xref: /openbmc/linux/arch/sparc/kernel/pci.c (revision a06c488d)
1 /* pci.c: UltraSparc PCI controller support.
2  *
3  * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
4  * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
5  * Copyright (C) 1999 Jakub Jelinek   (jj@ultra.linux.cz)
6  *
7  * OF tree based PCI bus probing taken from the PowerPC port
8  * with minor modifications, see there for credits.
9  */
10 
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/sched.h>
15 #include <linux/capability.h>
16 #include <linux/errno.h>
17 #include <linux/pci.h>
18 #include <linux/msi.h>
19 #include <linux/irq.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 
24 #include <asm/uaccess.h>
25 #include <asm/pgtable.h>
26 #include <asm/irq.h>
27 #include <asm/prom.h>
28 #include <asm/apb.h>
29 
30 #include "pci_impl.h"
31 #include "kernel.h"
32 
33 /* List of all PCI controllers found in the system. */
34 struct pci_pbm_info *pci_pbm_root = NULL;
35 
36 /* Each PBM found gets a unique index. */
37 int pci_num_pbms = 0;
38 
39 volatile int pci_poke_in_progress;
40 volatile int pci_poke_cpu = -1;
41 volatile int pci_poke_faulted;
42 
43 static DEFINE_SPINLOCK(pci_poke_lock);
44 
45 void pci_config_read8(u8 *addr, u8 *ret)
46 {
47 	unsigned long flags;
48 	u8 byte;
49 
50 	spin_lock_irqsave(&pci_poke_lock, flags);
51 	pci_poke_cpu = smp_processor_id();
52 	pci_poke_in_progress = 1;
53 	pci_poke_faulted = 0;
54 	__asm__ __volatile__("membar #Sync\n\t"
55 			     "lduba [%1] %2, %0\n\t"
56 			     "membar #Sync"
57 			     : "=r" (byte)
58 			     : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
59 			     : "memory");
60 	pci_poke_in_progress = 0;
61 	pci_poke_cpu = -1;
62 	if (!pci_poke_faulted)
63 		*ret = byte;
64 	spin_unlock_irqrestore(&pci_poke_lock, flags);
65 }
66 
67 void pci_config_read16(u16 *addr, u16 *ret)
68 {
69 	unsigned long flags;
70 	u16 word;
71 
72 	spin_lock_irqsave(&pci_poke_lock, flags);
73 	pci_poke_cpu = smp_processor_id();
74 	pci_poke_in_progress = 1;
75 	pci_poke_faulted = 0;
76 	__asm__ __volatile__("membar #Sync\n\t"
77 			     "lduha [%1] %2, %0\n\t"
78 			     "membar #Sync"
79 			     : "=r" (word)
80 			     : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
81 			     : "memory");
82 	pci_poke_in_progress = 0;
83 	pci_poke_cpu = -1;
84 	if (!pci_poke_faulted)
85 		*ret = word;
86 	spin_unlock_irqrestore(&pci_poke_lock, flags);
87 }
88 
89 void pci_config_read32(u32 *addr, u32 *ret)
90 {
91 	unsigned long flags;
92 	u32 dword;
93 
94 	spin_lock_irqsave(&pci_poke_lock, flags);
95 	pci_poke_cpu = smp_processor_id();
96 	pci_poke_in_progress = 1;
97 	pci_poke_faulted = 0;
98 	__asm__ __volatile__("membar #Sync\n\t"
99 			     "lduwa [%1] %2, %0\n\t"
100 			     "membar #Sync"
101 			     : "=r" (dword)
102 			     : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
103 			     : "memory");
104 	pci_poke_in_progress = 0;
105 	pci_poke_cpu = -1;
106 	if (!pci_poke_faulted)
107 		*ret = dword;
108 	spin_unlock_irqrestore(&pci_poke_lock, flags);
109 }
110 
111 void pci_config_write8(u8 *addr, u8 val)
112 {
113 	unsigned long flags;
114 
115 	spin_lock_irqsave(&pci_poke_lock, flags);
116 	pci_poke_cpu = smp_processor_id();
117 	pci_poke_in_progress = 1;
118 	pci_poke_faulted = 0;
119 	__asm__ __volatile__("membar #Sync\n\t"
120 			     "stba %0, [%1] %2\n\t"
121 			     "membar #Sync"
122 			     : /* no outputs */
123 			     : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
124 			     : "memory");
125 	pci_poke_in_progress = 0;
126 	pci_poke_cpu = -1;
127 	spin_unlock_irqrestore(&pci_poke_lock, flags);
128 }
129 
130 void pci_config_write16(u16 *addr, u16 val)
131 {
132 	unsigned long flags;
133 
134 	spin_lock_irqsave(&pci_poke_lock, flags);
135 	pci_poke_cpu = smp_processor_id();
136 	pci_poke_in_progress = 1;
137 	pci_poke_faulted = 0;
138 	__asm__ __volatile__("membar #Sync\n\t"
139 			     "stha %0, [%1] %2\n\t"
140 			     "membar #Sync"
141 			     : /* no outputs */
142 			     : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
143 			     : "memory");
144 	pci_poke_in_progress = 0;
145 	pci_poke_cpu = -1;
146 	spin_unlock_irqrestore(&pci_poke_lock, flags);
147 }
148 
149 void pci_config_write32(u32 *addr, u32 val)
150 {
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&pci_poke_lock, flags);
154 	pci_poke_cpu = smp_processor_id();
155 	pci_poke_in_progress = 1;
156 	pci_poke_faulted = 0;
157 	__asm__ __volatile__("membar #Sync\n\t"
158 			     "stwa %0, [%1] %2\n\t"
