xref: /openbmc/linux/arch/sparc/kernel/pci.c (revision 1c2dd16a)
1 /* pci.c: UltraSparc PCI controller support.
2  *
3  * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
4  * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
5  * Copyright (C) 1999 Jakub Jelinek   (jj@ultra.linux.cz)
6  *
7  * OF tree based PCI bus probing taken from the PowerPC port
8  * with minor modifications, see there for credits.
9  */
10 
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/sched.h>
15 #include <linux/capability.h>
16 #include <linux/errno.h>
17 #include <linux/pci.h>
18 #include <linux/msi.h>
19 #include <linux/irq.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 
24 #include <linux/uaccess.h>
25 #include <asm/pgtable.h>
26 #include <asm/irq.h>
27 #include <asm/prom.h>
28 #include <asm/apb.h>
29 
30 #include "pci_impl.h"
31 #include "kernel.h"
32 
33 /* List of all PCI controllers found in the system. */
34 struct pci_pbm_info *pci_pbm_root = NULL;
35 
36 /* Each PBM found gets a unique index. */
37 int pci_num_pbms = 0;
38 
39 volatile int pci_poke_in_progress;
40 volatile int pci_poke_cpu = -1;
41 volatile int pci_poke_faulted;
42 
43 static DEFINE_SPINLOCK(pci_poke_lock);
44 
45 void pci_config_read8(u8 *addr, u8 *ret)
46 {
47 	unsigned long flags;
48 	u8 byte;
49 
50 	spin_lock_irqsave(&pci_poke_lock, flags);
51 	pci_poke_cpu = smp_processor_id();
52 	pci_poke_in_progress = 1;
53 	pci_poke_faulted = 0;
54 	__asm__ __volatile__("membar #Sync\n\t"
55 			     "lduba [%1] %2, %0\n\t"
56 			     "membar #Sync"
57 			     : "=r" (byte)
58 			     : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
59 			     : "memory");
60 	pci_poke_in_progress = 0;
61 	pci_poke_cpu = -1;
62 	if (!pci_poke_faulted)
63 		*ret = byte;
64 	spin_unlock_irqrestore(&pci_poke_lock, flags);
65 }
66 
67 void pci_config_read16(u16 *addr, u16 *ret)
68 {
69 	unsigned long flags;
70 	u16 word;
71 
72 	spin_lock_irqsave(&pci_poke_lock, flags);
73 	pci_poke_cpu = smp_processor_id();
74 	pci_poke_in_progress = 1;
75 	pci_poke_faulted = 0;
76 	__asm__ __volatile__("membar #Sync\n\t"
77 			     "lduha [%1] %2, %0\n\t"
78 			     "membar #Sync"
79 			     : "=r" (word)
80 			     : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
81 			     : "memory");
82 	pci_poke_in_progress = 0;
83 	pci_poke_cpu = -1;
84 	if (!pci_poke_faulted)
85 		*ret = word;
86 	spin_unlock_irqrestore(&pci_poke_lock, flags);
87 }
88 
89 void pci_config_read32(u32 *addr, u32 *ret)
90 {
91 	unsigned long flags;
92 	u32 dword;
93 
94 	spin_lock_irqsave(&pci_poke_lock, flags);
95 	pci_poke_cpu = smp_processor_id();
96 	pci_poke_in_progress = 1;
97 	pci_poke_faulted = 0;
98 	__asm__ __volatile__("membar #Sync\n\t"
99 			     "lduwa [%1] %2, %0\n\t"
100 			     "membar #Sync"
101 			     : "=r" (dword)
102 			     : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
103 			     : "memory");
104 	pci_poke_in_progress = 0;
105 	pci_poke_cpu = -1;
106 	if (!pci_poke_faulted)
107 		*ret = dword;
108 	spin_unlock_irqrestore(&pci_poke_lock, flags);
109 }
110 
111 void pci_config_write8(u8 *addr, u8 val)
112 {
113 	unsigned long flags;
114 
115 	spin_lock_irqsave(&pci_poke_lock, flags);
116 	pci_poke_cpu = smp_processor_id();
117 	pci_poke_in_progress = 1;
118 	pci_poke_faulted = 0;
119 	__asm__ __volatile__("membar #Sync\n\t"
120 			     "stba %0, [%1] %2\n\t"
121 			     "membar #Sync"
122 			     : /* no outputs */
123 			     : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
124 			     : "memory");
125 	pci_poke_in_progress = 0;
126 	pci_poke_cpu = -1;
127 	spin_unlock_irqrestore(&pci_poke_lock, flags);
128 }
129 
130 void pci_config_write16(u16 *addr, u16 val)
131 {
132 	unsigned long flags;
133 
134 	spin_lock_irqsave(&pci_poke_lock, flags);
135 	pci_poke_cpu = smp_processor_id();
136 	pci_poke_in_progress = 1;
137 	pci_poke_faulted = 0;
138 	__asm__ __volatile__("membar #Sync\n\t"
139 			     "stha %0, [%1] %2\n\t"
140 			     "membar #Sync"
141 			     : /* no outputs */
142 			     : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
143 			     : "memory");
144 	pci_poke_in_progress = 0;
145 	pci_poke_cpu = -1;
146 	spin_unlock_irqrestore(&pci_poke_lock, flags);
147 }
148 
149 void pci_config_write32(u32 *addr, u32 val)
150 {
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&pci_poke_lock, flags);
154 	pci_poke_cpu = smp_processor_id();
155 	pci_poke_in_progress = 1;
156 	pci_poke_faulted = 0;
157 	__asm__ __volatile__("membar #Sync\n\t"
158 			     "stwa %0, [%1] %2\n\t"
159 			     "membar #Sync"
160 			     : /* no outputs */
161 			     : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
162 			     : "memory");
