1 // SPDX-License-Identifier: GPL-2.0
2 /* Performance event support for sparc64.
3 *
4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 *
6 * This code is based almost entirely upon the x86 perf event
7 * code, which is:
8 *
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
14 */
15
16 #include <linux/perf_event.h>
17 #include <linux/kprobes.h>
18 #include <linux/ftrace.h>
19 #include <linux/kernel.h>
20 #include <linux/kdebug.h>
21 #include <linux/mutex.h>
22
23 #include <asm/stacktrace.h>
24 #include <asm/cpudata.h>
25 #include <linux/uaccess.h>
26 #include <linux/atomic.h>
27 #include <linux/sched/clock.h>
28 #include <asm/nmi.h>
29 #include <asm/pcr.h>
30 #include <asm/cacheflush.h>
31
32 #include "kernel.h"
33 #include "kstack.h"
34
35 /* Two classes of sparc64 chips currently exist. All of which have
36 * 32-bit counters which can generate overflow interrupts on the
37 * transition from 0xffffffff to 0.
38 *
39 * All chips upto and including SPARC-T3 have two performance
40 * counters. The two 32-bit counters are accessed in one go using a
41 * single 64-bit register.
42 *
43 * On these older chips both counters are controlled using a single
44 * control register. The only way to stop all sampling is to clear
45 * all of the context (user, supervisor, hypervisor) sampling enable
46 * bits. But these bits apply to both counters, thus the two counters
47 * can't be enabled/disabled individually.
48 *
49 * Furthermore, the control register on these older chips have two
50 * event fields, one for each of the two counters. It's thus nearly
51 * impossible to have one counter going while keeping the other one
52 * stopped. Therefore it is possible to get overflow interrupts for
53 * counters not currently "in use" and that condition must be checked
54 * in the overflow interrupt handler.
55 *
56 * So we use a hack, in that we program inactive counters with the
57 * "sw_count0" and "sw_count1" events. These count how many times
58 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
59 * unusual way to encode a NOP and therefore will not trigger in
60 * normal code.
61 *
62 * Starting with SPARC-T4 we have one control register per counter.
63 * And the counters are stored in individual registers. The registers
64 * for the counters are 64-bit but only a 32-bit counter is
65 * implemented. The event selections on SPARC-T4 lack any
66 * restrictions, therefore we can elide all of the complicated
67 * conflict resolution code we have for SPARC-T3 and earlier chips.
68 */
69
70 #define MAX_HWEVENTS 4
71 #define MAX_PCRS 4
72 #define MAX_PERIOD ((1UL << 32) - 1)
73
74 #define PIC_UPPER_INDEX 0
75 #define PIC_LOWER_INDEX 1
76 #define PIC_NO_INDEX -1
77
78 struct cpu_hw_events {
79 /* Number of events currently scheduled onto this cpu.
80 * This tells how many entries in the arrays below
81 * are valid.
82 */
83 int n_events;
84
85 /* Number of new events added since the last hw_perf_disable().
86 * This works because the perf event layer always adds new
87 * events inside of a perf_{disable,enable}() sequence.
88 */
89 int n_added;
90
91 /* Array of events current scheduled on this cpu. */
92 struct perf_event *event[MAX_HWEVENTS];
93
94 /* Array of encoded longs, specifying the %pcr register
95 * encoding and the mask of PIC counters this even can
96 * be scheduled on. See perf_event_encode() et al.
97 */
98 unsigned long events[MAX_HWEVENTS];
99
100 /* The current counter index assigned to an event. When the
101 * event hasn't been programmed into the cpu yet, this will
102 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
103 * we ought to schedule the event.
104 */
105 int current_idx[MAX_HWEVENTS];
106
107 /* Software copy of %pcr register(s) on this cpu. */
108 u64 pcr[MAX_HWEVENTS];
109
110 /* Enabled/disable state. */
111 int enabled;
112
113 unsigned int txn_flags;
114 };
115 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
116
117 /* An event map describes the characteristics of a performance
118 * counter event. In particular it gives the encoding as well as
119 * a mask telling which counters the event can be measured on.
120 *
121 * The mask is unused on SPARC-T4 and later.
122 */
123 struct perf_event_map {
124 u16 encoding;
125 u8 pic_mask;
126 #define PIC_NONE 0x00
127 #define PIC_UPPER 0x01
128 #define PIC_LOWER 0x02
129 };
130
131 /* Encode a perf_event_map entry into a long. */
perf_event_encode(const struct perf_event_map * pmap)132 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
133 {
134 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
135 }
136
perf_event_get_msk(unsigned long val)137 static u8 perf_event_get_msk(unsigned long val)
138 {
139 return val & 0xff;
140 }
141
perf_event_get_enc(unsigned long val)142 static u64 perf_event_get_enc(unsigned long val)
143 {
144 return val >> 16;
145 }
146
147 #define C(x) PERF_COUNT_HW_CACHE_##x
148
149 #define CACHE_OP_UNSUPPORTED 0xfffe
150 #define CACHE_OP_NONSENSE 0xffff
151
152 typedef struct perf_event_map cache_map_t
153 [PERF_COUNT_HW_CACHE_MAX]
154 [PERF_COUNT_HW_CACHE_OP_MAX]
155 [PERF_COUNT_HW_CACHE_RESULT_MAX];
156
157 struct sparc_pmu {
158 const struct perf_event_map *(*event_map)(int);
159 const cache_map_t *cache_map;
160 int max_events;
161 u32 (*read_pmc)(int);
162 void (*write_pmc)(int, u64);
163 int upper_shift;
164 int lower_shift;
165 int event_mask;
166 int user_bit;
167 int priv_bit;
168 int hv_bit;
169 int irq_bit;
170 int upper_nop;
171 int lower_nop;
172 unsigned int flags;
173 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
174 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
175 int max_hw_events;
176 int num_pcrs;
177 int num_pic_regs;
178 };
179
sparc_default_read_pmc(int idx)180 static u32 sparc_default_read_pmc(int idx)
181 {
182 u64 val;
183
184 val = pcr_ops->read_pic(0);
185 if (idx == PIC_UPPER_INDEX)
186 val >>= 32;
187
188 return val & 0xffffffff;
189 }
190
sparc_default_write_pmc(int idx,u64 val)191 static void sparc_default_write_pmc(int idx, u64 val)
192 {
193 u64 shift, mask, pic;
194
195 shift = 0;
196 if (idx == PIC_UPPER_INDEX)
197 shift = 32;
198
199 mask = ((u64) 0xffffffff) << shift;
200 val <<= shift;
201
202 pic = pcr_ops->read_pic(0);
203 pic &= ~mask;
204 pic |= val;
205 pcr_ops->write_pic(0, pic);
206 }
207
208 static const struct perf_event_map ultra3_perfmon_event_map[] = {
209 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
210 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
211 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
212 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
213 };
214
ultra3_event_map(int event_id)215 static const struct perf_event_map *ultra3_event_map(int event_id)
216 {
217 return &ultra3_perfmon_event_map[event_id];
218 }
219
220 static const cache_map_t ultra3_cache_map = {
221 [C(L1D)] = {
222 [C(OP_READ)] = {
223 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
224 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
225 },
226 [C(OP_WRITE)] = {
227 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
228 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
229 },
230 [C(OP_PREFETCH)] = {
231 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
232 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
233 },
234 },
235 [C(L1I)] = {
236 [C(OP_READ)] = {
237 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
238 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
239 },
240 [ C(OP_WRITE) ] = {
241 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
242 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
243 },
244 [ C(OP_PREFETCH) ] = {
245 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
247 },
248 },
249 [C(LL)] = {
250 [C(OP_READ)] = {
251 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
252 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
253 },
254 [C(OP_WRITE)] = {
255 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
256 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
257 },
258 [C(OP_PREFETCH)] = {
259 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
260 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
261 },
262 },
263 [C(DTLB)] = {
264 [C(OP_READ)] = {
265 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
266 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
267 },
268 [ C(OP_WRITE) ] = {
269 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
270 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
271 },
272 [ C(OP_PREFETCH) ] = {
273 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
274 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
275 },
276 },
277 [C(ITLB)] = {
278 [C(OP_READ)] = {
279 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
280 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
281 },
282 [ C(OP_WRITE) ] = {