159 			     "membar #Sync"
160 			     : /* no outputs */
161 			     : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
162 			     : "memory");
163 	pci_poke_in_progress = 0;
164 	pci_poke_cpu = -1;
165 	spin_unlock_irqrestore(&pci_poke_lock, flags);
166 }
167 
168 static int ofpci_verbose;
169 
170 static int __init ofpci_debug(char *str)
171 {
172 	int val = 0;
173 
174 	get_option(&str, &val);
175 	if (val)
176 		ofpci_verbose = 1;
177 	return 1;
178 }
179 
180 __setup("ofpci_debug=", ofpci_debug);
181 
182 static unsigned long pci_parse_of_flags(u32 addr0)
183 {
184 	unsigned long flags = 0;
185 
186 	if (addr0 & 0x02000000) {
187 		flags = IORESOURCE_MEM | PCI_BASE_ADDRESS_SPACE_MEMORY;
188 		flags |= (addr0 >> 28) & PCI_BASE_ADDRESS_MEM_TYPE_1M;
189 		if (addr0 & 0x01000000)
190 			flags |= IORESOURCE_MEM_64
191 				 | PCI_BASE_ADDRESS_MEM_TYPE_64;
192 		if (addr0 & 0x40000000)
193 			flags |= IORESOURCE_PREFETCH
194 				 | PCI_BASE_ADDRESS_MEM_PREFETCH;
195 	} else if (addr0 & 0x01000000)
196 		flags = IORESOURCE_IO | PCI_BASE_ADDRESS_SPACE_IO;
197 	return flags;
198 }
199 
200 /* The of_device layer has translated all of the assigned-address properties
201  * into physical address resources, we only have to figure out the register
202  * mapping.
203  */
204 static void pci_parse_of_addrs(struct platform_device *op,
205 			       struct device_node *node,
206 			       struct pci_dev *dev)
207 {
208 	struct resource *op_res;
209 	const u32 *addrs;
210 	int proplen;
211 
212 	addrs = of_get_property(node, "assigned-addresses", &proplen);
213 	if (!addrs)
214 		return;
215 	if (ofpci_verbose)
216 		printk("    parse addresses (%d bytes) @ %p\n",
217 		       proplen, addrs);
218 	op_res = &op->resource[0];
219 	for (; proplen >= 20; proplen -= 20, addrs += 5, op_res++) {
220 		struct resource *res;
221 		unsigned long flags;
222 		int i;
223 
224 		flags = pci_parse_of_flags(addrs[0]);
225 		if (!flags)
226 			continue;
227 		i = addrs[0] & 0xff;
228 		if (ofpci_verbose)
229 			printk("  start: %llx, end: %llx, i: %x\n",
230 			       op_res->start, op_res->end, i);
231 
232 		if (PCI_BASE_ADDRESS_0 <= i && i <= PCI_BASE_ADDRESS_5) {
233 			res = &dev->resource[(i - PCI_BASE_ADDRESS_0) >> 2];
234 		} else if (i == dev->rom_base_reg) {
235 			res = &dev->resource[PCI_ROM_RESOURCE];
236 			flags |= IORESOURCE_READONLY | IORESOURCE_SIZEALIGN;
237 		} else {
238 			printk(KERN_ERR "PCI: bad cfg reg num 0x%x\n", i);
239 			continue;
240 		}
241 		res->start = op_res->start;
242 		res->end = op_res->end;
243 		res->flags = flags;
244 		res->name = pci_name(dev);
245 	}
246 }
247 
248 static struct pci_dev *of_create_pci_dev(struct pci_pbm_info *pbm,
249 					 struct device_node *node,
250 					 struct pci_bus *bus, int devfn)
251 {
252 	struct dev_archdata *sd;
253 	struct platform_device *op;
254 	struct pci_dev *dev;
255 	const char *type;
256 	u32 class;
257 
258 	dev = pci_alloc_dev(bus);
259 	if (!dev)
260 		return NULL;
261 
262 	sd = &dev->dev.archdata;
263 	sd->iommu = pbm->iommu;
264 	sd->stc = &pbm->stc;
265 	sd->host_controller = pbm;
266 	sd->op = op = of_find_device_by_node(node);
267 	sd->numa_node = pbm->numa_node;
268 
269 	sd = &op->dev.archdata;
270 	sd->iommu = pbm->iommu;
271 	sd->stc = &pbm->stc;
272 	sd->numa_node = pbm->numa_node;
273 
274 	if (!strcmp(node->name, "ebus"))
275 		of_propagate_archdata(op);
276 
277 	type = of_get_property(node, "device_type", NULL);
278 	if (type == NULL)
279 		type = "";
280 
281 	if (ofpci_verbose)
282 		printk("    create device, devfn: %x, type: %s\n",
283 		       devfn, type);
284 
285 	dev->sysdata = node;
286 	dev->dev.parent = bus->bridge;
287 	dev->dev.bus = &pci_bus_type;
288 	dev->dev.of_node = of_node_get(node);
289 	dev->devfn = devfn;
290 	dev->multifunction = 0;		/* maybe a lie? */
291 	set_pcie_port_type(dev);
292 
293 	pci_dev_assign_slot(dev);
294 	dev->vendor = of_getintprop_default(node, "vendor-id", 0xffff);
295 	dev->device = of_getintprop_default(node, "device-id", 0xffff);
296 	dev->subsystem_vendor =
297 		of_getintprop_default(node, "subsystem-vendor-id", 0);
298 	dev->subsystem_device =
299 		of_getintprop_default(node, "subsystem-id", 0);
300 
301 	dev->cfg_size = pci_cfg_space_size(dev);
302 
303 	/* We can't actually use the firmware value, we have
304 	 * to read what is in the register right now.  One
305 	 * reason is that in the case of IDE interfaces the
306 	 * firmware can sample the value before the the IDE
307 	 * interface is programmed into native mode.