163 	pci_poke_in_progress = 0;
164 	pci_poke_cpu = -1;
165 	spin_unlock_irqrestore(&pci_poke_lock, flags);
166 }
167 
168 static int ofpci_verbose;
169 
170 static int __init ofpci_debug(char *str)
171 {
172 	int val = 0;
173 
174 	get_option(&str, &val);
175 	if (val)
176 		ofpci_verbose = 1;
177 	return 1;
178 }
179 
180 __setup("ofpci_debug=", ofpci_debug);
181 
182 static unsigned long pci_parse_of_flags(u32 addr0)
183 {
184 	unsigned long flags = 0;
185 
186 	if (addr0 & 0x02000000) {
187 		flags = IORESOURCE_MEM | PCI_BASE_ADDRESS_SPACE_MEMORY;
188 		flags |= (addr0 >> 28) & PCI_BASE_ADDRESS_MEM_TYPE_1M;
189 		if (addr0 & 0x01000000)
190 			flags |= IORESOURCE_MEM_64
191 				 | PCI_BASE_ADDRESS_MEM_TYPE_64;
192 		if (addr0 & 0x40000000)
193 			flags |= IORESOURCE_PREFETCH
194 				 | PCI_BASE_ADDRESS_MEM_PREFETCH;
195 	} else if (addr0 & 0x01000000)
196 		flags = IORESOURCE_IO | PCI_BASE_ADDRESS_SPACE_IO;
197 	return flags;
198 }
199 
200 /* The of_device layer has translated all of the assigned-address properties
201  * into physical address resources, we only have to figure out the register
202  * mapping.
203  */
204 static void pci_parse_of_addrs(struct platform_device *op,
205 			       struct device_node *node,
206 			       struct pci_dev *dev)
207 {
208 	struct resource *op_res;
209 	const u32 *addrs;
210 	int proplen;
211 
212 	addrs = of_get_property(node, "assigned-addresses", &proplen);
213 	if (!addrs)
214 		return;
215 	if (ofpci_verbose)
216 		printk("    parse addresses (%d bytes) @ %p\n",
217 		       proplen, addrs);
218 	op_res = &op->resource[0];
219 	for (; proplen >= 20; proplen -= 20, addrs += 5, op_res++) {
220 		struct resource *res;
221 		unsigned long flags;
222 		int i;
223 
224 		flags = pci_parse_of_flags(addrs[0]);
225 		if (!flags)
226 			continue;
227 		i = addrs[0] & 0xff;
228 		if (ofpci_verbose)
229 			printk("  start: %llx, end: %llx, i: %x\n",
230 			       op_res->start, op_res->end, i);
231 
232 		if (PCI_BASE_ADDRESS_0 <= i && i <= PCI_BASE_ADDRESS_5) {
233 			res = &dev->resource[(i - PCI_BASE_ADDRESS_0) >> 2];
234 		} else if (i == dev->rom_base_reg) {
235 			res = &dev->resource[PCI_ROM_RESOURCE];
236 			flags |= IORESOURCE_READONLY | IORESOURCE_SIZEALIGN;
237 		} else {
238 			printk(KERN_ERR "PCI: bad cfg reg num 0x%x\n", i);
239 			continue;
240 		}
241 		res->start = op_res->start;
242 		res->end = op_res->end;
243 		res->flags = flags;
244 		res->name = pci_name(dev);
245 	}
246 }
247 
248 static void pci_init_dev_archdata(struct dev_archdata *sd, void *iommu,
249 				  void *stc, void *host_controller,
250 				  struct platform_device  *op,
251 				  int numa_node)
252 {
253 	sd->iommu = iommu;
254 	sd->stc = stc;
255 	sd->host_controller = host_controller;
256 	sd->op = op;
257 	sd->numa_node = numa_node;
258 }
259 
260 static struct pci_dev *of_create_pci_dev(struct pci_pbm_info *pbm,
261 					 struct device_node *node,
262 					 struct pci_bus *bus, int devfn)
263 {
264 	struct dev_archdata *sd;
265 	struct platform_device *op;
266 	struct pci_dev *dev;
267 	const char *type;
268 	u32 class;
269 
270 	dev = pci_alloc_dev(bus);
271 	if (!dev)
272 		return NULL;
273 
274 	op = of_find_device_by_node(node);
275 	sd = &dev->dev.archdata;
276 	pci_init_dev_archdata(sd, pbm->iommu, &pbm->stc, pbm, op,
277 			      pbm->numa_node);
278 	sd = &op->dev.archdata;
279 	sd->iommu = pbm->iommu;
280 	sd->stc = &pbm->stc;
281 	sd->numa_node = pbm->numa_node;
282 
283 	if (!strcmp(node->name, "ebus"))
284 		of_propagate_archdata(op);
285 
286 	type = of_get_property(node, "device_type", NULL);
287 	if (type == NULL)
288 		type = "";
289 
290 	if (ofpci_verbose)
291 		printk("    create device, devfn: %x, type: %s\n",
292 		       devfn, type);
293 
294 	dev->sysdata = node;
295 	dev->dev.parent = bus->bridge;
296 	dev->dev.bus = &pci_bus_type;
297 	dev->dev.of_node = of_node_get(node);
298 	dev->devfn = devfn;
299 	dev->multifunction = 0;		/* maybe a lie? */
300 	set_pcie_port_type(dev);
301 
302 	pci_dev_assign_slot(dev);
303 	dev->vendor = of_getintprop_default(node, "vendor-id", 0xffff);
304 	dev->device = of_getintprop_default(node, "device-id", 0xffff);
305 	dev->subsystem_vendor =
306 		of_getintprop_default(node, "subsystem-vendor-id", 0);
307 	dev->subsystem_device =
308 		of_getintprop_default(node, "subsystem-id", 0);
309 
310 	dev->cfg_size = pci_cfg_space_size(dev);
311 
312 	/* We can't actually use the firmware value, we have
313 	 * to read what is in the register right now.  One
314 	 * reason is that in the case of IDE interfaces the
315 	 * firmware can sample the value before the the IDE
316 	 * interface is programmed into native mode.
