*
1140 		 * User gives us "(encoding << 16) | pic_mask" for
1141 		 * PERF_TYPE_RAW events.
1142 		 */
1143 		hwc->event_base = attr->config;
1144 	}
1145 
1146 	/* We save the enable bits in the config_base.  */
1147 	hwc->config_base = sparc_pmu->irq_bit;
1148 	if (!attr->exclude_user)
1149 		hwc->config_base |= PCR_UTRACE;
1150 	if (!attr->exclude_kernel)
1151 		hwc->config_base |= PCR_STRACE;
1152 	if (!attr->exclude_hv)
1153 		hwc->config_base |= sparc_pmu->hv_bit;
1154 
1155 	n = 0;
1156 	if (event->group_leader != event) {
1157 		n = collect_events(event->group_leader,
1158 				   MAX_HWEVENTS - 1,
1159 				   evts, events, current_idx_dmy);
1160 		if (n < 0)
1161 			return -EINVAL;
1162 	}
1163 	events[n] = hwc->event_base;
1164 	evts[n] = event;
1165 
1166 	if (check_excludes(evts, n, 1))
1167 		return -EINVAL;
1168 
1169 	if (sparc_check_constraints(evts, events, n + 1))
1170 		return -EINVAL;
1171 
1172 	hwc->idx = PIC_NO_INDEX;
1173 
1174 	/* Try to do all error checking before this point, as unwinding
1175 	 * state after grabbing the PMC is difficult.
1176 	 */
1177 	perf_event_grab_pmc();
1178 	event->destroy = hw_perf_event_destroy;
1179 
1180 	if (!hwc->sample_period) {
1181 		hwc->sample_period = MAX_PERIOD;
1182 		hwc->last_period = hwc->sample_period;
1183 		local64_set(&hwc->period_left, hwc->sample_period);
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Start group events scheduling transaction
1191  * Set the flag to make pmu::enable() not perform the
1192  * schedulability test, it will be performed at commit time
1193  */
1194 static void sparc_pmu_start_txn(struct pmu *pmu)
1195 {
1196 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1197 
1198 	perf_pmu_disable(pmu);
1199 	cpuhw->group_flag |= PERF_EVENT_TXN;
1200 }
1201 
1202 /*
1203  * Stop group events scheduling transaction
1204  * Clear the flag and pmu::enable() will perform the
1205  * schedulability test.
1206  */
1207 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1208 {
1209 	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1210 
1211 	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1212 	perf_pmu_enable(pmu);
1213 }
1214 
1215 /*
1216  * Commit group events scheduling transaction
1217  * Perform the group schedulability test as a whole
1218  * Return 0 if success
1219  */
1220 static int sparc_pmu_commit_txn(struct pmu *pmu)
1221 {
1222 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1223 	int n;
1224 
1225 	if (!sparc_pmu)
1226 		return -EINVAL;
1227 
1228 	cpuc = &__get_cpu_var(cpu_hw_events);
1229 	n = cpuc->n_events;
1230 	if (check_excludes(cpuc->event, 0, n))
1231 		return -EINVAL;
1232 	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1233 		return -EAGAIN;
1234 
1235 	cpuc->group_flag &= ~PERF_EVENT_TXN;
1236 	perf_pmu_enable(pmu);
1237 	return 0;
1238 }
1239 
1240 static struct pmu pmu = {
1241 	.pmu_enable	= sparc_pmu_enable,
1242 	.pmu_disable	= sparc_pmu_disable,
1243 	.event_init	= sparc_pmu_event_init,
1244 	.add		= sparc_pmu_add,
1245 	.del		= sparc_pmu_del,
1246 	.start		= sparc_pmu_start,
1247 	.stop		= sparc_pmu_stop,
1248 	.read		= sparc_pmu_read,
1249 	.start_txn	= sparc_pmu_start_txn,
1250 	.cancel_txn	= sparc_pmu_cancel_txn,
1251 	.commit_txn	= sparc_pmu_commit_txn,
1252 };
1253 
1254 void perf_event_print_debug(void)
1255 {
1256 	unsigned long flags;
1257 	u64 pcr, pic;
1258 	int cpu;
1259 
1260 	if (!sparc_pmu)
1261 		return;
1262 
1263 	local_irq_save(flags);
1264 
1265 	cpu = smp_processor_id();
1266 
1267 	pcr = pcr_ops->read();
1268 	read_pic(pic);
1269 
1270 	pr_info("\n");
1271 	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1272 		cpu, pcr, pic);
1273 
1274 	local_irq_restore(flags);
1275 }
1276 
1277 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1278 					    unsigned long cmd, void *__args)
1279 {
1280 	struct die_args *args = __args;
1281 	struct perf_sample_data data;
1282 	struct cpu_hw_events *cpuc;
1283 	struct pt_regs *regs;
1284 	int i;
1285 
1286 	if (!atomic_read(&active_events))
1287 		return NOTIFY_DONE;
1288 
1289 	switch (cmd) {
1290 	case DIE_NMI:
1291 		break;
1292 
1293 	default:
1294 		return NOTIFY_DONE;
1295 	}
1296 
1297 	regs = args->regs;
1298 
1299 	cpuc = &__get_cpu_var(cpu_hw_events);
1300 
1301 	/* If the PMU has the TOE IRQ enable bits, we need to do a
1302 	 * dummy write to the %pcr to clear the overflow bits and thus
1303 	 * the interrupt.