283 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
284 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
285 },
286 [ C(OP_PREFETCH) ] = {
287 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
288 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
289 },
290 },
291 [C(BPU)] = {
292 [C(OP_READ)] = {
293 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
294 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
295 },
296 [ C(OP_WRITE) ] = {
297 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
298 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
299 },
300 [ C(OP_PREFETCH) ] = {
301 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
302 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
303 },
304 },
305 [C(NODE)] = {
306 [C(OP_READ)] = {
307 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
308 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
309 },
310 [ C(OP_WRITE) ] = {
311 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
312 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
313 },
314 [ C(OP_PREFETCH) ] = {
315 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
316 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
317 },
318 },
319 };
320
321 static const struct sparc_pmu ultra3_pmu = {
322 .event_map = ultra3_event_map,
323 .cache_map = &ultra3_cache_map,
324 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
325 .read_pmc = sparc_default_read_pmc,
326 .write_pmc = sparc_default_write_pmc,
327 .upper_shift = 11,
328 .lower_shift = 4,
329 .event_mask = 0x3f,
330 .user_bit = PCR_UTRACE,
331 .priv_bit = PCR_STRACE,
332 .upper_nop = 0x1c,
333 .lower_nop = 0x14,
334 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
335 SPARC_PMU_HAS_CONFLICTS),
336 .max_hw_events = 2,
337 .num_pcrs = 1,
338 .num_pic_regs = 1,
339 };
340
341 /* Niagara1 is very limited. The upper PIC is hard-locked to count
342 * only instructions, so it is free running which creates all kinds of
343 * problems. Some hardware designs make one wonder if the creator
344 * even looked at how this stuff gets used by software.
345 */
346 static const struct perf_event_map niagara1_perfmon_event_map[] = {
347 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
348 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
349 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
350 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
351 };
352
niagara1_event_map(int event_id)353 static const struct perf_event_map *niagara1_event_map(int event_id)
354 {
355 return &niagara1_perfmon_event_map[event_id];
356 }
357
358 static const cache_map_t niagara1_cache_map = {
359 [C(L1D)] = {
360 [C(OP_READ)] = {
361 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
362 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
363 },
364 [C(OP_WRITE)] = {
365 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
366 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
367 },
368 [C(OP_PREFETCH)] = {
369 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
370 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
371 },
372 },
373 [C(L1I)] = {
374 [C(OP_READ)] = {
375 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
376 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
377 },
378 [ C(OP_WRITE) ] = {
379 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
380 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
381 },
382 [ C(OP_PREFETCH) ] = {
383 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
384 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
385 },
386 },
387 [C(LL)] = {
388 [C(OP_READ)] = {
389 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
390 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
391 },
392 [C(OP_WRITE)] = {
393 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
394 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
395 },
396 [C(OP_PREFETCH)] = {
397 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
398 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
399 },
400 },
401 [C(DTLB)] = {
402 [C(OP_READ)] = {
403 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
404 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
405 },
406 [ C(OP_WRITE) ] = {
407 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
408 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
409 },
410 [ C(OP_PREFETCH) ] = {
411 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
412 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
413 },
414 },
415 [C(ITLB)] = {
416 [C(OP_READ)] = {
417 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
418 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
419 },
420 [ C(OP_WRITE) ] = {
421 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
422 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
423 },
424 [ C(OP_PREFETCH) ] = {
425 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
426 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
427 },
428 },
429 [C(BPU)] = {
430 [C(OP_READ)] = {
431 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
432 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
433 },
434 [ C(OP_WRITE) ] = {
435 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
436 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
437 },
438 [ C(OP_PREFETCH) ] = {
439 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
440 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
441 },
442 },
443 [C(NODE)] = {
444 [C(OP_READ)] = {
445 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
446 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
447 },
448 [ C(OP_WRITE) ] = {
449 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
450 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
451 },
452 [ C(OP_PREFETCH) ] = {
453 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
454 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
455 },
456 },
457 };
458
459 static const struct sparc_pmu niagara1_pmu = {
460 .event_map = niagara1_event_map,
461 .cache_map = &niagara1_cache_map,
462 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
463 .read_pmc = sparc_default_read_pmc,
464 .write_pmc = sparc_default_write_pmc,
465 .upper_shift = 0,
466 .lower_shift = 4,
467 .event_mask = 0x7,
468 .user_bit = PCR_UTRACE,
469 .priv_bit = PCR_STRACE,
470 .upper_nop = 0x0,
471 .lower_nop = 0x0,
472 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
473 SPARC_PMU_HAS_CONFLICTS),
474 .max_hw_events = 2,
475 .num_pcrs = 1,
476 .num_pic_regs = 1,
477 };
478
479 static const struct perf_event_map niagara2_perfmon_event_map[] = {
480 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
481 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
482 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
483 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
484 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
485 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
486 };
487
niagara2_event_map(int event_id)488 static const struct perf_event_map *niagara2_event_map(int event_id)
489 {
490 return &niagara2_perfmon_event_map[event_id];
491 }
492
493 static const cache_map_t niagara2_cache_map = {
494 [C(L1D)] = {
495 [C(OP_READ)] = {
496 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
497 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
498 },
499 [C(OP_WRITE)] = {
500 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
501 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
502 },
503 [C(OP_PREFETCH)] = {
504 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
505 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
506 },
507 },
508 [C(L1I)] = {
509 [C(OP_READ)] = {
510 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
511 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
512 },
513 [ C(OP_WRITE) ] = {
514 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
515 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
516 },
517 [ C(OP_PREFETCH) ] = {
518 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
519 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
520 },
521 },
522 [C(LL)] = {
523 [C(OP_READ)] = {
524 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
525 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
526 },
527 [C(OP_WRITE)] = {
528 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
529 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
530 },
531 [C(OP_PREFETCH)] = {
532 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
533 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
534 },
535 },
536 [C(DTLB)] = {
537 [C(OP_READ)] = {
538 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
539 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
540 },
541 [ C(OP_WRITE) ] = {
542 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
543 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