308 	 */
309 	pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
310 	dev->class = class >> 8;
311 	dev->revision = class & 0xff;
312 
313 	dev_set_name(&dev->dev, "%04x:%02x:%02x.%d", pci_domain_nr(bus),
314 		dev->bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
315 
316 	if (ofpci_verbose)
317 		printk("    class: 0x%x device name: %s\n",
318 		       dev->class, pci_name(dev));
319 
320 	/* I have seen IDE devices which will not respond to
321 	 * the bmdma simplex check reads if bus mastering is
322 	 * disabled.
323 	 */
324 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
325 		pci_set_master(dev);
326 
327 	dev->current_state = PCI_UNKNOWN;	/* unknown power state */
328 	dev->error_state = pci_channel_io_normal;
329 	dev->dma_mask = 0xffffffff;
330 
331 	if (!strcmp(node->name, "pci")) {
332 		/* a PCI-PCI bridge */
333 		dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
334 		dev->rom_base_reg = PCI_ROM_ADDRESS1;
335 	} else if (!strcmp(type, "cardbus")) {
336 		dev->hdr_type = PCI_HEADER_TYPE_CARDBUS;
337 	} else {
338 		dev->hdr_type = PCI_HEADER_TYPE_NORMAL;
339 		dev->rom_base_reg = PCI_ROM_ADDRESS;
340 
341 		dev->irq = sd->op->archdata.irqs[0];
342 		if (dev->irq == 0xffffffff)
343 			dev->irq = PCI_IRQ_NONE;
344 	}
345 
346 	pci_parse_of_addrs(sd->op, node, dev);
347 
348 	if (ofpci_verbose)
349 		printk("    adding to system ...\n");
350 
351 	pci_device_add(dev, bus);
352 
353 	return dev;
354 }
355 
356 static void apb_calc_first_last(u8 map, u32 *first_p, u32 *last_p)
357 {
358 	u32 idx, first, last;
359 
360 	first = 8;
361 	last = 0;
362 	for (idx = 0; idx < 8; idx++) {
363 		if ((map & (1 << idx)) != 0) {
364 			if (first > idx)
365 				first = idx;
366 			if (last < idx)
367 				last = idx;
368 		}
369 	}
370 
371 	*first_p = first;
372 	*last_p = last;
373 }
374 
375 /* Cook up fake bus resources for SUNW,simba PCI bridges which lack
376  * a proper 'ranges' property.