1304 	 *
1305 	 * Do this before we peek at the counters to determine
1306 	 * overflow so we don't lose any events.
1307 	 */
1308 	if (sparc_pmu->irq_bit)
1309 		pcr_ops->write(cpuc->pcr);
1310 
1311 	for (i = 0; i < cpuc->n_events; i++) {
1312 		struct perf_event *event = cpuc->event[i];
1313 		int idx = cpuc->current_idx[i];
1314 		struct hw_perf_event *hwc;
1315 		u64 val;
1316 
1317 		hwc = &event->hw;
1318 		val = sparc_perf_event_update(event, hwc, idx);
1319 		if (val & (1ULL << 31))
1320 			continue;
1321 
1322 		perf_sample_data_init(&data, 0, hwc->last_period);
1323 		if (!sparc_perf_event_set_period(event, hwc, idx))
1324 			continue;
1325 
1326 		if (perf_event_overflow(event, &data, regs))
1327 			sparc_pmu_stop(event, 0);
1328 	}
1329 
1330 	return NOTIFY_STOP;
1331 }
1332 
1333 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1334 	.notifier_call		= perf_event_nmi_handler,
1335 };
1336 
1337 static bool __init supported_pmu(void)
1338 {
1339 	if (!strcmp(sparc_pmu_type, "ultra3") ||
1340 	    !strcmp(sparc_pmu_type, "ultra3+") ||
1341 	    !strcmp(sparc_pmu_type, "ultra3i") ||
1342 	    !strcmp(sparc_pmu_type, "ultra4+")) {
1343 		sparc_pmu = &ultra3_pmu;
1344 		return true;
1345 	}
1346 	if (!strcmp(sparc_pmu_type, "niagara")) {
1347 		sparc_pmu = &niagara1_pmu;
1348 		return true;
1349 	}
1350 	if (!strcmp(sparc_pmu_type, "niagara2") ||
1351 	    !strcmp(sparc_pmu_type, "niagara3")) {
1352 		sparc_pmu = &niagara2_pmu;
1353 		return true;
1354 	}
1355 	return false;
1356 }
1357 
1358 int __init init_hw_perf_events(void)
1359 {
1360 	pr_info("Performance events: ");
1361 
1362 	if (!supported_pmu()) {
1363 		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1364 		return 0;
1365 	}
1366 
1367 	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1368 
1369 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1370 	register_die_notifier(&perf_event_nmi_notifier);
1371 
1372 	return 0;
1373 }
1374 early_initcall(init_hw_perf_events);
1375 
1376 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1377 			   struct pt_regs *regs)
1378 {
1379 	unsigned long ksp, fp;
1380 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1381 	int graph = 0;
1382 #endif
1383 
1384 	stack_trace_flush();
1385 
1386 	perf_callchain_store(entry, regs->tpc);
1387 
1388 	ksp = regs->u_regs[UREG_I6];
1389 	fp = ksp + STACK_BIAS;
1390 	do {
1391 		struct sparc_stackf *sf;
1392 		struct pt_regs *regs;
1393 		unsigned long pc;
1394 
1395 		if (!kstack_valid(current_thread_info(), fp))
1396 			break;
1397 
1398 		sf = (struct sparc_stackf *) fp;
1399 		regs = (struct pt_regs *) (sf + 1);
1400 
1401 		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1402 			if (user_mode(regs))
1403 				break;
1404 			pc = regs->tpc;
1405 			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1406 		} else {
1407 			pc = sf->callers_pc;
1408 			fp = (unsigned long)sf->fp + STACK_BIAS;
1409 		}
1410 		perf_callchain_store(entry, pc);
1411 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1412 		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1413 			int index = current->curr_ret_stack;
1414 			if (current->ret_stack && index >= graph) {
1415 				pc = current->ret_stack[index - graph].ret;
1416 				perf_callchain_store(entry, pc);
1417 				graph++;
1418 			}
1419 		}
1420 #endif
1421 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1422 }
1423 
1424 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1425 				   struct pt_regs *regs)
1426 {
1427 	unsigned long ufp;
1428 
1429 	perf_callchain_store(entry, regs->tpc);
1430 
1431 	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1432 	do {
1433 		struct sparc_stackf *usf, sf;
1434 		unsigned long pc;
1435 
1436 		usf = (struct sparc_stackf *) ufp;
1437 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1438 			break;
1439 
1440 		pc = sf.callers_pc;
1441 		ufp = (unsigned long)sf.fp + STACK_BIAS;
1442 		perf_callchain_store(entry, pc);
1443 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1444 }
1445 
1446 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1447 				   struct pt_regs *regs)
1448 {
1449 	unsigned long ufp;
1450 
1451 	perf_callchain_store(entry, regs->tpc);
1452 
1453 	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1454 	do {
1455 		struct sparc_stackf32 *usf, sf;
1456 		unsigned long pc;
1457 
1458 		usf = (struct sparc_stackf32 *) ufp;
1459 		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1460 			break;
1461 
1462 		pc = sf.callers_pc;
1463 		ufp = (unsigned long)sf.fp;
1464 		perf_callchain_store(entry, pc);
1465 	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1466 }
1467 
1468 void
1469 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1470 {
1471 	flushw_user();
1472 	if (test_thread_flag(TIF_32BIT))
1473 		perf_callchain_user_32(entry, regs);
1474 	else
1475 		perf_callchain_user_64(entry, regs);
1476 }
1477