544 },
545 [ C(OP_PREFETCH) ] = {
546 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
547 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
548 },
549 },
550 [C(ITLB)] = {
551 [C(OP_READ)] = {
552 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
553 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
554 },
555 [ C(OP_WRITE) ] = {
556 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
557 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
558 },
559 [ C(OP_PREFETCH) ] = {
560 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
561 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
562 },
563 },
564 [C(BPU)] = {
565 [C(OP_READ)] = {
566 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
567 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
568 },
569 [ C(OP_WRITE) ] = {
570 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
571 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
572 },
573 [ C(OP_PREFETCH) ] = {
574 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
575 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
576 },
577 },
578 [C(NODE)] = {
579 [C(OP_READ)] = {
580 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
581 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
582 },
583 [ C(OP_WRITE) ] = {
584 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
585 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
586 },
587 [ C(OP_PREFETCH) ] = {
588 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
589 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
590 },
591 },
592 };
593
594 static const struct sparc_pmu niagara2_pmu = {
595 .event_map = niagara2_event_map,
596 .cache_map = &niagara2_cache_map,
597 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
598 .read_pmc = sparc_default_read_pmc,
599 .write_pmc = sparc_default_write_pmc,
600 .upper_shift = 19,
601 .lower_shift = 6,
602 .event_mask = 0xfff,
603 .user_bit = PCR_UTRACE,
604 .priv_bit = PCR_STRACE,
605 .hv_bit = PCR_N2_HTRACE,
606 .irq_bit = 0x30,
607 .upper_nop = 0x220,
608 .lower_nop = 0x220,
609 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
610 SPARC_PMU_HAS_CONFLICTS),
611 .max_hw_events = 2,
612 .num_pcrs = 1,
613 .num_pic_regs = 1,
614 };
615
616 static const struct perf_event_map niagara4_perfmon_event_map[] = {
617 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
618 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
619 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
620 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
621 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
622 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
623 };
624
niagara4_event_map(int event_id)625 static const struct perf_event_map *niagara4_event_map(int event_id)
626 {
627 return &niagara4_perfmon_event_map[event_id];
628 }
629
630 static const cache_map_t niagara4_cache_map = {
631 [C(L1D)] = {
632 [C(OP_READ)] = {
633 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
634 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
635 },
636 [C(OP_WRITE)] = {
637 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
638 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
639 },
640 [C(OP_PREFETCH)] = {
641 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
642 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
643 },
644 },
645 [C(L1I)] = {
646 [C(OP_READ)] = {
647 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
648 [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
649 },
650 [ C(OP_WRITE) ] = {
651 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
652 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
653 },
654 [ C(OP_PREFETCH) ] = {
655 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
656 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
657 },
658 },
659 [C(LL)] = {
660 [C(OP_READ)] = {
661 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
662 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
663 },
664 [C(OP_WRITE)] = {
665 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
666 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
667 },
668 [C(OP_PREFETCH)] = {
669 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
670 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
671 },
672 },
673 [C(DTLB)] = {
674 [C(OP_READ)] = {
675 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
676 [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
677 },
678 [ C(OP_WRITE) ] = {
679 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
680 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
681 },
682 [ C(OP_PREFETCH) ] = {
683 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
684 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
685 },
686 },
687 [C(ITLB)] = {
688 [C(OP_READ)] = {
689 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
690 [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
691 },
692 [ C(OP_WRITE) ] = {
693 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
694 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
695 },
696 [ C(OP_PREFETCH) ] = {
697 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
698 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
699 },
700 },
701 [C(BPU)] = {
702 [C(OP_READ)] = {
703 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
704 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
705 },
706 [ C(OP_WRITE) ] = {
707 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
708 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
709 },
710 [ C(OP_PREFETCH) ] = {
711 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
712 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
713 },
714 },
715 [C(NODE)] = {
716 [C(OP_READ)] = {
717 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
718 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
719 },
720 [ C(OP_WRITE) ] = {
721 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
722 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
723 },
724 [ C(OP_PREFETCH) ] = {
725 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
726 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
727 },
728 },
729 };
730
sparc_vt_read_pmc(int idx)731 static u32 sparc_vt_read_pmc(int idx)
732 {
733 u64 val = pcr_ops->read_pic(idx);
734
735 return val & 0xffffffff;
736 }
737
sparc_vt_write_pmc(int idx,u64 val)738 static void sparc_vt_write_pmc(int idx, u64 val)
739 {
740 u64 pcr;
741
742 pcr = pcr_ops->read_pcr(idx);
743 /* ensure ov and ntc are reset */
744 pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
745
746 pcr_ops->write_pic(idx, val & 0xffffffff);
747
748 pcr_ops->write_pcr(idx, pcr);
749 }
750
751 static const struct sparc_pmu niagara4_pmu = {
752 .event_map = niagara4_event_map,
753 .cache_map = &niagara4_cache_map,
754 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
755 .read_pmc = sparc_vt_read_pmc,
756 .write_pmc = sparc_vt_write_pmc,
757 .upper_shift = 5,
758 .lower_shift = 5,
759 .event_mask = 0x7ff,
760 .user_bit = PCR_N4_UTRACE,
761 .priv_bit = PCR_N4_STRACE,
762
763 /* We explicitly don't support hypervisor tracing. The T4
764 * generates the overflow event for precise events via a trap
765 * which will not be generated (ie. it's completely lost) if
766 * we happen to be in the hypervisor when the event triggers.
767 * Essentially, the overflow event reporting is completely
768 * unusable when you have hypervisor mode tracing enabled.
769 */
770 .hv_bit = 0,
771
772 .irq_bit = PCR_N4_TOE,
773 .upper_nop = 0,
774 .lower_nop = 0,
775 .flags = 0,
776 .max_hw_events = 4,
777 .num_pcrs = 4,
778 .num_pic_regs = 4,
779 };
780
781 static const struct sparc_pmu sparc_m7_pmu = {
782 .event_map = niagara4_event_map,
783 .cache_map = &niagara4_cache_map,
784 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
785 .read_pmc = sparc_vt_read_pmc,
786 .write_pmc = sparc_vt_write_pmc,
787 .upper_shift = 5,
788 .lower_shift = 5,
789 .event_mask = 0x7ff,
790 .user_bit = PCR_N4_UTRACE,
791 .priv_bit = PCR_N4_STRACE,
792
793 /* We explicitly don't support hypervisor tracing. */
794 .hv_bit = 0,
795
796 .irq_bit = PCR_N4_TOE,
797 .upper_nop = 0,
798 .lower_nop = 0,
799 .flags = 0,
800 .max_hw_events = 4,
801 .num_pcrs = 4,
802 .num_pic_regs = 4,
803 };
804 static const struct sparc_pmu *sparc_pmu __read_mostly;
805
event_encoding(u64 event_id,int idx)806 static u64 event_encoding(u64 event_id, int idx)
807 {
808 if (idx == PIC_UPPER_INDEX)
809 event_id <<= sparc_pmu->upper_shift;
810 else
811 event_id <<= sparc_pmu->lower_shift;
812 return event_id;
813 }
814
mask_for_index(int idx)815 static u64 mask_for_index(int idx)
816 {
817 return event_encoding(sparc_pmu->event_mask, idx);
818 }
819
nop_for_index(int idx)820 static u64 nop_for_index(int idx)
821 {
822 return event_encoding(idx == PIC_UPPER_INDEX ?
