xref: /openbmc/linux/arch/sparc/kernel/pci_sabre.c (revision b6dcefde)
1 /* pci_sabre.c: Sabre specific PCI controller support.
2  *
3  * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
5  * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com)
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/interrupt.h>
14 #include <linux/of_device.h>
15 
16 #include <asm/apb.h>
17 #include <asm/iommu.h>
18 #include <asm/irq.h>
19 #include <asm/prom.h>
20 #include <asm/upa.h>
21 
22 #include "pci_impl.h"
23 #include "iommu_common.h"
24 #include "psycho_common.h"
25 
26 #define DRIVER_NAME	"sabre"
27 #define PFX		DRIVER_NAME ": "
28 
29 /* SABRE PCI controller register offsets and definitions. */
30 #define SABRE_UE_AFSR		0x0030UL
31 #define  SABRE_UEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */
32 #define  SABRE_UEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */
33 #define  SABRE_UEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */
34 #define  SABRE_UEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */
35 #define  SABRE_UEAFSR_SDTE	 0x0200000000000000UL	/* Secondary DMA Translation Error */
36 #define  SABRE_UEAFSR_PDTE	 0x0100000000000000UL	/* Primary DMA Translation Error */
37 #define  SABRE_UEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */
38 #define  SABRE_UEAFSR_OFF	 0x00000000e0000000UL	/* Offset (AFAR bits [5:3] */
39 #define  SABRE_UEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */
40 #define SABRE_UECE_AFAR		0x0038UL
41 #define SABRE_CE_AFSR		0x0040UL
42 #define  SABRE_CEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */
43 #define  SABRE_CEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */
44 #define  SABRE_CEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */
45 #define  SABRE_CEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */
46 #define  SABRE_CEAFSR_ESYND	 0x00ff000000000000UL	/* ECC Syndrome */
47 #define  SABRE_CEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */
48 #define  SABRE_CEAFSR_OFF	 0x00000000e0000000UL	/* Offset */
49 #define  SABRE_CEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */
50 #define SABRE_UECE_AFAR_ALIAS	0x0048UL	/* Aliases to 0x0038 */
51 #define SABRE_IOMMU_CONTROL	0x0200UL
52 #define  SABRE_IOMMUCTRL_ERRSTS	 0x0000000006000000UL	/* Error status bits */
53 #define  SABRE_IOMMUCTRL_ERR	 0x0000000001000000UL	/* Error present in IOTLB */
54 #define  SABRE_IOMMUCTRL_LCKEN	 0x0000000000800000UL	/* IOTLB lock enable */
55 #define  SABRE_IOMMUCTRL_LCKPTR	 0x0000000000780000UL	/* IOTLB lock pointer */
56 #define  SABRE_IOMMUCTRL_TSBSZ	 0x0000000000070000UL	/* TSB Size */
57 #define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000
58 #define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000
59 #define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000
60 #define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000
61 #define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000
62 #define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000