317 	 */
318 	pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
319 	dev->class = class >> 8;
320 	dev->revision = class & 0xff;
321 
322 	dev_set_name(&dev->dev, "%04x:%02x:%02x.%d", pci_domain_nr(bus),
323 		dev->bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
324 
325 	if (ofpci_verbose)
326 		printk("    class: 0x%x device name: %s\n",
327 		       dev->class, pci_name(dev));
328 
329 	/* I have seen IDE devices which will not respond to
330 	 * the bmdma simplex check reads if bus mastering is
331 	 * disabled.
332 	 */
333 	if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
334 		pci_set_master(dev);
335 
336 	dev->current_state = PCI_UNKNOWN;	/* unknown power state */
337 	dev->error_state = pci_channel_io_normal;
338 	dev->dma_mask = 0xffffffff;
339 
340 	if (!strcmp(node->name, "pci")) {
341 		/* a PCI-PCI bridge */
342 		dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
343 		dev->rom_base_reg = PCI_ROM_ADDRESS1;
344 	} else if (!strcmp(type, "cardbus")) {
345 		dev->hdr_type = PCI_HEADER_TYPE_CARDBUS;
346 	} else {
347 		dev->hdr_type = PCI_HEADER_TYPE_NORMAL;
348 		dev->rom_base_reg = PCI_ROM_ADDRESS;
349 
350 		dev->irq = sd->op->archdata.irqs[0];
351 		if (dev->irq == 0xffffffff)
352 			dev->irq = PCI_IRQ_NONE;
353 	}
354 
355 	pci_parse_of_addrs(sd->op, node, dev);
356 
357 	if (ofpci_verbose)
358 		printk("    adding to system ...\n");
359 
360 	pci_device_add(dev, bus);
361 
362 	return dev;
363 }
364 
365 static void apb_calc_first_last(u8 map, u32 *first_p, u32 *last_p)
366 {
367 	u32 idx, first, last;
368 
369 	first = 8;
370 	last = 0;
371 	for (idx = 0; idx < 8; idx++) {
372 		if ((map & (1 << idx)) != 0) {
373 			if (first > idx)
374 				first = idx;
375 			if (last < idx)
376 				last = idx;
377 		}
378 	}
379 
380 	*first_p = first;
381 	*last_p = last;
382 }
383 
384 /* Cook up fake bus resources for SUNW,simba PCI bridges which lack
385  * a proper 'ranges' property.