377  */
378 static void apb_fake_ranges(struct pci_dev *dev,
379 			    struct pci_bus *bus,
380 			    struct pci_pbm_info *pbm)
381 {
382 	struct pci_bus_region region;
383 	struct resource *res;
384 	u32 first, last;
385 	u8 map;
386 
387 	pci_read_config_byte(dev, APB_IO_ADDRESS_MAP, &map);
388 	apb_calc_first_last(map, &first, &last);
389 	res = bus->resource[0];
390 	res->flags = IORESOURCE_IO;
391 	region.start = (first << 21);
392 	region.end = (last << 21) + ((1 << 21) - 1);
393 	pcibios_bus_to_resource(dev->bus, res, &region);
394 
395 	pci_read_config_byte(dev, APB_MEM_ADDRESS_MAP, &map);
396 	apb_calc_first_last(map, &first, &last);
397 	res = bus->resource[1];
398 	res->flags = IORESOURCE_MEM;
399 	region.start = (first << 29);
400 	region.end = (last << 29) + ((1 << 29) - 1);
401 	pcibios_bus_to_resource(dev->bus, res, &region);
402 }
403 
404 static void pci_of_scan_bus(struct pci_pbm_info *pbm,
405 			    struct device_node *node,
406 			    struct pci_bus *bus);
407 
408 #define GET_64BIT(prop, i)	((((u64) (prop)[(i)]) << 32) | (prop)[(i)+1])
409 
410 static void of_scan_pci_bridge(struct pci_pbm_info *pbm,
411 			       struct device_node *node,
412 			       struct pci_dev *dev)
413 {
414 	struct pci_bus *bus;
415 	const u32 *busrange, *ranges;
416 	int len, i, simba;
417 	struct pci_bus_region region;
418 	struct resource *res;
419 	unsigned int flags;
420 	u64 size;
421 
422 	if (ofpci_verbose)
423 		printk("of_scan_pci_bridge(%s)\n", node->full_name);
424 
425 	/* parse bus-range property */
426 	busrange = of_get_property(node, "bus-range", &len);
427 	if (busrange == NULL || len != 8) {
428 		printk(KERN_DEBUG "Can't get bus-range for PCI-PCI bridge %s\n",
429 		       node->full_name);
430 		return;
431 	}
432 
433 	if (ofpci_verbose)
434 		printk("    Bridge bus range [%u --> %u]\n",
435 		       busrange[0], busrange[1]);
436 
437 	ranges = of_get_property(node, "ranges", &len);
438 	simba = 0;
439 	if (ranges == NULL) {
440 		const char *model = of_get_property(node, "model", NULL);
441 		if (model && !strcmp(model, "SUNW,simba"))
442 			simba = 1;
443 	}
444 
445 	bus = pci_add_new_bus(dev->bus, dev, busrange[0]);
446 	if (!bus) {
447 		printk(KERN_ERR "Failed to create pci bus for %s\n",
448 		       node->full_name);
449 		return;
450 	}
451 
452 	bus->primary = dev->bus->number;
453 	pci_bus_insert_busn_res(bus, busrange[0], busrange[1]);
454 	bus->bridge_ctl = 0;
455 
456 	if (ofpci_verbose)
457 		printk("    Bridge ranges[%p] simba[%d]\n",
458 		       ranges, simba);
459 
460 	/* parse ranges property, or cook one up by hand for Simba */
461 	/* PCI #address-cells == 3 and #size-cells == 2 always */
462 	res = &dev->resource[PCI_BRIDGE_RESOURCES];
463 	for (i = 0; i < PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES; ++i) {
464 		res->flags = 0;
465 		bus->resource[i] = res;
466 		++res;
467 	}
468 	if (simba) {
469 		apb_fake_ranges(dev, bus, pbm);
470 		goto after_ranges;
471 	} else if (ranges == NULL) {
472 		pci_read_bridge_bases(bus);
473 		goto after_ranges;
474 	}
475 	i = 1;
476 	for (; len >= 32; len -= 32, ranges += 8) {
477 		u64 start;
478 
479 		if (ofpci_verbose)
480 			printk("    RAW Range[%08x:%08x:%08x:%08x:%08x:%08x:"
481 			       "%08x:%08x]\n",
482 			       ranges[0], ranges[1], ranges[2], ranges[3],
483 			       ranges[4], ranges[5], ranges[6], ranges[7]);
484 
485 		flags = pci_parse_of_flags(ranges[0]);
486 		size = GET_64BIT(ranges, 6);
487 		if (flags == 0 || size == 0)
488 			continue;
489 
490 		/* On PCI-Express systems, PCI bridges that have no devices downstream
491 		 * have a bogus size value where the first 32-bit cell is 0xffffffff.
492 		 * This results in a bogus range where start + size overflows.
493 		 *
494 		 * Just skip these otherwise the kernel will complain when the resource
495 		 * tries to be claimed.
496 		 */
497 		if (size >> 32 == 0xffffffff)
498 			continue;
499 
500 		if (flags & IORESOURCE_IO) {
501 			res = bus->resource[0];
502 			if (res->flags) {
503 				printk(KERN_ERR "PCI: ignoring extra I/O range"
504 				       " for bridge %s\n", node->full_name);
505 				continue;
506 			}
507 		} else {
508 			if (i >= PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES) {
509 				printk(KERN_ERR "PCI: too many memory ranges"
510 				       " for bridge %s\n", node->full_name);
511 				continue;
512 			}
513 			res = bus->resource[i];
514 			++i;
515 		}
516 
517 		res->flags = flags;
518 		region.start = start = GET_64BIT(ranges, 1);
519 		region.end = region.start + size - 1;
520 
521 		if (ofpci_verbose)
522 			printk("      Using flags[%08x] start[%016llx] size[%016llx]\n",
523 			       flags, start, size);
524 
525 		pcibios_bus_to_resource(dev->bus, res, &region);
526 	}
527 after_ranges:
528 	sprintf(bus->name, "PCI Bus %04x:%02x", pci_domain_nr(bus),
529 		bus->number);
530 	if (ofpci_verbose)
531 		printk("    bus name: %s\n", bus->name);
532 
533 	pci_of_scan_bus(pbm, node, bus);
534 }
535 
536 static void pci_of_scan_bus(struct pci_pbm_info *pbm,
537 			    struct device_node *node,
538 			    struct pci_bus *bus)
539 {
540 	struct device_node *child;
541 	const u32 *reg;
542 	int reglen, devfn, prev_devfn;
543 	struct pci_dev *dev;
544 
545 	if (ofpci_verbose)
546 		printk("PCI: scan_bus[%s] bus no %d\n",
547 		       node->full_name, bus->number);
548 
549 	child = NULL;
550 	prev_devfn = -1;
551 	while ((child = of_get_next_child(node, child)) != NULL) {
552 		if (ofpci_verbose)
553 			printk("  * %s\n", child->full_name);
554 		reg = of_get_property(child, "reg", &reglen);
555 		if (reg == NULL || reglen < 20)
556 			continue;
557 
558 		devfn = (reg[0] >> 8) & 0xff;
559 
560 		/* This is a workaround for some device trees
561 		 * which list PCI devices twice.  On the V100
562 		 * for example, device number 3 is listed twice.