63 #define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000
64 #define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
65 #define  SABRE_IOMMUCTRL_TBWSZ	 0x0000000000000004UL	/* TSB assumed page size */
66 #define  SABRE_IOMMUCTRL_DENAB	 0x0000000000000002UL	/* Diagnostic Mode Enable */
67 #define  SABRE_IOMMUCTRL_ENAB	 0x0000000000000001UL	/* IOMMU Enable */
68 #define SABRE_IOMMU_TSBBASE	0x0208UL
69 #define SABRE_IOMMU_FLUSH	0x0210UL
70 #define SABRE_IMAP_A_SLOT0	0x0c00UL
71 #define SABRE_IMAP_B_SLOT0	0x0c20UL
72 #define SABRE_IMAP_SCSI		0x1000UL
73 #define SABRE_IMAP_ETH		0x1008UL
74 #define SABRE_IMAP_BPP		0x1010UL
75 #define SABRE_IMAP_AU_REC	0x1018UL
76 #define SABRE_IMAP_AU_PLAY	0x1020UL
77 #define SABRE_IMAP_PFAIL	0x1028UL
78 #define SABRE_IMAP_KMS		0x1030UL
79 #define SABRE_IMAP_FLPY		0x1038UL
80 #define SABRE_IMAP_SHW		0x1040UL
81 #define SABRE_IMAP_KBD		0x1048UL
82 #define SABRE_IMAP_MS		0x1050UL
83 #define SABRE_IMAP_SER		0x1058UL
84 #define SABRE_IMAP_UE		0x1070UL
85 #define SABRE_IMAP_CE		0x1078UL
86 #define SABRE_IMAP_PCIERR	0x1080UL
87 #define SABRE_IMAP_GFX		0x1098UL
88 #define SABRE_IMAP_EUPA		0x10a0UL
89 #define SABRE_ICLR_A_SLOT0	0x1400UL
90 #define SABRE_ICLR_B_SLOT0	0x1480UL
91 #define SABRE_ICLR_SCSI		0x1800UL
92 #define SABRE_ICLR_ETH		0x1808UL
93 #define SABRE_ICLR_BPP		0x1810UL
94 #define SABRE_ICLR_AU_REC	0x1818UL
95 #define SABRE_ICLR_AU_PLAY	0x1820UL
96 #define SABRE_ICLR_PFAIL	0x1828UL
97 #define SABRE_ICLR_KMS		0x1830UL
98 #define SABRE_ICLR_FLPY		0x1838UL
99 #define SABRE_ICLR_SHW		0x1840UL
100 #define SABRE_ICLR_KBD		0x1848UL
101 #define SABRE_ICLR_MS		0x1850UL
102 #define SABRE_ICLR_SER		0x1858UL
103 #define SABRE_ICLR_UE		0x1870UL
104 #define SABRE_ICLR_CE		0x1878UL
105 #define SABRE_ICLR_PCIERR	0x1880UL
106 #define SABRE_WRSYNC		0x1c20UL
107 #define SABRE_PCICTRL		0x2000UL
108 #define  SABRE_PCICTRL_MRLEN	 0x0000001000000000UL	/* Use MemoryReadLine for block loads/stores */
109 #define  SABRE_PCICTRL_SERR	 0x0000000400000000UL	/* Set when SERR asserted on PCI bus */
110 #define  SABRE_PCICTRL_ARBPARK	 0x0000000000200000UL	/* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
111 #define  SABRE_PCICTRL_CPUPRIO	 0x0000000000100000UL	/* Ultra-IIi granted every other bus cycle */
112 #define  SABRE_PCICTRL_ARBPRIO	 0x00000000000f0000UL	/* Slot which is granted every other bus cycle */
113 #define  SABRE_PCICTRL_ERREN	 0x0000000000000100UL	/* PCI Error Interrupt Enable */
114 #define  SABRE_PCICTRL_RTRYWE	 0x0000000000000080UL	/* DMA Flow Control 0=wait-if-possible 1=retry */
115 #define  SABRE_PCICTRL_AEN	 0x000000000000000fUL	/* Slot PCI arbitration enables */
116 #define SABRE_PIOAFSR		0x2010UL
117 #define  SABRE_PIOAFSR_PMA	 0x8000000000000000UL	/* Primary Master Abort */
118 #define  SABRE_PIOAFSR_PTA	 0x4000000000000000UL	/* Primary Target Abort */
119 #define  SABRE_PIOAFSR_PRTRY	 0x2000000000000000UL	/* Primary Excessive Retries */