386  */
387 static void apb_fake_ranges(struct pci_dev *dev,
388 			    struct pci_bus *bus,
389 			    struct pci_pbm_info *pbm)
390 {
391 	struct pci_bus_region region;
392 	struct resource *res;
393 	u32 first, last;
394 	u8 map;
395 
396 	pci_read_config_byte(dev, APB_IO_ADDRESS_MAP, &map);
397 	apb_calc_first_last(map, &first, &last);
398 	res = bus->resource[0];
399 	res->flags = IORESOURCE_IO;
400 	region.start = (first << 21);
401 	region.end = (last << 21) + ((1 << 21) - 1);
402 	pcibios_bus_to_resource(dev->bus, res, &region);
403 
404 	pci_read_config_byte(dev, APB_MEM_ADDRESS_MAP, &map);
405 	apb_calc_first_last(map, &first, &last);
406 	res = bus->resource[1];
407 	res->flags = IORESOURCE_MEM;
408 	region.start = (first << 29);
409 	region.end = (last << 29) + ((1 << 29) - 1);
410 	pcibios_bus_to_resource(dev->bus, res, &region);
411 }
412 
413 static void pci_of_scan_bus(struct pci_pbm_info *pbm,
414 			    struct device_node *node,
415 			    struct pci_bus *bus);
416 
417 #define GET_64BIT(prop, i)	((((u64) (prop)[(i)]) << 32) | (prop)[(i)+1])
418 
419 static void of_scan_pci_bridge(struct pci_pbm_info *pbm,
420 			       struct device_node *node,
421 			       struct pci_dev *dev)
422 {
423 	struct pci_bus *bus;
424 	const u32 *busrange, *ranges;
425 	int len, i, simba;
426 	struct pci_bus_region region;
427 	struct resource *res;
428 	unsigned int flags;
429 	u64 size;
430 
431 	if (ofpci_verbose)
432 		printk("of_scan_pci_bridge(%s)\n", node->full_name);
433 
434 	/* parse bus-range property */
435 	busrange = of_get_property(node, "bus-range", &len);
436 	if (busrange == NULL || len != 8) {
437 		printk(KERN_DEBUG "Can't get bus-range for PCI-PCI bridge %s\n",
438 		       node->full_name);
439 		return;
440 	}
441 
442 	if (ofpci_verbose)
443 		printk("    Bridge bus range [%u --> %u]\n",
444 		       busrange[0], busrange[1]);
445 
446 	ranges = of_get_property(node, "ranges", &len);
447 	simba = 0;
448 	if (ranges == NULL) {
449 		const char *model = of_get_property(node, "model", NULL);
450 		if (model && !strcmp(model, "SUNW,simba"))
451 			simba = 1;
452 	}
453 
454 	bus = pci_add_new_bus(dev->bus, dev, busrange[0]);
455 	if (!bus) {
456 		printk(KERN_ERR "Failed to create pci bus for %s\n",
457 		       node->full_name);
458 		return;
459 	}
460 
461 	bus->primary = dev->bus->number;
462 	pci_bus_insert_busn_res(bus, busrange[0], busrange[1]);
463 	bus->bridge_ctl = 0;
464 
465 	if (ofpci_verbose)
466 		printk("    Bridge ranges[%p] simba[%d]\n",
467 		       ranges, simba);
468 
469 	/* parse ranges property, or cook one up by hand for Simba */
470 	/* PCI #address-cells == 3 and #size-cells == 2 always */
471 	res = &dev->resource[PCI_BRIDGE_RESOURCES];
472 	for (i = 0; i < PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES; ++i) {
473 		res->flags = 0;
474 		bus->resource[i] = res;
475 		++res;
476 	}
477 	if (simba) {
478 		apb_fake_ranges(dev, bus, pbm);
479 		goto after_ranges;
480 	} else if (ranges == NULL) {
481 		pci_read_bridge_bases(bus);
482 		goto after_ranges;
483 	}
484 	i = 1;
485 	for (; len >= 32; len -= 32, ranges += 8) {
486 		u64 start;
487 
488 		if (ofpci_verbose)
489 			printk("    RAW Range[%08x:%08x:%08x:%08x:%08x:%08x:"
490 			       "%08x:%08x]\n",
491 			       ranges[0], ranges[1], ranges[2], ranges[3],
492 			       ranges[4], ranges[5], ranges[6], ranges[7]);
493 
494 		flags = pci_parse_of_flags(ranges[0]);
495 		size = GET_64BIT(ranges, 6);
496 		if (flags == 0 || size == 0)
497 			continue;
498 
499 		/* On PCI-Express systems, PCI bridges that have no devices downstream
500 		 * have a bogus size value where the first 32-bit cell is 0xffffffff.
501 		 * This results in a bogus range where start + size overflows.
502 		 *
503 		 * Just skip these otherwise the kernel will complain when the resource
504 		 * tries to be claimed.
505 		 */
506 		if (size >> 32 == 0xffffffff)
507 			continue;
508 
509 		if (flags & IORESOURCE_IO) {
510 			res = bus->resource[0];
511 			if (res->flags) {
512 				printk(KERN_ERR "PCI: ignoring extra I/O range"
513 				       " for bridge %s\n", node->full_name);
514 				continue;
515 			}
516 		} else {
517 			if (i >= PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES) {
518 				printk(KERN_ERR "PCI: too many memory ranges"
519 				       " for bridge %s\n", node->full_name);
520 				continue;
521 			}
522 			res = bus->resource[i];
523 			++i;
524 		}
525 
526 		res->flags = flags;
527 		region.start = start = GET_64BIT(ranges, 1);
528 		region.end = region.start + size - 1;
529 
530 		if (ofpci_verbose)
531 			printk("      Using flags[%08x] start[%016llx] size[%016llx]\n",
532 			       flags, start, size);
533 
534 		pcibios_bus_to_resource(dev->bus, res, &region);
535 	}
536 after_ranges:
537 	sprintf(bus->name, "PCI Bus %04x:%02x", pci_domain_nr(bus),
538 		bus->number);
539 	if (ofpci_verbose)
540 		printk("    bus name: %s\n", bus->name);
541 
542 	pci_of_scan_bus(pbm, node, bus);
543 }
544 
545 static void pci_of_scan_bus(struct pci_pbm_info *pbm,
546 			    struct device_node *node,
547 			    struct pci_bus *bus)
548 {
549 	struct device_node *child;
550 	const u32 *reg;
551 	int reglen, devfn, prev_devfn;
552 	struct pci_dev *dev;
553 
554 	if (ofpci_verbose)
555 		printk("PCI: scan_bus[%s] bus no %d\n",
556 		       node->full_name, bus->number);
557 
558 	child = NULL;
559 	prev_devfn = -1;
560 	while ((child = of_get_next_child(node, child)) != NULL) {
561 		if (ofpci_verbose)
562 			printk("  * %s\n", child->full_name);
563 		reg = of_get_property(child, "reg", &reglen);
564 		if (reg == NULL || reglen < 20)
565 			continue;
566 
567 		devfn = (reg[0] >> 8) & 0xff;
568 
569 		/* This is a workaround for some device trees
570 		 * which list PCI devices twice.  On the V100
571 		 * for example, device number 3 is listed twice.