823 sparc_pmu->upper_nop :
824 sparc_pmu->lower_nop, idx);
825 }
826
sparc_pmu_enable_event(struct cpu_hw_events * cpuc,struct hw_perf_event * hwc,int idx)827 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
828 {
829 u64 enc, val, mask = mask_for_index(idx);
830 int pcr_index = 0;
831
832 if (sparc_pmu->num_pcrs > 1)
833 pcr_index = idx;
834
835 enc = perf_event_get_enc(cpuc->events[idx]);
836
837 val = cpuc->pcr[pcr_index];
838 val &= ~mask;
839 val |= event_encoding(enc, idx);
840 cpuc->pcr[pcr_index] = val;
841
842 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
843 }
844
sparc_pmu_disable_event(struct cpu_hw_events * cpuc,struct hw_perf_event * hwc,int idx)845 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
846 {
847 u64 mask = mask_for_index(idx);
848 u64 nop = nop_for_index(idx);
849 int pcr_index = 0;
850 u64 val;
851
852 if (sparc_pmu->num_pcrs > 1)
853 pcr_index = idx;
854
855 val = cpuc->pcr[pcr_index];
856 val &= ~mask;
857 val |= nop;
858 cpuc->pcr[pcr_index] = val;
859
860 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
861 }
862
sparc_perf_event_update(struct perf_event * event,struct hw_perf_event * hwc,int idx)863 static u64 sparc_perf_event_update(struct perf_event *event,
864 struct hw_perf_event *hwc, int idx)
865 {
866 int shift = 64 - 32;
867 u64 prev_raw_count, new_raw_count;
868 s64 delta;
869
870 again:
871 prev_raw_count = local64_read(&hwc->prev_count);
872 new_raw_count = sparc_pmu->read_pmc(idx);
873
874 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
875 new_raw_count) != prev_raw_count)
876 goto again;
877
878 delta = (new_raw_count << shift) - (prev_raw_count << shift);
879 delta >>= shift;
880
881 local64_add(delta, &event->count);
882 local64_sub(delta, &hwc->period_left);
883
884 return new_raw_count;
885 }
886
sparc_perf_event_set_period(struct perf_event * event,struct hw_perf_event * hwc,int idx)887 static int sparc_perf_event_set_period(struct perf_event *event,
888 struct hw_perf_event *hwc, int idx)
889 {
890 s64 left = local64_read(&hwc->period_left);
891 s64 period = hwc->sample_period;
892 int ret = 0;
893
894 /* The period may have been changed by PERF_EVENT_IOC_PERIOD */
895 if (unlikely(period != hwc->last_period))
896 left = period - (hwc->last_period - left);
897
898 if (unlikely(left <= -period)) {
899 left = period;
900 local64_set(&hwc->period_left, left);
901 hwc->last_period = period;
902 ret = 1;
903 }
904
905 if (unlikely(left <= 0)) {
906 left += period;
907 local64_set(&hwc->period_left, left);
908 hwc->last_period = period;
909 ret = 1;
910 }
911 if (left > MAX_PERIOD)
912 left = MAX_PERIOD;
913
914 local64_set(&hwc->prev_count, (u64)-left);
915
916 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
917
918 perf_event_update_userpage(event);
919
920 return ret;
921 }
922
read_in_all_counters(struct cpu_hw_events * cpuc)923 static void read_in_all_counters(struct cpu_hw_events *cpuc)
924 {
925 int i;
926
927 for (i = 0; i < cpuc->n_events; i++) {
928 struct perf_event *cp = cpuc->event[i];
929
930 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
931 cpuc->current_idx[i] != cp->hw.idx) {
932 sparc_perf_event_update(cp, &cp->hw,
933 cpuc->current_idx[i]);
934 cpuc->current_idx[i] = PIC_NO_INDEX;
935 if (cp->hw.state & PERF_HES_STOPPED)
936 cp->hw.state |= PERF_HES_ARCH;
937 }
938 }
939 }
940
941 /* On this PMU all PICs are programmed using a single PCR. Calculate
942 * the combined control register value.
943 *
944 * For such chips we require that all of the events have the same
945 * configuration, so just fetch the settings from the first entry.
946 */
calculate_single_pcr(struct cpu_hw_events * cpuc)947 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
948 {
949 int i;
950
951 if (!cpuc->n_added)
952 goto out;
953
954 /* Assign to counters all unassigned events. */
955 for (i = 0; i < cpuc->n_events; i++) {
956 struct perf_event *cp = cpuc->event[i];
957 struct hw_perf_event *hwc = &cp->hw;
958 int idx = hwc->idx;
959 u64 enc;
960
961 if (cpuc->current_idx[i] != PIC_NO_INDEX)
962 continue;
963
964 sparc_perf_event_set_period(cp, hwc, idx);
965 cpuc->current_idx[i] = idx;
966
967 enc = perf_event_get_enc(cpuc->events[i]);
968 cpuc->pcr[0] &= ~mask_for_index(idx);
969 if (hwc->state & PERF_HES_ARCH) {
970 cpuc->pcr[0] |= nop_for_index(idx);
971 } else {
972 cpuc->pcr[0] |= event_encoding(enc, idx);
973 hwc->state = 0;
974 }
975 }
976 out:
977 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
978 }
979
980 static void sparc_pmu_start(struct perf_event *event, int flags);
981
982 /* On this PMU each PIC has it's own PCR control register. */
calculate_multiple_pcrs(struct cpu_hw_events * cpuc)983 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
984 {
985 int i;
986
987 if (!cpuc->n_added)
988 goto out;
989
990 for (i = 0; i < cpuc->n_events; i++) {
991 struct perf_event *cp = cpuc->event[i];
992 struct hw_perf_event *hwc = &cp->hw;
993 int idx = hwc->idx;
994
995 if (cpuc->current_idx[i] != PIC_NO_INDEX)
996 continue;
997
998 cpuc->current_idx[i] = idx;
999
1000 if (cp->hw.state & PERF_HES_ARCH)
1001 continue;
1002
1003 sparc_pmu_start(cp, PERF_EF_RELOAD);
1004 }
1005 out:
1006 for (i = 0; i < cpuc->n_events; i++) {
1007 struct perf_event *cp = cpuc->event[i];
1008 int idx = cp->hw.idx;
1009
1010 cpuc->pcr[idx] |= cp->hw.config_base;
1011 }
1012 }
1013
1014 /* If performance event entries have been added, move existing events
1015 * around (if necessary) and then assign new entries to counters.