120 #define  SABRE_PIOAFSR_PPERR	 0x1000000000000000UL	/* Primary Parity Error */
121 #define  SABRE_PIOAFSR_SMA	 0x0800000000000000UL	/* Secondary Master Abort */
122 #define  SABRE_PIOAFSR_STA	 0x0400000000000000UL	/* Secondary Target Abort */
123 #define  SABRE_PIOAFSR_SRTRY	 0x0200000000000000UL	/* Secondary Excessive Retries */
124 #define  SABRE_PIOAFSR_SPERR	 0x0100000000000000UL	/* Secondary Parity Error */
125 #define  SABRE_PIOAFSR_BMSK	 0x0000ffff00000000UL	/* Byte Mask */
126 #define  SABRE_PIOAFSR_BLK	 0x0000000080000000UL	/* Was Block Operation */
127 #define SABRE_PIOAFAR		0x2018UL
128 #define SABRE_PCIDIAG		0x2020UL
129 #define  SABRE_PCIDIAG_DRTRY	 0x0000000000000040UL	/* Disable PIO Retry Limit */
130 #define  SABRE_PCIDIAG_IPAPAR	 0x0000000000000008UL	/* Invert PIO Address Parity */
131 #define  SABRE_PCIDIAG_IPDPAR	 0x0000000000000004UL	/* Invert PIO Data Parity */
132 #define  SABRE_PCIDIAG_IDDPAR	 0x0000000000000002UL	/* Invert DMA Data Parity */
133 #define  SABRE_PCIDIAG_ELPBK	 0x0000000000000001UL	/* Loopback Enable - not supported */
134 #define SABRE_PCITASR		0x2028UL
135 #define  SABRE_PCITASR_EF	 0x0000000000000080UL	/* Respond to 0xe0000000-0xffffffff */
136 #define  SABRE_PCITASR_CD	 0x0000000000000040UL	/* Respond to 0xc0000000-0xdfffffff */
137 #define  SABRE_PCITASR_AB	 0x0000000000000020UL	/* Respond to 0xa0000000-0xbfffffff */
138 #define  SABRE_PCITASR_89	 0x0000000000000010UL	/* Respond to 0x80000000-0x9fffffff */
139 #define  SABRE_PCITASR_67	 0x0000000000000008UL	/* Respond to 0x60000000-0x7fffffff */
140 #define  SABRE_PCITASR_45	 0x0000000000000004UL	/* Respond to 0x40000000-0x5fffffff */
141 #define  SABRE_PCITASR_23	 0x0000000000000002UL	/* Respond to 0x20000000-0x3fffffff */
142 #define  SABRE_PCITASR_01	 0x0000000000000001UL	/* Respond to 0x00000000-0x1fffffff */
143 #define SABRE_PIOBUF_DIAG	0x5000UL
144 #define SABRE_DMABUF_DIAGLO	0x5100UL
145 #define SABRE_DMABUF_DIAGHI	0x51c0UL
146 #define SABRE_IMAP_GFX_ALIAS	0x6000UL	/* Aliases to 0x1098 */
147 #define SABRE_IMAP_EUPA_ALIAS	0x8000UL	/* Aliases to 0x10a0 */
148 #define SABRE_IOMMU_VADIAG	0xa400UL
149 #define SABRE_IOMMU_TCDIAG	0xa408UL
150 #define SABRE_IOMMU_TAG		0xa580UL
151 #define  SABRE_IOMMUTAG_ERRSTS	 0x0000000001800000UL	/* Error status bits */
152 #define  SABRE_IOMMUTAG_ERR	 0x0000000000400000UL	/* Error present */
153 #define  SABRE_IOMMUTAG_WRITE	 0x0000000000200000UL	/* Page is writable */
154 #define  SABRE_IOMMUTAG_STREAM	 0x0000000000100000UL	/* Streamable bit - unused */
155 #define  SABRE_IOMMUTAG_SIZE	 0x0000000000080000UL	/* 0=8k 1=16k */
156 #define  SABRE_IOMMUTAG_VPN	 0x000000000007ffffUL	/* Virtual Page Number [31:13] */
157 #define SABRE_IOMMU_DATA	0xa600UL
158 #define SABRE_IOMMUDATA_VALID	 0x0000000040000000UL	/* Valid */
159 #define SABRE_IOMMUDATA_USED	 0x0000000020000000UL	/* Used (for LRU algorithm) */
160 #define SABRE_IOMMUDATA_CACHE	 0x0000000010000000UL	/* Cacheable */
161 #define SABRE_IOMMUDATA_PPN	 0x00000000001fffffUL	/* Physical Page Number [33:13] */