572 		 * Once as "pm" and once again as "lomp".
573 		 */
574 		if (devfn == prev_devfn)
575 			continue;
576 		prev_devfn = devfn;
577 
578 		/* create a new pci_dev for this device */
579 		dev = of_create_pci_dev(pbm, child, bus, devfn);
580 		if (!dev)
581 			continue;
582 		if (ofpci_verbose)
583 			printk("PCI: dev header type: %x\n",
584 			       dev->hdr_type);
585 
586 		if (pci_is_bridge(dev))
587 			of_scan_pci_bridge(pbm, child, dev);
588 	}
589 }
590 
591 static ssize_t
592 show_pciobppath_attr(struct device * dev, struct device_attribute * attr, char * buf)
593 {
594 	struct pci_dev *pdev;
595 	struct device_node *dp;
596 
597 	pdev = to_pci_dev(dev);
598 	dp = pdev->dev.of_node;
599 
600 	return snprintf (buf, PAGE_SIZE, "%s\n", dp->full_name);
601 }
602 
603 static DEVICE_ATTR(obppath, S_IRUSR | S_IRGRP | S_IROTH, show_pciobppath_attr, NULL);
604 
605 static void pci_bus_register_of_sysfs(struct pci_bus *bus)
606 {
607 	struct pci_dev *dev;
608 	struct pci_bus *child_bus;
609 	int err;
610 
611 	list_for_each_entry(dev, &bus->devices, bus_list) {
612 		/* we don't really care if we can create this file or
613 		 * not, but we need to assign the result of the call
614 		 * or the world will fall under alien invasion and
615 		 * everybody will be frozen on a spaceship ready to be
616 		 * eaten on alpha centauri by some green and jelly
617 		 * humanoid.
618 		 */
619 		err = sysfs_create_file(&dev->dev.kobj, &dev_attr_obppath.attr);
620 		(void) err;
621 	}
622 	list_for_each_entry(child_bus, &bus->children, node)
623 		pci_bus_register_of_sysfs(child_bus);
624 }
625 
626 static void pci_claim_bus_resources(struct pci_bus *bus)
627 {
628 	struct pci_bus *child_bus;
629 	struct pci_dev *dev;
630 
631 	list_for_each_entry(dev, &bus->devices, bus_list) {
632 		int i;
633 
634 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
635 			struct resource *r = &dev->resource[i];
636 
637 			if (r->parent || !r->start || !r->flags)
638 				continue;
639 
640 			if (ofpci_verbose)
641 				printk("PCI: Claiming %s: "
642 				       "Resource %d: %016llx..%016llx [%x]\n",
643 				       pci_name(dev), i,
644 				       (unsigned long long)r->start,
645 				       (unsigned long long)r->end,
646 				       (unsigned int)r->flags);
647 
648 			pci_claim_resource(dev, i);
649 		}
650 	}
651 
652 	list_for_each_entry(child_bus, &bus->children, node)
653 		pci_claim_bus_resources(child_bus);
654 }
655 
656 struct pci_bus *pci_scan_one_pbm(struct pci_pbm_info *pbm,
657 				 struct device *parent)
658 {
659 	LIST_HEAD(resources);
660 	struct device_node *node = pbm->op->dev.of_node;
661 	struct pci_bus *bus;
662 
663 	printk("PCI: Scanning PBM %s\n", node->full_name);
664 
665 	pci_add_resource_offset(&resources, &pbm->io_space,
666 				pbm->io_space.start);
667 	pci_add_resource_offset(&resources, &pbm->mem_space,
668 				pbm->mem_space.start);
669 	if (pbm->mem64_space.flags)
670 		pci_add_resource_offset(&resources, &pbm->mem64_space,
671 					pbm->mem_space.start);
672 	pbm->busn.start = pbm->pci_first_busno;
673 	pbm->busn.end	= pbm->pci_last_busno;
674 	pbm->busn.flags	= IORESOURCE_BUS;
675 	pci_add_resource(&resources, &pbm->busn);
676 	bus = pci_create_root_bus(parent, pbm->pci_first_busno, pbm->pci_ops,
677 				  pbm, &resources);
678 	if (!bus) {
679 		printk(KERN_ERR "Failed to create bus for %s\n",
680 		       node->full_name);
681 		pci_free_resource_list(&resources);
682 		return NULL;
683 	}
684 
685 	pci_of_scan_bus(pbm, node, bus);
686 	pci_bus_register_of_sysfs(bus);
687 
688 	pci_claim_bus_resources(bus);
689 	pci_bus_add_devices(bus);
690 	return bus;
691 }
692 
693 void pcibios_fixup_bus(struct pci_bus *pbus)
694 {
695 }
696 
697 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
698 				resource_size_t size, resource_size_t align)
699 {
700 	return res->start;
701 }
702 
703 int pcibios_enable_device(struct pci_dev *dev, int mask)
704 {
705 	u16 cmd, oldcmd;
706 	int i;
707 
708 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
709 	oldcmd = cmd;
710 
711 	for (i = 0; i < PCI_NUM_RESOURCES; i++) {
712 		struct resource *res = &dev->resource[i];
713 
714 		/* Only set up the requested stuff */
715 		if (!(mask & (1<<i)))
716 			continue;
717 
718 		if (res->flags & IORESOURCE_IO)
719 			cmd |= PCI_COMMAND_IO;
720 		if (res->flags & IORESOURCE_MEM)
721 			cmd |= PCI_COMMAND_MEMORY;
722 	}
723 
724 	if (cmd != oldcmd) {
725 		printk(KERN_DEBUG "PCI: Enabling device: (%s), cmd %x\n",
726 		       pci_name(dev), cmd);
727                 /* Enable the appropriate bits in the PCI command register.  */
728 		pci_write_config_word(dev, PCI_COMMAND, cmd);
729 	}
730 	return 0;
731 }
732 
733 /* Platform support for /proc/bus/pci/X/Y mmap()s. */
734 
735 /* If the user uses a host-bridge as the PCI device, he may use
736  * this to perform a raw mmap() of the I/O or MEM space behind
737  * that controller.