1016 */
update_pcrs_for_enable(struct cpu_hw_events * cpuc)1017 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1018 {
1019 if (cpuc->n_added)
1020 read_in_all_counters(cpuc);
1021
1022 if (sparc_pmu->num_pcrs == 1) {
1023 calculate_single_pcr(cpuc);
1024 } else {
1025 calculate_multiple_pcrs(cpuc);
1026 }
1027 }
1028
sparc_pmu_enable(struct pmu * pmu)1029 static void sparc_pmu_enable(struct pmu *pmu)
1030 {
1031 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1032 int i;
1033
1034 if (cpuc->enabled)
1035 return;
1036
1037 cpuc->enabled = 1;
1038 barrier();
1039
1040 if (cpuc->n_events)
1041 update_pcrs_for_enable(cpuc);
1042
1043 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1044 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1045 }
1046
sparc_pmu_disable(struct pmu * pmu)1047 static void sparc_pmu_disable(struct pmu *pmu)
1048 {
1049 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1050 int i;
1051
1052 if (!cpuc->enabled)
1053 return;
1054
1055 cpuc->enabled = 0;
1056 cpuc->n_added = 0;
1057
1058 for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1059 u64 val = cpuc->pcr[i];
1060
1061 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1062 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1063 cpuc->pcr[i] = val;
1064 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1065 }
1066 }
1067
active_event_index(struct cpu_hw_events * cpuc,struct perf_event * event)1068 static int active_event_index(struct cpu_hw_events *cpuc,
1069 struct perf_event *event)
1070 {
1071 int i;
1072
1073 for (i = 0; i < cpuc->n_events; i++) {
1074 if (cpuc->event[i] == event)
1075 break;
1076 }
1077 BUG_ON(i == cpuc->n_events);
1078 return cpuc->current_idx[i];
1079 }
1080
sparc_pmu_start(struct perf_event * event,int flags)1081 static void sparc_pmu_start(struct perf_event *event, int flags)
1082 {
1083 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1084 int idx = active_event_index(cpuc, event);
1085
1086 if (flags & PERF_EF_RELOAD) {
1087 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1088 sparc_perf_event_set_period(event, &event->hw, idx);
1089 }
1090
1091 event->hw.state = 0;
1092
1093 sparc_pmu_enable_event(cpuc, &event->hw, idx);
1094
1095 perf_event_update_userpage(event);
1096 }
1097
sparc_pmu_stop(struct perf_event * event,int flags)1098 static void sparc_pmu_stop(struct perf_event *event, int flags)
1099 {
1100 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1101 int idx = active_event_index(cpuc, event);
1102
1103 if (!(event->hw.state & PERF_HES_STOPPED)) {
1104 sparc_pmu_disable_event(cpuc, &event->hw, idx);
1105 event->hw.state |= PERF_HES_STOPPED;
1106 }
1107
1108 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1109 sparc_perf_event_update(event, &event->hw, idx);
1110 event->hw.state |= PERF_HES_UPTODATE;
1111 }
1112 }
1113
sparc_pmu_del(struct perf_event * event,int _flags)1114 static void sparc_pmu_del(struct perf_event *event, int _flags)
1115 {
1116 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1117 unsigned long flags;
1118 int i;
1119
1120 local_irq_save(flags);
1121
1122 for (i = 0; i < cpuc->n_events; i++) {
1123 if (event == cpuc->event[i]) {
1124 /* Absorb the final count and turn off the
1125 * event.
1126 */
1127 sparc_pmu_stop(event, PERF_EF_UPDATE);
1128
1129 /* Shift remaining entries down into
1130 * the existing slot.
1131 */
1132 while (++i < cpuc->n_events) {
1133 cpuc->event[i - 1] = cpuc->event[i];
1134 cpuc->events[i - 1] = cpuc->events[i];
1135 cpuc->current_idx[i - 1] =
1136 cpuc->current_idx[i];
1137 }
1138
1139 perf_event_update_userpage(event);
1140
1141 cpuc->n_events--;
1142 break;
1143 }
1144 }
1145
1146 local_irq_restore(flags);
1147 }
1148
sparc_pmu_read(struct perf_event * event)1149 static void sparc_pmu_read(struct perf_event *event)
1150 {
1151 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1152 int idx = active_event_index(cpuc, event);
1153 struct hw_perf_event *hwc = &event->hw;
1154
1155 sparc_perf_event_update(event, hwc, idx);
1156 }
1157
1158 static atomic_t active_events = ATOMIC_INIT(0);
1159 static DEFINE_MUTEX(pmc_grab_mutex);
1160
perf_stop_nmi_watchdog(void * unused)1161 static void perf_stop_nmi_watchdog(void *unused)
1162 {
1163 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1164 int i;
1165
1166 stop_nmi_watchdog(NULL);
1167 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1168 cpuc->pcr[i] = pcr_ops->read_pcr(i);
1169 }
1170
perf_event_grab_pmc(void)1171 static void perf_event_grab_pmc(void)
1172 {
1173 if (atomic_inc_not_zero(&active_events))
1174 return;
1175
1176 mutex_lock(&pmc_grab_mutex);
1177 if (atomic_read(&active_events) == 0) {
1178 if (atomic_read(&nmi_active) > 0) {
1179 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1180 BUG_ON(atomic_read(&nmi_active) != 0);
1181 }
1182 atomic_inc(&active_events);
1183 }
1184 mutex_unlock(&pmc_grab_mutex);
1185 }
1186
perf_event_release_pmc(void)1187 static void perf_event_release_pmc(void)
1188 {
1189 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1190 if (atomic_read(&nmi_active) == 0)
1191 on_each_cpu(start_nmi_watchdog, NULL, 1);
1192 mutex_unlock(&pmc_grab_mutex);
1193 }
1194 }
1195
sparc_map_cache_event(u64 config)1196 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1197 {
1198 unsigned int cache_type, cache_op, cache_result;
1199 const struct perf_event_map *pmap;
1200
1201 if (!sparc_pmu->cache_map)
1202 return ERR_PTR(-ENOENT);
1203
1204 cache_type = (config >> 0) & 0xff;
1205 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1206 return ERR_PTR(-EINVAL);
1207
1208 cache_op = (config >> 8) & 0xff;
1209 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1210 return ERR_PTR(-EINVAL);
1211
1212 cache_result = (config >> 16) & 0xff;
1213 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1214 return ERR_PTR(-EINVAL);
1215
1216 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1217
1218 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1219 return ERR_PTR(-ENOENT);
1220
1221 if (pmap->encoding == CACHE_OP_NONSENSE)
1222 return ERR_PTR(-EINVAL);
1223
1224 return pmap;
1225 }
1226
hw_perf_event_destroy(struct perf_event * event)1227 static void hw_perf_event_destroy(struct perf_event *event)
1228 {
1229 perf_event_release_pmc();
1230 }
1231
1232 /* Make sure all events can be scheduled into the hardware at
1233 * the same time. This is simplified by the fact that we only
1234 * need to support 2 simultaneous HW events.