563 		 * Once as "pm" and once again as "lomp".
564 		 */
565 		if (devfn == prev_devfn)
566 			continue;
567 		prev_devfn = devfn;
568 
569 		/* create a new pci_dev for this device */
570 		dev = of_create_pci_dev(pbm, child, bus, devfn);
571 		if (!dev)
572 			continue;
573 		if (ofpci_verbose)
574 			printk("PCI: dev header type: %x\n",
575 			       dev->hdr_type);
576 
577 		if (pci_is_bridge(dev))
578 			of_scan_pci_bridge(pbm, child, dev);
579 	}
580 }
581 
582 static ssize_t
583 show_pciobppath_attr(struct device * dev, struct device_attribute * attr, char * buf)
584 {
585 	struct pci_dev *pdev;
586 	struct device_node *dp;
587 
588 	pdev = to_pci_dev(dev);
589 	dp = pdev->dev.of_node;
590 
591 	return snprintf (buf, PAGE_SIZE, "%s\n", dp->full_name);
592 }
593 
594 static DEVICE_ATTR(obppath, S_IRUSR | S_IRGRP | S_IROTH, show_pciobppath_attr, NULL);
595 
596 static void pci_bus_register_of_sysfs(struct pci_bus *bus)
597 {
598 	struct pci_dev *dev;
599 	struct pci_bus *child_bus;
600 	int err;
601 
602 	list_for_each_entry(dev, &bus->devices, bus_list) {
603 		/* we don't really care if we can create this file or
604 		 * not, but we need to assign the result of the call
605 		 * or the world will fall under alien invasion and
606 		 * everybody will be frozen on a spaceship ready to be
607 		 * eaten on alpha centauri by some green and jelly
608 		 * humanoid.
609 		 */
610 		err = sysfs_create_file(&dev->dev.kobj, &dev_attr_obppath.attr);
611 		(void) err;
612 	}
613 	list_for_each_entry(child_bus, &bus->children, node)
614 		pci_bus_register_of_sysfs(child_bus);
615 }
616 
617 static void pci_claim_bus_resources(struct pci_bus *bus)
618 {
619 	struct pci_bus *child_bus;
620 	struct pci_dev *dev;
621 
622 	list_for_each_entry(dev, &bus->devices, bus_list) {
623 		int i;
624 
625 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
626 			struct resource *r = &dev->resource[i];
627 
628 			if (r->parent || !r->start || !r->flags)
629 				continue;
630 
631 			if (ofpci_verbose)
632 				printk("PCI: Claiming %s: "
633 				       "Resource %d: %016llx..%016llx [%x]\n",
634 				       pci_name(dev), i,
635 				       (unsigned long long)r->start,
636 				       (unsigned long long)r->end,
637 				       (unsigned int)r->flags);
638 
639 			pci_claim_resource(dev, i);
640 		}
641 	}
642 
643 	list_for_each_entry(child_bus, &bus->children, node)
644 		pci_claim_bus_resources(child_bus);
645 }
646 
647 struct pci_bus *pci_scan_one_pbm(struct pci_pbm_info *pbm,
648 				 struct device *parent)
649 {
650 	LIST_HEAD(resources);
651 	struct device_node *node = pbm->op->dev.of_node;
652 	struct pci_bus *bus;
653 
654 	printk("PCI: Scanning PBM %s\n", node->full_name);
655 
656 	pci_add_resource_offset(&resources, &pbm->io_space,
657 				pbm->io_space.start);
658 	pci_add_resource_offset(&resources, &pbm->mem_space,
659 				pbm->mem_space.start);
660 	if (pbm->mem64_space.flags)
661 		pci_add_resource_offset(&resources, &pbm->mem64_space,
662 					pbm->mem_space.start);
663 	pbm->busn.start = pbm->pci_first_busno;
664 	pbm->busn.end	= pbm->pci_last_busno;
665 	pbm->busn.flags	= IORESOURCE_BUS;
666 	pci_add_resource(&resources, &pbm->busn);
667 	bus = pci_create_root_bus(parent, pbm->pci_first_busno, pbm->pci_ops,
668 				  pbm, &resources);
669 	if (!bus) {
670 		printk(KERN_ERR "Failed to create bus for %s\n",
671 		       node->full_name);
672 		pci_free_resource_list(&resources);
673 		return NULL;
674 	}
675 
676 	pci_of_scan_bus(pbm, node, bus);
677 	pci_bus_register_of_sysfs(bus);
678 
679 	pci_claim_bus_resources(bus);
680 	pci_bus_add_devices(bus);
681 	return bus;
682 }
683 
684 void pcibios_fixup_bus(struct pci_bus *pbus)
685 {
686 }
687 
688 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
689 				resource_size_t size, resource_size_t align)
690 {
691 	return res->start;
692 }
693 
694 int pcibios_enable_device(struct pci_dev *dev, int mask)
695 {
696 	u16 cmd, oldcmd;
697 	int i;
698 