738  *
739  * This can be useful for execution of x86 PCI bios initialization code
740  * on a PCI card, like the xfree86 int10 stuff does.
741  */
742 static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
743 				      enum pci_mmap_state mmap_state)
744 {
745 	struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
746 	unsigned long space_size, user_offset, user_size;
747 
748 	if (mmap_state == pci_mmap_io) {
749 		space_size = resource_size(&pbm->io_space);
750 	} else {
751 		space_size = resource_size(&pbm->mem_space);
752 	}
753 
754 	/* Make sure the request is in range. */
755 	user_offset = vma->vm_pgoff << PAGE_SHIFT;
756 	user_size = vma->vm_end - vma->vm_start;
757 
758 	if (user_offset >= space_size ||
759 	    (user_offset + user_size) > space_size)
760 		return -EINVAL;
761 
762 	if (mmap_state == pci_mmap_io) {
763 		vma->vm_pgoff = (pbm->io_space.start +
764 				 user_offset) >> PAGE_SHIFT;
765 	} else {
766 		vma->vm_pgoff = (pbm->mem_space.start +
767 				 user_offset) >> PAGE_SHIFT;
768 	}
769 
770 	return 0;
771 }
772 
773 /* Adjust vm_pgoff of VMA such that it is the physical page offset
774  * corresponding to the 32-bit pci bus offset for DEV requested by the user.
775  *
776  * Basically, the user finds the base address for his device which he wishes
777  * to mmap.  They read the 32-bit value from the config space base register,
778  * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
779  * offset parameter of mmap on /proc/bus/pci/XXX for that device.
780  *
781  * Returns negative error code on failure, zero on success.
782  */
783 static int __pci_mmap_make_offset(struct pci_dev *pdev,
784 				  struct vm_area_struct *vma,
785 				  enum pci_mmap_state mmap_state)
786 {
787 	unsigned long user_paddr, user_size;
788 	int i, err;
789 
790 	/* First compute the physical address in vma->vm_pgoff,
791 	 * making sure the user offset is within range in the
792 	 * appropriate PCI space.
793 	 */
794 	err = __pci_mmap_make_offset_bus(pdev, vma, mmap_state);
795 	if (err)
796 		return err;
797 
798 	/* If this is a mapping on a host bridge, any address
799 	 * is OK.
800 	 */
801 	if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
802 		return err;
803 
804 	/* Otherwise make sure it's in the range for one of the
805 	 * device's resources.
806 	 */
807 	user_paddr = vma->vm_pgoff << PAGE_SHIFT;
808 	user_size = vma->vm_end - vma->vm_start;
809 
810 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
811 		struct resource *rp = &pdev->resource[i];
812 		resource_size_t aligned_end;
813 
814 		/* Active? */
815 		if (!rp->flags)
816 			continue;
817 
818 		/* Same type? */
819 		if (i == PCI_ROM_RESOURCE) {
820 			if (mmap_state != pci_mmap_mem)
821 				continue;
822 		} else {
823 			if ((mmap_state == pci_mmap_io &&
824 			     (rp->flags & IORESOURCE_IO) == 0) ||
825 			    (mmap_state == pci_mmap_mem &&
826 			     (rp->flags & IORESOURCE_MEM) == 0))
827 				continue;
828 		}
829 
830 		/* Align the resource end to the next page address.
831 		 * PAGE_SIZE intentionally added instead of (PAGE_SIZE - 1),
832 		 * because actually we need the address of the next byte
833 		 * after rp->end.
834 		 */
835 		aligned_end = (rp->end + PAGE_SIZE) & PAGE_MASK;
836 
837 		if ((rp->start <= user_paddr) &&
838 		    (user_paddr + user_size) <= aligned_end)
839 			break;
840 	}
841 
842 	if (i > PCI_ROM_RESOURCE)
843 		return -EINVAL;
844 
845 	return 0;
846 }
847 
848 /* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
849  * device mapping.