1235 *
1236 * As a side effect, the evts[]->hw.idx values will be assigned
1237 * on success. These are pending indexes. When the events are
1238 * actually programmed into the chip, these values will propagate
1239 * to the per-cpu cpuc->current_idx[] slots, see the code in
1240 * maybe_change_configuration() for details.
1241 */
sparc_check_constraints(struct perf_event ** evts,unsigned long * events,int n_ev)1242 static int sparc_check_constraints(struct perf_event **evts,
1243 unsigned long *events, int n_ev)
1244 {
1245 u8 msk0 = 0, msk1 = 0;
1246 int idx0 = 0;
1247
1248 /* This case is possible when we are invoked from
1249 * hw_perf_group_sched_in().
1250 */
1251 if (!n_ev)
1252 return 0;
1253
1254 if (n_ev > sparc_pmu->max_hw_events)
1255 return -1;
1256
1257 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1258 int i;
1259
1260 for (i = 0; i < n_ev; i++)
1261 evts[i]->hw.idx = i;
1262 return 0;
1263 }
1264
1265 msk0 = perf_event_get_msk(events[0]);
1266 if (n_ev == 1) {
1267 if (msk0 & PIC_LOWER)
1268 idx0 = 1;
1269 goto success;
1270 }
1271 BUG_ON(n_ev != 2);
1272 msk1 = perf_event_get_msk(events[1]);
1273
1274 /* If both events can go on any counter, OK. */
1275 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1276 msk1 == (PIC_UPPER | PIC_LOWER))
1277 goto success;
1278
1279 /* If one event is limited to a specific counter,
1280 * and the other can go on both, OK.
1281 */
1282 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1283 msk1 == (PIC_UPPER | PIC_LOWER)) {
1284 if (msk0 & PIC_LOWER)
1285 idx0 = 1;
1286 goto success;
1287 }
1288
1289 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1290 msk0 == (PIC_UPPER | PIC_LOWER)) {
1291 if (msk1 & PIC_UPPER)
1292 idx0 = 1;
1293 goto success;
1294 }
1295
1296 /* If the events are fixed to different counters, OK. */
1297 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1298 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1299 if (msk0 & PIC_LOWER)
1300 idx0 = 1;
1301 goto success;
1302 }
1303
1304 /* Otherwise, there is a conflict. */
1305 return -1;
1306
1307 success:
1308 evts[0]->hw.idx = idx0;
1309 if (n_ev == 2)
1310 evts[1]->hw.idx = idx0 ^ 1;
1311 return 0;
1312 }
1313
check_excludes(struct perf_event ** evts,int n_prev,int n_new)1314 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1315 {
1316 int eu = 0, ek = 0, eh = 0;
1317 struct perf_event *event;
1318 int i, n, first;
1319
1320 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1321 return 0;
1322
1323 n = n_prev + n_new;
1324 if (n <= 1)
1325 return 0;
1326
1327 first = 1;
1328 for (i = 0; i < n; i++) {
1329 event = evts[i];
1330 if (first) {
1331 eu = event->attr.exclude_user;
1332 ek = event->attr.exclude_kernel;
1333 eh = event->attr.exclude_hv;
1334 first = 0;
1335 } else if (event->attr.exclude_user != eu ||
1336 event->attr.exclude_kernel != ek ||
1337 event->attr.exclude_hv != eh) {
1338 return -EAGAIN;
1339 }
1340 }
1341
1342 return 0;
1343 }
1344
collect_events(struct perf_event * group,int max_count,struct perf_event * evts[],unsigned long * events,int * current_idx)1345 static int collect_events(struct perf_event *group, int max_count,
1346 struct perf_event *evts[], unsigned long *events,
1347 int *current_idx)
1348 {
1349 struct perf_event *event;
1350 int n = 0;
1351
1352 if (!is_software_event(group)) {
1353 if (n >= max_count)
1354 return -1;
1355 evts[n] = group;
1356 events[n] = group->hw.event_base;
1357 current_idx[n++] = PIC_NO_INDEX;
1358 }
1359 for_each_sibling_event(event, group) {
1360 if (!is_software_event(event) &&
1361 event->state != PERF_EVENT_STATE_OFF) {
1362 if (n >= max_count)
1363 return -1;
1364 evts[n] = event;
1365 events[n] = event->hw.event_base;
1366 current_idx[n++] = PIC_NO_INDEX;
1367 }
1368 }
1369 return n;
1370 }
1371
sparc_pmu_add(struct perf_event * event,int ef_flags)1372 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1373 {
1374 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1375 int n0, ret = -EAGAIN;
1376 unsigned long flags;
1377
1378 local_irq_save(flags);
1379
1380 n0 = cpuc->n_events;
1381 if (n0 >= sparc_pmu->max_hw_events)
1382 goto out;
1383
1384 cpuc->event[n0] = event;
1385 cpuc->events[n0] = event->hw.event_base;
1386 cpuc->current_idx[n0] = PIC_NO_INDEX;
1387
1388 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1389 if (!(ef_flags & PERF_EF_START))
1390 event->hw.state |= PERF_HES_ARCH;
1391
1392 /*
1393 * If group events scheduling transaction was started,
1394 * skip the schedulability test here, it will be performed
1395 * at commit time(->commit_txn) as a whole
1396 */
1397 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1398 goto nocheck;
1399
1400 if (check_excludes(cpuc->event, n0, 1))
1401 goto out;
1402 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1403 goto out;
1404
1405 nocheck:
1406 cpuc->n_events++;
1407 cpuc->n_added++;
1408
1409 ret = 0;
1410 out:
1411 local_irq_restore(flags);
1412 return ret;
1413 }
1414
sparc_pmu_event_init(struct perf_event * event)1415 static int sparc_pmu_event_init(struct perf_event *event)
1416 {
1417 struct perf_event_attr *attr = &event->attr;
1418 struct perf_event *evts[MAX_HWEVENTS];
1419 struct hw_perf_event *hwc = &event->hw;
1420 unsigned long events[MAX_HWEVENTS];
1421 int current_idx_dmy[MAX_HWEVENTS];
1422 const struct perf_event_map *pmap;
1423 int n;
1424
1425 if (atomic_read(&nmi_active) < 0)
1426 return -ENODEV;
1427
1428 /* does not support taken branch sampling */
1429 if (has_branch_stack(event))
1430 return -EOPNOTSUPP;
1431
1432 switch (attr->type) {
1433 case PERF_TYPE_HARDWARE:
1434 if (attr->config >= sparc_pmu->max_events)
1435 return -EINVAL;
1436 pmap = sparc_pmu->event_map(attr->config);
1437 break;
1438
1439 case PERF_TYPE_HW_CACHE:
1440 pmap = sparc_map_cache_event(attr->config);
1441 if (IS_ERR(pmap))
1442 return PTR_ERR(pmap);
1443 break;
1444
1445 case PERF_TYPE_RAW:
1446 pmap = NULL;
1447 break;
1448
1449 default:
1450 return -ENOENT;
1451
1452 }
1453
1454 if (pmap) {
1455 hwc->event_base = perf_event_encode(pmap);
1456 } else {
1457 /*
1458 * User gives us "(encoding << 16) | pic_mask" for
1459 * PERF_TYPE_RAW events.