699 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
700 	oldcmd = cmd;
701 
702 	for (i = 0; i < PCI_NUM_RESOURCES; i++) {
703 		struct resource *res = &dev->resource[i];
704 
705 		/* Only set up the requested stuff */
706 		if (!(mask & (1<<i)))
707 			continue;
708 
709 		if (res->flags & IORESOURCE_IO)
710 			cmd |= PCI_COMMAND_IO;
711 		if (res->flags & IORESOURCE_MEM)
712 			cmd |= PCI_COMMAND_MEMORY;
713 	}
714 
715 	if (cmd != oldcmd) {
716 		printk(KERN_DEBUG "PCI: Enabling device: (%s), cmd %x\n",
717 		       pci_name(dev), cmd);
718                 /* Enable the appropriate bits in the PCI command register.  */
719 		pci_write_config_word(dev, PCI_COMMAND, cmd);
720 	}
721 	return 0;
722 }
723 
724 /* Platform support for /proc/bus/pci/X/Y mmap()s. */
725 
726 /* If the user uses a host-bridge as the PCI device, he may use
727  * this to perform a raw mmap() of the I/O or MEM space behind
728  * that controller.
729  *
730  * This can be useful for execution of x86 PCI bios initialization code
731  * on a PCI card, like the xfree86 int10 stuff does.
732  */
733 static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
734 				      enum pci_mmap_state mmap_state)
735 {
736 	struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
737 	unsigned long space_size, user_offset, user_size;
738 
739 	if (mmap_state == pci_mmap_io) {
740 		space_size = resource_size(&pbm->io_space);
741 	} else {
742 		space_size = resource_size(&pbm->mem_space);
743 	}
744 
745 	/* Make sure the request is in range. */
746 	user_offset = vma->vm_pgoff << PAGE_SHIFT;
747 	user_size = vma->vm_end - vma->vm_start;
748 
749 	if (user_offset >= space_size ||
750 	    (user_offset + user_size) > space_size)
751 		return -EINVAL;
752 
753 	if (mmap_state == pci_mmap_io) {
754 		vma->vm_pgoff = (pbm->io_space.start +
755 				 user_offset) >> PAGE_SHIFT;
756 	} else {
757 		vma->vm_pgoff = (pbm->mem_space.start +
758 				 user_offset) >> PAGE_SHIFT;
759 	}
760 
761 	return 0;
762 }
763 
764 /* Adjust vm_pgoff of VMA such that it is the physical page offset
765  * corresponding to the 32-bit pci bus offset for DEV requested by the user.
766  *
767  * Basically, the user finds the base address for his device which he wishes
768  * to mmap.  They read the 32-bit value from the config space base register,
769  * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
770  * offset parameter of mmap on /proc/bus/pci/XXX for that device.
771  *
772  * Returns negative error code on failure, zero on success.
773  */
774 static int __pci_mmap_make_offset(struct pci_dev *pdev,
775 				  struct vm_area_struct *vma,
776 				  enum pci_mmap_state mmap_state)
777 {
778 	unsigned long user_paddr, user_size;
779 	int i, err;
780 
781 	/* First compute the physical address in vma->vm_pgoff,
782 	 * making sure the user offset is within range in the
783 	 * appropriate PCI space.
784 	 */
785 	err = __pci_mmap_make_offset_bus(pdev, vma, mmap_state);
786 	if (err)
787 		return err;
788 
789 	/* If this is a mapping on a host bridge, any address
790 	 * is OK.
791 	 */
792 	if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
793 		return err;
794 
795 	/* Otherwise make sure it's in the range for one of the
796 	 * device's resources.
797 	 */
798 	user_paddr = vma->vm_pgoff << PAGE_SHIFT;
799 	user_size = vma->vm_end - vma->vm_start;
800 
801 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
802 		struct resource *rp = &pdev->resource[i];
803 		resource_size_t aligned_end;
804 
805 		/* Active? */
806 		if (!rp->flags)
807 			continue;
808 
809 		/* Same type? */
810 		if (i == PCI_ROM_RESOURCE) {
811 			if (mmap_state != pci_mmap_mem)
812 				continue;
813 		} else {
814 			if ((mmap_state == pci_mmap_io &&
815 			     (rp->flags & IORESOURCE_IO) == 0) ||
816 			    (mmap_state == pci_mmap_mem &&
817 			     (rp->flags & IORESOURCE_MEM) == 0))
818 				continue;
819 		}
820 
821 		/* Align the resource end to the next page address.