850  */
851 static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
852 					     enum pci_mmap_state mmap_state)
853 {
854 	/* Our io_remap_pfn_range takes care of this, do nothing.  */
855 }
856 
857 /* Perform the actual remap of the pages for a PCI device mapping, as appropriate
858  * for this architecture.  The region in the process to map is described by vm_start
859  * and vm_end members of VMA, the base physical address is found in vm_pgoff.
860  * The pci device structure is provided so that architectures may make mapping
861  * decisions on a per-device or per-bus basis.
862  *
863  * Returns a negative error code on failure, zero on success.
864  */
865 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
866 			enum pci_mmap_state mmap_state,
867 			int write_combine)
868 {
869 	int ret;
870 
871 	ret = __pci_mmap_make_offset(dev, vma, mmap_state);
872 	if (ret < 0)
873 		return ret;
874 
875 	__pci_mmap_set_pgprot(dev, vma, mmap_state);
876 
877 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
878 	ret = io_remap_pfn_range(vma, vma->vm_start,
879 				 vma->vm_pgoff,
880 				 vma->vm_end - vma->vm_start,
881 				 vma->vm_page_prot);
882 	if (ret)
883 		return ret;
884 
885 	return 0;
886 }
887 
888 #ifdef CONFIG_NUMA
889 int pcibus_to_node(struct pci_bus *pbus)
890 {
891 	struct pci_pbm_info *pbm = pbus->sysdata;
892 
893 	return pbm->numa_node;
894 }
895 EXPORT_SYMBOL(pcibus_to_node);
896 #endif
897 
898 /* Return the domain number for this pci bus */
899 
900 int pci_domain_nr(struct pci_bus *pbus)
901 {
902 	struct pci_pbm_info *pbm = pbus->sysdata;
903 	int ret;
904 
905 	if (!pbm) {
906 		ret = -ENXIO;
907 	} else {
908 		ret = pbm->index;
909 	}
910 
911 	return ret;
912 }
913 EXPORT_SYMBOL(pci_domain_nr);
914 
915 #ifdef CONFIG_PCI_MSI
916 int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
917 {
918 	struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
919 	unsigned int irq;
920 
921 	if (!pbm->setup_msi_irq)
922 		return -EINVAL;
923 
924 	return pbm->setup_msi_irq(&irq, pdev, desc);
925 }
926 
927 void arch_teardown_msi_irq(unsigned int irq)
928 {
929 	struct msi_desc *entry = irq_get_msi_desc(irq);
930 	struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
931 	struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
932 
933 	if (pbm->teardown_msi_irq)
934 		pbm->teardown_msi_irq(irq, pdev);
935 }
936 #endif /* !(CONFIG_PCI_MSI) */
937 
938 static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit)
939 {
940 	struct pci_dev *ali_isa_bridge;
941 	u8 val;
942 
943 	/* ALI sound chips generate 31-bits of DMA, a special register
944 	 * determines what bit 31 is emitted as.
945 	 */
946 	ali_isa_bridge = pci_get_device(PCI_VENDOR_ID_AL,
947 					 PCI_DEVICE_ID_AL_M1533,
948 					 NULL);
949 
950 	pci_read_config_byte(ali_isa_bridge, 0x7e, &val);
951 	if (set_bit)
952 		val |= 0x01;
953 	else
954 		val &= ~0x01;
955 	pci_write_config_byte(ali_isa_bridge, 0x7e, val);
956 	pci_dev_put(ali_isa_bridge);
957 }
958 
959 int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask)
960 {
961 	u64 dma_addr_mask;
962 
963 	if (pdev == NULL) {
964 		dma_addr_mask = 0xffffffff;
965 	} else {
966 		struct iommu *iommu = pdev->dev.archdata.iommu;
967 
968 		dma_addr_mask = iommu->dma_addr_mask;
969 
970 		if (pdev->vendor == PCI_VENDOR_ID_AL &&
971 		    pdev->device == PCI_DEVICE_ID_AL_M5451 &&
972 		    device_mask == 0x7fffffff) {
973 			ali_sound_dma_hack(pdev,
974 					   (dma_addr_mask & 0x80000000) != 0);
975 			return 1;
976 		}
977 	}
978 
979 	if (device_mask >= (1UL << 32UL))
980 		return 0;
981 
982 	return (device_mask & dma_addr_mask) == dma_addr_mask;
983 }
984 
985 void pci_resource_to_user(const struct pci_dev *pdev, int bar,
986 			  const struct resource *rp, resource_size_t *start,
987 			  resource_size_t *end)
988 {
989 	struct pci_bus_region region;
990 
991 	/*
992 	 * "User" addresses are shown in /sys/devices/pci.../.../resource
993 	 * and /proc/bus/pci/devices and used as mmap offsets for
994 	 * /proc/bus/pci/BB/DD.F files (see proc_bus_pci_mmap()).
995 	 *
996 	 * On sparc, these are PCI bus addresses, i.e., raw BAR values.