1460 */
1461 hwc->event_base = attr->config;
1462 }
1463
1464 /* We save the enable bits in the config_base. */
1465 hwc->config_base = sparc_pmu->irq_bit;
1466 if (!attr->exclude_user)
1467 hwc->config_base |= sparc_pmu->user_bit;
1468 if (!attr->exclude_kernel)
1469 hwc->config_base |= sparc_pmu->priv_bit;
1470 if (!attr->exclude_hv)
1471 hwc->config_base |= sparc_pmu->hv_bit;
1472
1473 n = 0;
1474 if (event->group_leader != event) {
1475 n = collect_events(event->group_leader,
1476 sparc_pmu->max_hw_events - 1,
1477 evts, events, current_idx_dmy);
1478 if (n < 0)
1479 return -EINVAL;
1480 }
1481 events[n] = hwc->event_base;
1482 evts[n] = event;
1483
1484 if (check_excludes(evts, n, 1))
1485 return -EINVAL;
1486
1487 if (sparc_check_constraints(evts, events, n + 1))
1488 return -EINVAL;
1489
1490 hwc->idx = PIC_NO_INDEX;
1491
1492 /* Try to do all error checking before this point, as unwinding
1493 * state after grabbing the PMC is difficult.
1494 */
1495 perf_event_grab_pmc();
1496 event->destroy = hw_perf_event_destroy;
1497
1498 if (!hwc->sample_period) {
1499 hwc->sample_period = MAX_PERIOD;
1500 hwc->last_period = hwc->sample_period;
1501 local64_set(&hwc->period_left, hwc->sample_period);
1502 }
1503
1504 return 0;
1505 }
1506
1507 /*
1508 * Start group events scheduling transaction
1509 * Set the flag to make pmu::enable() not perform the
1510 * schedulability test, it will be performed at commit time
1511 */
sparc_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1512 static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1513 {
1514 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1515
1516 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1517
1518 cpuhw->txn_flags = txn_flags;
1519 if (txn_flags & ~PERF_PMU_TXN_ADD)
1520 return;
1521
1522 perf_pmu_disable(pmu);
1523 }
1524
1525 /*
1526 * Stop group events scheduling transaction
1527 * Clear the flag and pmu::enable() will perform the
1528 * schedulability test.
1529 */
sparc_pmu_cancel_txn(struct pmu * pmu)1530 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1531 {
1532 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1533 unsigned int txn_flags;
1534
1535 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1536
1537 txn_flags = cpuhw->txn_flags;
1538 cpuhw->txn_flags = 0;
1539 if (txn_flags & ~PERF_PMU_TXN_ADD)
1540 return;
1541
1542 perf_pmu_enable(pmu);
1543 }
1544
1545 /*
1546 * Commit group events scheduling transaction
1547 * Perform the group schedulability test as a whole
1548 * Return 0 if success
1549 */
sparc_pmu_commit_txn(struct pmu * pmu)1550 static int sparc_pmu_commit_txn(struct pmu *pmu)
1551 {
1552 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1553 int n;
1554
1555 if (!sparc_pmu)
1556 return -EINVAL;
1557
1558 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1559
1560 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1561 cpuc->txn_flags = 0;
1562 return 0;
1563 }
1564
1565 n = cpuc->n_events;
1566 if (check_excludes(cpuc->event, 0, n))
1567 return -EINVAL;
1568 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1569 return -EAGAIN;
1570
1571 cpuc->txn_flags = 0;
1572 perf_pmu_enable(pmu);
1573 return 0;
1574 }
1575
1576 static struct pmu pmu = {
1577 .pmu_enable = sparc_pmu_enable,
1578 .pmu_disable = sparc_pmu_disable,
1579 .event_init = sparc_pmu_event_init,
1580 .add = sparc_pmu_add,
1581 .del = sparc_pmu_del,
1582 .start = sparc_pmu_start,
1583 .stop = sparc_pmu_stop,
1584 .read = sparc_pmu_read,
1585 .start_txn = sparc_pmu_start_txn,
1586 .cancel_txn = sparc_pmu_cancel_txn,
1587 .commit_txn = sparc_pmu_commit_txn,
1588 };
1589
perf_event_print_debug(void)1590 void perf_event_print_debug(void)
1591 {
1592 unsigned long flags;
1593 int cpu, i;
1594
1595 if (!sparc_pmu)
1596 return;
1597
1598 local_irq_save(flags);
1599
1600 cpu = smp_processor_id();
1601
1602 pr_info("\n");
1603 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1604 pr_info("CPU#%d: PCR%d[%016llx]\n",
1605 cpu, i, pcr_ops->read_pcr(i));
1606 for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1607 pr_info("CPU#%d: PIC%d[%016llx]\n",
1608 cpu, i, pcr_ops->read_pic(i));
1609
1610 local_irq_restore(flags);
1611 }
1612
perf_event_nmi_handler(struct notifier_block * self,unsigned long cmd,void * __args)1613 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1614 unsigned long cmd, void *__args)
1615 {
1616 struct die_args *args = __args;
1617 struct perf_sample_data data;
1618 struct cpu_hw_events *cpuc;
1619 struct pt_regs *regs;
1620 u64 finish_clock;
1621 u64 start_clock;
1622 int i;
1623
1624 if (!atomic_read(&active_events))
1625 return NOTIFY_DONE;
1626
1627 switch (cmd) {
1628 case DIE_NMI:
1629 break;
1630
1631 default:
1632 return NOTIFY_DONE;
1633 }
1634
1635 start_clock = sched_clock();
1636
1637 regs = args->regs;
1638
1639 cpuc = this_cpu_ptr(&cpu_hw_events);
1640
1641 /* If the PMU has the TOE IRQ enable bits, we need to do a
1642 * dummy write to the %pcr to clear the overflow bits and thus
1643 * the interrupt.
1644 *
1645 * Do this before we peek at the counters to determine
1646 * overflow so we don't lose any events.