822 		 * PAGE_SIZE intentionally added instead of (PAGE_SIZE - 1),
823 		 * because actually we need the address of the next byte
824 		 * after rp->end.
825 		 */
826 		aligned_end = (rp->end + PAGE_SIZE) & PAGE_MASK;
827 
828 		if ((rp->start <= user_paddr) &&
829 		    (user_paddr + user_size) <= aligned_end)
830 			break;
831 	}
832 
833 	if (i > PCI_ROM_RESOURCE)
834 		return -EINVAL;
835 
836 	return 0;
837 }
838 
839 /* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
840  * device mapping.
841  */
842 static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
843 					     enum pci_mmap_state mmap_state)
844 {
845 	/* Our io_remap_pfn_range takes care of this, do nothing.  */
846 }
847 
848 /* Perform the actual remap of the pages for a PCI device mapping, as appropriate
849  * for this architecture.  The region in the process to map is described by vm_start
850  * and vm_end members of VMA, the base physical address is found in vm_pgoff.
851  * The pci device structure is provided so that architectures may make mapping
852  * decisions on a per-device or per-bus basis.
853  *
854  * Returns a negative error code on failure, zero on success.
855  */
856 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
857 			enum pci_mmap_state mmap_state,
858 			int write_combine)
859 {
860 	int ret;
861 
862 	ret = __pci_mmap_make_offset(dev, vma, mmap_state);
863 	if (ret < 0)
864 		return ret;
865 
866 	__pci_mmap_set_pgprot(dev, vma, mmap_state);
867 
868 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
869 	ret = io_remap_pfn_range(vma, vma->vm_start,
870 				 vma->vm_pgoff,
871 				 vma->vm_end - vma->vm_start,
872 				 vma->vm_page_prot);
873 	if (ret)
874 		return ret;
875 
876 	return 0;
877 }
878 
879 #ifdef CONFIG_NUMA
880 int pcibus_to_node(struct pci_bus *pbus)
881 {
882 	struct pci_pbm_info *pbm = pbus->sysdata;
883 
884 	return pbm->numa_node;
885 }
886 EXPORT_SYMBOL(pcibus_to_node);
887 #endif
888 
889 /* Return the domain number for this pci bus */
890 
891 int pci_domain_nr(struct pci_bus *pbus)
892 {
893 	struct pci_pbm_info *pbm = pbus->sysdata;
894 	int ret;
895 
896 	if (!pbm) {
897 		ret = -ENXIO;
898 	} else {
899 		ret = pbm->index;
900 	}
901 
902 	return ret;
903 }
904 EXPORT_SYMBOL(pci_domain_nr);
905 
906 #ifdef CONFIG_PCI_MSI
907 int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
908 {
909 	struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
910 	unsigned int irq;
911 
912 	if (!pbm->setup_msi_irq)
913 		return -EINVAL;
914 
915 	return pbm->setup_msi_irq(&irq, pdev, desc);
916 }
917 
918 void arch_teardown_msi_irq(unsigned int irq)
919 {
920 	struct msi_desc *entry = irq_get_msi_desc(irq);
921 	struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
922 	struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
923 
924 	if (pbm->teardown_msi_irq)
925 		pbm->teardown_msi_irq(irq, pdev);
926 }
927 #endif /* !(CONFIG_PCI_MSI) */
928 
929 static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit)
930 {
931 	struct pci_dev *ali_isa_bridge;
932 	u8 val;
933 
934 	/* ALI sound chips generate 31-bits of DMA, a special register
935 	 * determines what bit 31 is emitted as.