162 #define SABRE_PCI_IRQSTATE	0xa800UL
163 #define SABRE_OBIO_IRQSTATE	0xa808UL
164 #define SABRE_FFBCFG		0xf000UL
165 #define  SABRE_FFBCFG_SPRQS	 0x000000000f000000	/* Slave P_RQST queue size */
166 #define  SABRE_FFBCFG_ONEREAD	 0x0000000000004000	/* Slave supports one outstanding read */
167 #define SABRE_MCCTRL0		0xf010UL
168 #define  SABRE_MCCTRL0_RENAB	 0x0000000080000000	/* Refresh Enable */
169 #define  SABRE_MCCTRL0_EENAB	 0x0000000010000000	/* Enable all ECC functions */
170 #define  SABRE_MCCTRL0_11BIT	 0x0000000000001000	/* Enable 11-bit column addressing */
171 #define  SABRE_MCCTRL0_DPP	 0x0000000000000f00	/* DIMM Pair Present Bits */
172 #define  SABRE_MCCTRL0_RINTVL	 0x00000000000000ff	/* Refresh Interval */
173 #define SABRE_MCCTRL1		0xf018UL
174 #define  SABRE_MCCTRL1_AMDC	 0x0000000038000000	/* Advance Memdata Clock */
175 #define  SABRE_MCCTRL1_ARDC	 0x0000000007000000	/* Advance DRAM Read Data Clock */
176 #define  SABRE_MCCTRL1_CSR	 0x0000000000e00000	/* CAS to RAS delay for CBR refresh */
177 #define  SABRE_MCCTRL1_CASRW	 0x00000000001c0000	/* CAS length for read/write */
178 #define  SABRE_MCCTRL1_RCD	 0x0000000000038000	/* RAS to CAS delay */
179 #define  SABRE_MCCTRL1_CP	 0x0000000000007000	/* CAS Precharge */
180 #define  SABRE_MCCTRL1_RP	 0x0000000000000e00	/* RAS Precharge */
181 #define  SABRE_MCCTRL1_RAS	 0x00000000000001c0	/* Length of RAS for refresh */
182 #define  SABRE_MCCTRL1_CASRW2	 0x0000000000000038	/* Must be same as CASRW */
183 #define  SABRE_MCCTRL1_RSC	 0x0000000000000007	/* RAS after CAS hold time */
184 #define SABRE_RESETCTRL		0xf020UL
185 
186 #define SABRE_CONFIGSPACE	0x001000000UL
187 #define SABRE_IOSPACE		0x002000000UL
188 #define SABRE_IOSPACE_SIZE	0x000ffffffUL
189 #define SABRE_MEMSPACE		0x100000000UL
190 #define SABRE_MEMSPACE_SIZE	0x07fffffffUL
191 
192 static int hummingbird_p;
193 static struct pci_bus *sabre_root_bus;
194 
195 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
196 {
197 	struct pci_pbm_info *pbm = dev_id;
198 	unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
199 	unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
200 	unsigned long afsr, afar, error_bits;
201 	int reported;
202 
203 	/* Latch uncorrectable error status. */
204 	afar = upa_readq(afar_reg);
205 	afsr = upa_readq(afsr_reg);
206 
207 	/* Clear the primary/secondary error status bits. */
208 	error_bits = afsr &
209 		(SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
210 		 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
211 		 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
212 	if (!error_bits)
213 		return IRQ_NONE;
214 	upa_writeq(error_bits, afsr_reg);
215 
216 	/* Log the error. */
217 	printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
218 	       pbm->name,
219 	       ((error_bits & SABRE_UEAFSR_PDRD) ?
220 		"DMA Read" :
221 		((error_bits & SABRE_UEAFSR_PDWR) ?
222 		 "DMA Write" : "???")),
223 	       ((error_bits & SABRE_UEAFSR_PDTE) ?