1647 */
1648 if (sparc_pmu->irq_bit &&
1649 sparc_pmu->num_pcrs == 1)
1650 pcr_ops->write_pcr(0, cpuc->pcr[0]);
1651
1652 for (i = 0; i < cpuc->n_events; i++) {
1653 struct perf_event *event = cpuc->event[i];
1654 int idx = cpuc->current_idx[i];
1655 struct hw_perf_event *hwc;
1656 u64 val;
1657
1658 if (sparc_pmu->irq_bit &&
1659 sparc_pmu->num_pcrs > 1)
1660 pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1661
1662 hwc = &event->hw;
1663 val = sparc_perf_event_update(event, hwc, idx);
1664 if (val & (1ULL << 31))
1665 continue;
1666
1667 perf_sample_data_init(&data, 0, hwc->last_period);
1668 if (!sparc_perf_event_set_period(event, hwc, idx))
1669 continue;
1670
1671 if (perf_event_overflow(event, &data, regs))
1672 sparc_pmu_stop(event, 0);
1673 }
1674
1675 finish_clock = sched_clock();
1676
1677 perf_sample_event_took(finish_clock - start_clock);
1678
1679 return NOTIFY_STOP;
1680 }
1681
1682 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1683 .notifier_call = perf_event_nmi_handler,
1684 };
1685
supported_pmu(void)1686 static bool __init supported_pmu(void)
1687 {
1688 if (!strcmp(sparc_pmu_type, "ultra3") ||
1689 !strcmp(sparc_pmu_type, "ultra3+") ||
1690 !strcmp(sparc_pmu_type, "ultra3i") ||
1691 !strcmp(sparc_pmu_type, "ultra4+")) {
1692 sparc_pmu = &ultra3_pmu;
1693 return true;
1694 }
1695 if (!strcmp(sparc_pmu_type, "niagara")) {
1696 sparc_pmu = &niagara1_pmu;
1697 return true;
1698 }
1699 if (!strcmp(sparc_pmu_type, "niagara2") ||
1700 !strcmp(sparc_pmu_type, "niagara3")) {
1701 sparc_pmu = &niagara2_pmu;
1702 return true;
1703 }
1704 if (!strcmp(sparc_pmu_type, "niagara4") ||
1705 !strcmp(sparc_pmu_type, "niagara5")) {
1706 sparc_pmu = &niagara4_pmu;
1707 return true;
1708 }
1709 if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1710 sparc_pmu = &sparc_m7_pmu;
1711 return true;
1712 }
1713 return false;
1714 }
1715
init_hw_perf_events(void)1716 static int __init init_hw_perf_events(void)
1717 {
1718 int err;
1719
1720 pr_info("Performance events: ");
1721
1722 err = pcr_arch_init();
1723 if (err || !supported_pmu()) {
1724 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1725 return 0;
1726 }
1727
1728 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1729
1730 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1731 register_die_notifier(&perf_event_nmi_notifier);
1732
1733 return 0;
1734 }
1735 pure_initcall(init_hw_perf_events);
1736
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)1737 void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1738 struct pt_regs *regs)
1739 {
1740 unsigned long ksp, fp;
1741 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1742 int graph = 0;
1743 #endif
1744
1745 stack_trace_flush();
1746
1747 perf_callchain_store(entry, regs->tpc);
1748
1749 ksp = regs->u_regs[UREG_I6];
1750 fp = ksp + STACK_BIAS;
1751 do {
1752 struct sparc_stackf *sf;
1753 struct pt_regs *regs;
1754 unsigned long pc;
1755
1756 if (!kstack_valid(current_thread_info(), fp))
1757 break;
1758
1759 sf = (struct sparc_stackf *) fp;
1760 regs = (struct pt_regs *) (sf + 1);
1761
1762 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1763 if (user_mode(regs))
1764 break;
1765 pc = regs->tpc;
1766 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1767 } else {
1768 pc = sf->callers_pc;
1769 fp = (unsigned long)sf->fp + STACK_BIAS;
1770 }
1771 perf_callchain_store(entry, pc);
1772 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1773 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1774 struct ftrace_ret_stack *ret_stack;
1775 ret_stack = ftrace_graph_get_ret_stack(current,
1776 graph);
1777 if (ret_stack) {
1778 pc = ret_stack->ret;
1779 perf_callchain_store(entry, pc);
1780 graph++;
1781 }
1782 }
1783 #endif
1784 } while (entry->nr < entry->max_stack);
1785 }
1786
1787 static inline int
valid_user_frame(const void __user * fp,unsigned long size)1788 valid_user_frame(const void __user *fp, unsigned long size)
1789 {
1790 /* addresses should be at least 4-byte aligned */
1791 if (((unsigned long) fp) & 3)
1792 return 0;
1793
1794 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1795 }
1796
perf_callchain_user_64(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)1797 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1798 struct pt_regs *regs)
1799 {
1800 unsigned long ufp;
1801
1802 ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1803 do {
1804 struct sparc_stackf __user *usf;
1805 struct sparc_stackf sf;
1806 unsigned long pc;
1807
1808 usf = (struct sparc_stackf __user *)ufp;
1809 if (!valid_user_frame(usf, sizeof(sf)))
1810 break;
1811
1812 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813 break;
1814
1815 pc = sf.callers_pc;
1816 ufp = (unsigned long)sf.fp + STACK_BIAS;
1817 perf_callchain_store(entry, pc);
1818 } while (entry->nr < entry->max_stack);
1819 }
1820
perf_callchain_user_32(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)1821 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1822 struct pt_regs *regs)
1823 {
1824 unsigned long ufp;
1825
1826 ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1827 do {
1828 unsigned long pc;
1829
1830 if (thread32_stack_is_64bit(ufp)) {
1831 struct sparc_stackf __user *usf;
1832 struct sparc_stackf sf;
1833
1834 ufp += STACK_BIAS;
1835 usf = (struct sparc_stackf __user *)ufp;
1836 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1837 break;
1838 pc = sf.callers_pc & 0xffffffff;
1839 ufp = ((unsigned long) sf.fp) & 0xffffffff;
1840 } else {
1841 struct sparc_stackf32 __user *usf;
1842 struct sparc_stackf32 sf;
1843 usf = (struct sparc_stackf32 __user *)ufp;
1844 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1845 break;
1846 pc = sf.callers_pc;
1847 ufp = (unsigned long)sf.fp;
1848 }
1849 perf_callchain_store(entry, pc);
1850 } while (entry->nr < entry->max_stack);
1851 }
1852
1853 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)1854 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1855 {
1856 u64 saved_fault_address = current_thread_info()->fault_address;
1857 u8 saved_fault_code = get_thread_fault_code();
1858
1859 perf_callchain_store(entry, regs->tpc);
1860
1861 if (!current->mm)
1862 return;
1863
1864 flushw_user();
1865
1866 pagefault_disable();
1867
1868 if (test_thread_flag(TIF_32BIT))
1869 perf_callchain_user_32(entry, regs);
1870 else
1871 perf_callchain_user_64(entry, regs);
1872
1873 pagefault_enable();
1874
1875 set_thread_fault_code(saved_fault_code);
1876 current_thread_info()->fault_address = saved_fault_address;
1877 }
1878