936 	 */
937 	ali_isa_bridge = pci_get_device(PCI_VENDOR_ID_AL,
938 					 PCI_DEVICE_ID_AL_M1533,
939 					 NULL);
940 
941 	pci_read_config_byte(ali_isa_bridge, 0x7e, &val);
942 	if (set_bit)
943 		val |= 0x01;
944 	else
945 		val &= ~0x01;
946 	pci_write_config_byte(ali_isa_bridge, 0x7e, val);
947 	pci_dev_put(ali_isa_bridge);
948 }
949 
950 int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask)
951 {
952 	u64 dma_addr_mask;
953 
954 	if (pdev == NULL) {
955 		dma_addr_mask = 0xffffffff;
956 	} else {
957 		struct iommu *iommu = pdev->dev.archdata.iommu;
958 
959 		dma_addr_mask = iommu->dma_addr_mask;
960 
961 		if (pdev->vendor == PCI_VENDOR_ID_AL &&
962 		    pdev->device == PCI_DEVICE_ID_AL_M5451 &&
963 		    device_mask == 0x7fffffff) {
964 			ali_sound_dma_hack(pdev,
965 					   (dma_addr_mask & 0x80000000) != 0);
966 			return 1;
967 		}
968 	}
969 
970 	if (device_mask >= (1UL << 32UL))
971 		return 0;
972 
973 	return (device_mask & dma_addr_mask) == dma_addr_mask;
974 }
975 
976 void pci_resource_to_user(const struct pci_dev *pdev, int bar,
977 			  const struct resource *rp, resource_size_t *start,
978 			  resource_size_t *end)
979 {
980 	struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
981 	unsigned long offset;
982 
983 	if (rp->flags & IORESOURCE_IO)
984 		offset = pbm->io_space.start;
985 	else
986 		offset = pbm->mem_space.start;
987 
988 	*start = rp->start - offset;
989 	*end = rp->end - offset;
990 }
991 
992 void pcibios_set_master(struct pci_dev *dev)
993 {
994 	/* No special bus mastering setup handling */
995 }
996 
997 static int __init pcibios_init(void)
998 {
999 	pci_dfl_cache_line_size = 64 >> 2;
1000 	return 0;
1001 }
1002 subsys_initcall(pcibios_init);
1003 
1004 #ifdef CONFIG_SYSFS
1005 
1006 #define SLOT_NAME_SIZE  11  /* Max decimal digits + null in u32 */
1007 
1008 static void pcie_bus_slot_names(struct pci_bus *pbus)
1009 {
1010 	struct pci_dev *pdev;
1011 	struct pci_bus *bus;
1012 
1013 	list_for_each_entry(pdev, &pbus->devices, bus_list) {
1014 		char name[SLOT_NAME_SIZE];
1015 		struct pci_slot *pci_slot;
1016 		const u32 *slot_num;
1017 		int len;
1018 
1019 		slot_num = of_get_property(pdev->dev.of_node,
1020 					   "physical-slot#", &len);
1021 
1022 		if (slot_num == NULL || len != 4)
1023 			continue;
1024 
1025 		snprintf(name, sizeof(name), "%u", slot_num[0]);
1026 		pci_slot = pci_create_slot(pbus, slot_num[0], name, NULL);
1027 
1028 		if (IS_ERR(pci_slot))
1029 			pr_err("PCI: pci_create_slot returned %ld.\n",
1030 			       PTR_ERR(pci_slot));
1031 	}
1032 
1033 	list_for_each_entry(bus, &pbus->children, node)
1034 		pcie_bus_slot_names(bus);
1035 }
1036 
1037 static void pci_bus_slot_names(struct device_node *node, struct pci_bus *bus)
1038 {
1039 	const struct pci_slot_names {
1040 		u32	slot_mask;
1041 		char	names[0];
1042 	} *prop;
1043 	const char *sp;
1044 	int len, i;
1045 	u32 mask;
1046 
1047 	prop = of_get_property(node, "slot-names", &len);
1048 	if (!prop)
1049 		return;
1050 
1051 	mask = prop->slot_mask;
1052 	sp = prop->names;
1053 
1054 	if (ofpci_verbose)
1055 		printk("PCI: Making slots for [%s] mask[0x%02x]\n",
1056 		       node->full_name, mask);
1057 
1058 	i = 0;
1059 	while (mask) {
1060 		struct pci_slot *pci_slot;
1061 		u32 this_bit = 1 << i;
1062 
1063 		if (!(mask & this_bit)) {
1064 			i++;
1065 			continue;
1066 		}
1067 
1068 		if (ofpci_verbose)
1069 			printk("PCI: Making slot [%s]\n", sp);
1070 
1071 		pci_slot = pci_create_slot(bus, i, sp, NULL);
1072 		if (IS_ERR(pci_slot))
1073 			printk(KERN_ERR "PCI: pci_create_slot returned %ld\n",
1074 			       PTR_ERR(pci_slot));
1075 
1076 		sp += strlen(sp) + 1;
1077 		mask &= ~this_bit;
1078 		i++;
1079 	}
1080 }
1081 
1082 static int __init of_pci_slot_init(void)
1083 {
1084 	struct pci_bus *pbus = NULL;
1085 
1086 	while ((pbus = pci_find_next_bus(pbus)) != NULL) {
1087 		struct device_node *node;
1088 		struct pci_dev *pdev;
1089 
1090 		pdev = list_first_entry(&pbus->devices, struct pci_dev,
1091 					bus_list);
1092 
1093 		if (pdev && pci_is_pcie(pdev)) {
1094 			pcie_bus_slot_names(pbus);
1095 		} else {
1096 
1097 			if (pbus->self) {
1098 
1099 				/* PCI->PCI bridge */
1100 				node = pbus->self->dev.of_node;
1101 
1102 			} else {
1103 				struct pci_pbm_info *pbm = pbus->sysdata;
1104 
1105 				/* Host PCI controller */
1106 				node = pbm->op->dev.of_node;
1107 			}
1108 
1109 			pci_bus_slot_names(node, pbus);
1110 		}
1111 	}
1112 
1113 	return 0;
1114 }
1115 device_initcall(of_pci_slot_init);
1116 #endif
1117