224 		":Translation Error" : ""));
225 	printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
226 	       pbm->name,
227 	       (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
228 	       (afsr & SABRE_UEAFSR_OFF) >> 29UL,
229 	       ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
230 	printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
231 	printk("%s: UE Secondary errors [", pbm->name);
232 	reported = 0;
233 	if (afsr & SABRE_UEAFSR_SDRD) {
234 		reported++;
235 		printk("(DMA Read)");
236 	}
237 	if (afsr & SABRE_UEAFSR_SDWR) {
238 		reported++;
239 		printk("(DMA Write)");
240 	}
241 	if (afsr & SABRE_UEAFSR_SDTE) {
242 		reported++;
243 		printk("(Translation Error)");
244 	}
245 	if (!reported)
246 		printk("(none)");
247 	printk("]\n");
248 
249 	/* Interrogate IOMMU for error status. */
250 	psycho_check_iommu_error(pbm, afsr, afar, UE_ERR);
251 
252 	return IRQ_HANDLED;
253 }
254 
255 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
256 {
257 	struct pci_pbm_info *pbm = dev_id;
258 	unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
259 	unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
260 	unsigned long afsr, afar, error_bits;
261 	int reported;
262 
263 	/* Latch error status. */
264 	afar = upa_readq(afar_reg);
265 	afsr = upa_readq(afsr_reg);
266 
267 	/* Clear primary/secondary error status bits. */
268 	error_bits = afsr &
269 		(SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
270 		 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
271 	if (!error_bits)
272 		return IRQ_NONE;
273 	upa_writeq(error_bits, afsr_reg);
274 
275 	/* Log the error. */
276 	printk("%s: Correctable Error, primary error type[%s]\n",
277 	       pbm->name,
278 	       ((error_bits & SABRE_CEAFSR_PDRD) ?
279 		"DMA Read" :
280 		((error_bits & SABRE_CEAFSR_PDWR) ?
281 		 "DMA Write" : "???")));
282 
283 	/* XXX Use syndrome and afar to print out module string just like
284 	 * XXX UDB CE trap handler does... -DaveM
285 	 */
286 	printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
287 	       "was_block(%d)\n",
288 	       pbm->name,
289 	       (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
290 	       (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
291 	       (afsr & SABRE_CEAFSR_OFF) >> 29UL,
292 	       ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
293 	printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
294 	printk("%s: CE Secondary errors [", pbm->name);
295 	reported = 0;
296 	if (afsr & SABRE_CEAFSR_SDRD) {
297 		reported++;
298 		printk("(DMA Read)");
299 	}
300 	if (afsr & SABRE_CEAFSR_SDWR) {
301 		reported++;
302 		printk("(DMA Write)");
303 	}
304 	if (!reported)
305 		printk("(none)");
306 	printk("]\n");
307 
308 	return IRQ_HANDLED;
309 }
310 
311 static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
312 {
313 	struct device_node *dp = pbm->op->node;
314 	struct of_device *op;
315 	unsigned long base = pbm->controller_regs;
316 	u64 tmp;
317 	int err;
318 
319 	if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
320 		dp = dp->parent;
321 
322 	op = of_find_device_by_node(dp);
323 	if (!op)
324 		return;
325 
326 	/* Sabre/Hummingbird IRQ property layout is:
327 	 * 0: PCI ERR
328 	 * 1: UE ERR
329 	 * 2: CE ERR
330 	 * 3: POWER FAIL
331 	 */
332 	if (op->num_irqs < 4)
333 		return;
334 
335 	/* We clear the error bits in the appropriate AFSR before
336 	 * registering the handler so that we don't get spurious
337 	 * interrupts.