997 	 */
998 	pcibios_resource_to_bus(pdev->bus, &region, (struct resource *) rp);
999 	*start = region.start;
1000 	*end = region.end;
1001 }
1002 
1003 void pcibios_set_master(struct pci_dev *dev)
1004 {
1005 	/* No special bus mastering setup handling */
1006 }
1007 
1008 #ifdef CONFIG_PCI_IOV
1009 int pcibios_add_device(struct pci_dev *dev)
1010 {
1011 	struct pci_dev *pdev;
1012 
1013 	/* Add sriov arch specific initialization here.
1014 	 * Copy dev_archdata from PF to VF
1015 	 */
1016 	if (dev->is_virtfn) {
1017 		struct dev_archdata *psd;
1018 
1019 		pdev = dev->physfn;
1020 		psd = &pdev->dev.archdata;
1021 		pci_init_dev_archdata(&dev->dev.archdata, psd->iommu,
1022 				      psd->stc, psd->host_controller, NULL,
1023 				      psd->numa_node);
1024 	}
1025 	return 0;
1026 }
1027 #endif /* CONFIG_PCI_IOV */
1028 
1029 static int __init pcibios_init(void)
1030 {
1031 	pci_dfl_cache_line_size = 64 >> 2;
1032 	return 0;
1033 }
1034 subsys_initcall(pcibios_init);
1035 
1036 #ifdef CONFIG_SYSFS
1037 
1038 #define SLOT_NAME_SIZE  11  /* Max decimal digits + null in u32 */
1039 
1040 static void pcie_bus_slot_names(struct pci_bus *pbus)
1041 {
1042 	struct pci_dev *pdev;
1043 	struct pci_bus *bus;
1044 
1045 	list_for_each_entry(pdev, &pbus->devices, bus_list) {
1046 		char name[SLOT_NAME_SIZE];
1047 		struct pci_slot *pci_slot;
1048 		const u32 *slot_num;
1049 		int len;
1050 
1051 		slot_num = of_get_property(pdev->dev.of_node,
1052 					   "physical-slot#", &len);
1053 
1054 		if (slot_num == NULL || len != 4)
1055 			continue;
1056 
1057 		snprintf(name, sizeof(name), "%u", slot_num[0]);
1058 		pci_slot = pci_create_slot(pbus, slot_num[0], name, NULL);
1059 
1060 		if (IS_ERR(pci_slot))
1061 			pr_err("PCI: pci_create_slot returned %ld.\n",
1062 			       PTR_ERR(pci_slot));
1063 	}
1064 
1065 	list_for_each_entry(bus, &pbus->children, node)
1066 		pcie_bus_slot_names(bus);
1067 }
1068 
1069 static void pci_bus_slot_names(struct device_node *node, struct pci_bus *bus)
1070 {
1071 	const struct pci_slot_names {
1072 		u32	slot_mask;
1073 		char	names[0];
1074 	} *prop;
1075 	const char *sp;
1076 	int len, i;
1077 	u32 mask;
1078 
1079 	prop = of_get_property(node, "slot-names", &len);
1080 	if (!prop)
1081 		return;
1082 
1083 	mask = prop->slot_mask;
1084 	sp = prop->names;
1085 
1086 	if (ofpci_verbose)
1087 		printk("PCI: Making slots for [%s] mask[0x%02x]\n",
1088 		       node->full_name, mask);
1089 
1090 	i = 0;
1091 	while (mask) {
1092 		struct pci_slot *pci_slot;
1093 		u32 this_bit = 1 << i;
1094 
1095 		if (!(mask & this_bit)) {
1096 			i++;
1097 			continue;
1098 		}
1099 
1100 		if (ofpci_verbose)
1101 			printk("PCI: Making slot [%s]\n", sp);
1102 
1103 		pci_slot = pci_create_slot(bus, i, sp, NULL);
1104 		if (IS_ERR(pci_slot))
1105 			printk(KERN_ERR "PCI: pci_create_slot returned %ld\n",
1106 			       PTR_ERR(pci_slot));
1107 
1108 		sp += strlen(sp) + 1;
1109 		mask &= ~this_bit;
1110 		i++;
1111 	}
1112 }
1113 
1114 static int __init of_pci_slot_init(void)
1115 {
1116 	struct pci_bus *pbus = NULL;
1117 
1118 	while ((pbus = pci_find_next_bus(pbus)) != NULL) {
1119 		struct device_node *node;
1120 		struct pci_dev *pdev;
1121 
1122 		pdev = list_first_entry(&pbus->devices, struct pci_dev,
1123 					bus_list);
1124 
1125 		if (pdev && pci_is_pcie(pdev)) {
1126 			pcie_bus_slot_names(pbus);
1127 		} else {
1128 
1129 			if (pbus->self) {
1130 
1131 				/* PCI->PCI bridge */
1132 				node = pbus->self->dev.of_node;
1133 
1134 			} else {
1135 				struct pci_pbm_info *pbm = pbus->sysdata;
1136 
1137 				/* Host PCI controller */
1138 				node = pbm->op->dev.of_node;
1139 			}
1140 
1141 			pci_bus_slot_names(node, pbus);
1142 		}
1143 	}
1144 
1145 	return 0;
1146 }
1147 device_initcall(of_pci_slot_init);
1148 #endif
1149