338 	 */
339 	upa_writeq((SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
340 		    SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
341 		    SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE),
342 		   base + SABRE_UE_AFSR);
343 
344 	err = request_irq(op->irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm);
345 	if (err)
346 		printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
347 		       pbm->name, err);
348 
349 	upa_writeq((SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
350 		    SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR),
351 		   base + SABRE_CE_AFSR);
352 
353 
354 	err = request_irq(op->irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm);
355 	if (err)
356 		printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
357 		       pbm->name, err);
358 	err = request_irq(op->irqs[0], psycho_pcierr_intr, 0,
359 			  "SABRE_PCIERR", pbm);
360 	if (err)
361 		printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
362 		       pbm->name, err);
363 
364 	tmp = upa_readq(base + SABRE_PCICTRL);
365 	tmp |= SABRE_PCICTRL_ERREN;
366 	upa_writeq(tmp, base + SABRE_PCICTRL);
367 }
368 
369 static void apb_init(struct pci_bus *sabre_bus)
370 {
371 	struct pci_dev *pdev;
372 
373 	list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
374 		if (pdev->vendor == PCI_VENDOR_ID_SUN &&
375 		    pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
376 			u16 word16;
377 
378 			pci_read_config_word(pdev, PCI_COMMAND, &word16);
379 			word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
380 				PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
381 				PCI_COMMAND_IO;
382 			pci_write_config_word(pdev, PCI_COMMAND, word16);
383 
384 			/* Status register bits are "write 1 to clear". */
385 			pci_write_config_word(pdev, PCI_STATUS, 0xffff);
386 			pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
387 
388 			/* Use a primary/seconday latency timer value
389 			 * of 64.
390 			 */
391 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
392 			pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
393 
394 			/* Enable reporting/forwarding of master aborts,
395 			 * parity, and SERR.
396 			 */
397 			pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
398 					      (PCI_BRIDGE_CTL_PARITY |
399 					       PCI_BRIDGE_CTL_SERR |
400 					       PCI_BRIDGE_CTL_MASTER_ABORT));
401 		}
402 	}
403 }
404 
405 static void __devinit sabre_scan_bus(struct pci_pbm_info *pbm,
406 				     struct device *parent)
407 {
408 	static int once;
409 
410 	/* The APB bridge speaks to the Sabre host PCI bridge
411 	 * at 66Mhz, but the front side of APB runs at 33Mhz
412 	 * for both segments.
413 	 *
414 	 * Hummingbird systems do not use APB, so they run
415 	 * at 66MHZ.
416 	 */
417 	if (hummingbird_p)
418 		pbm->is_66mhz_capable = 1;
419 	else
420 		pbm->is_66mhz_capable = 0;
421 
422 	/* This driver has not been verified to handle
423 	 * multiple SABREs yet, so trap this.
424 	 *
425 	 * Also note that the SABRE host bridge is hardwired
426 	 * to live at bus 0.
427 	 */
428 	if (once != 0) {
429 		printk(KERN_ERR PFX "Multiple controllers unsupported.\n");
430 		return;
431 	}
432 	once++;
433 
434 	pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
435 	if (!pbm->pci_bus)
436 		return;
437 
438 	sabre_root_bus = pbm->pci_bus;
439 
440 	apb_init(pbm->pci_bus);
441 
442 	sabre_register_error_handlers(pbm);
443 }
444 
445 static void __devinit sabre_pbm_init(struct pci_pbm_info *pbm,
446 				     struct of_device *op)
447 {
448 	psycho_pbm_init_common(pbm, op, "SABRE", PBM_CHIP_TYPE_SABRE);
449 	pbm->pci_afsr = pbm->controller_regs + SABRE_PIOAFSR;
450 	pbm->pci_afar = pbm->controller_regs + SABRE_PIOAFAR;
451 	pbm->pci_csr = pbm->controller_regs + SABRE_PCICTRL;
452 	sabre_scan_bus(pbm, &op->dev);
453 }
454 
455 static int __devinit sabre_probe(struct of_device *op,
456 				 const struct of_device_id *match)
457 {
458 	const struct linux_prom64_registers *pr_regs;
459 	struct device_node *dp = op->node;
460 	struct pci_pbm_info *pbm;
461 	u32 upa_portid, dma_mask;
462 	struct iommu *iommu;
463 	int tsbsize, err;
464 	const u32 *vdma;
465 	u64 clear_irq;
466 
467 	hummingbird_p = (match->data != NULL);
468 	if (!hummingbird_p) {
469 		struct device_node *cpu_dp;
470 
471 		/* Of course, Sun has to encode things a thousand
472 		 * different ways, inconsistently.
473 		 */
474 		for_each_node_by_type(cpu_dp, "cpu") {
475 			if (!strcmp(cpu_dp->name, "SUNW,UltraSPARC-IIe"))
476 				hummingbird_p = 1;
477 		}
478 	}
479 
480 	err = -ENOMEM;
481 	pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
482 	if (!pbm) {
483 		printk(KERN_ERR PFX "Cannot allocate pci_pbm_info.\n");
484 		goto out_err;
485 	}
486 
487 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
488 	if (!iommu) {
489 		printk(KERN_ERR PFX "Cannot allocate PBM iommu.\n");
490 		goto out_free_controller;
491 	}
492 
493 	pbm->iommu = iommu;
494 
495 	upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
496 
497 	pbm->portid = upa_portid;
498 
499 	/*
500 	 * Map in SABRE register set and report the presence of this SABRE.
501 	 */
502 
503 	pr_regs = of_get_property(dp, "reg", NULL);
504 	err = -ENODEV;
505 	if (!pr_regs) {
506 		printk(KERN_ERR PFX "No reg property\n");
507 		goto out_free_iommu;
508 	}
509 
510 	/*
511 	 * First REG in property is base of entire SABRE register space.
512 	 */
513 	pbm->controller_regs = pr_regs[0].phys_addr;
514 
515 	/* Clear interrupts */
516 
517 	/* PCI first */
518 	for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
519 		upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
520 
521 	/* Then OBIO */
522 	for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
523 		upa_writeq(0x0UL, pbm->controller_regs + clear_irq);
524 
525 	/* Error interrupts are enabled later after the bus scan. */
526 	upa_writeq((SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR |
527 		    SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN),
528 		   pbm->controller_regs + SABRE_PCICTRL);
529 
530 	/* Now map in PCI config space for entire SABRE. */
531 	pbm->config_space = pbm->controller_regs + SABRE_CONFIGSPACE;
532 
533 	vdma = of_get_property(dp, "virtual-dma", NULL);
534 	if (!vdma) {
535 		printk(KERN_ERR PFX "No virtual-dma property\n");
536 		goto out_free_iommu;
537 	}
538 
539 	dma_mask = vdma[0];
540 	switch(vdma[1]) {
541 		case 0x20000000:
542 			dma_mask |= 0x1fffffff;
543 			tsbsize = 64;
544 			break;
545 		case 0x40000000:
546 			dma_mask |= 0x3fffffff;
547 			tsbsize = 128;
548 			break;
549 
550 		case 0x80000000:
551 			dma_mask |= 0x7fffffff;
552 			tsbsize = 128;
553 			break;
554 		default:
555 			printk(KERN_ERR PFX "Strange virtual-dma size.\n");
556 			goto out_free_iommu;
557 	}
558 
559 	err = psycho_iommu_init(pbm, tsbsize, vdma[0], dma_mask, SABRE_WRSYNC);
560 	if (err)
561 		goto out_free_iommu;
562 
563 	/*
564 	 * Look for APB underneath.
565 	 */
566 	sabre_pbm_init(pbm, op);
567 
568 	pbm->next = pci_pbm_root;
569 	pci_pbm_root = pbm;
570 
571 	dev_set_drvdata(&op->dev, pbm);
572 
573 	return 0;
574 
575 out_free_iommu:
576 	kfree(pbm->iommu);
577 
578 out_free_controller:
579 	kfree(pbm);
580 
581 out_err:
582 	return err;
583 }
584 
585 static struct of_device_id __initdata sabre_match[] = {
586 	{
587 		.name = "pci",
588 		.compatible = "pci108e,a001",
589 		.data = (void *) 1,
590 	},
591 	{
592 		.name = "pci",
593 		.compatible = "pci108e,a000",
594 	},
595 	{},
596 };
597 
598 static struct of_platform_driver sabre_driver = {
599 	.name		= DRIVER_NAME,
600 	.match_table	= sabre_match,
601 	.probe		= sabre_probe,
602 };
603 
604 static int __init sabre_init(void)
605 {
606 	return of_register_driver(&sabre_driver, &of_bus_type);
607 }
608 
609 subsys_initcall(sabre_init);
610