1 #include <linux/string.h> 2 #include <linux/kernel.h> 3 #include <linux/of.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/mod_devicetable.h> 7 #include <linux/slab.h> 8 #include <linux/errno.h> 9 #include <linux/irq.h> 10 #include <linux/of_device.h> 11 #include <linux/of_platform.h> 12 13 #include "of_device_common.h" 14 15 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name) 16 { 17 unsigned long ret = res->start + offset; 18 struct resource *r; 19 20 if (res->flags & IORESOURCE_MEM) 21 r = request_mem_region(ret, size, name); 22 else 23 r = request_region(ret, size, name); 24 if (!r) 25 ret = 0; 26 27 return (void __iomem *) ret; 28 } 29 EXPORT_SYMBOL(of_ioremap); 30 31 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size) 32 { 33 if (res->flags & IORESOURCE_MEM) 34 release_mem_region((unsigned long) base, size); 35 else 36 release_region((unsigned long) base, size); 37 } 38 EXPORT_SYMBOL(of_iounmap); 39 40 /* 41 * PCI bus specific translator 42 */ 43 44 static int of_bus_pci_match(struct device_node *np) 45 { 46 if (!strcmp(np->name, "pci")) { 47 const char *model = of_get_property(np, "model", NULL); 48 49 if (model && !strcmp(model, "SUNW,simba")) 50 return 0; 51 52 /* Do not do PCI specific frobbing if the 53 * PCI bridge lacks a ranges property. We 54 * want to pass it through up to the next 55 * parent as-is, not with the PCI translate 56 * method which chops off the top address cell. 57 */ 58 if (!of_find_property(np, "ranges", NULL)) 59 return 0; 60 61 return 1; 62 } 63 64 return 0; 65 } 66 67 static int of_bus_simba_match(struct device_node *np) 68 { 69 const char *model = of_get_property(np, "model", NULL); 70 71 if (model && !strcmp(model, "SUNW,simba")) 72 return 1; 73 74 /* Treat PCI busses lacking ranges property just like 75 * simba. 76 */ 77 if (!strcmp(np->name, "pci")) { 78 if (!of_find_property(np, "ranges", NULL)) 79 return 1; 80 } 81 82 return 0; 83 } 84 85 static int of_bus_simba_map(u32 *addr, const u32 *range, 86 int na, int ns, int pna) 87 { 88 return 0; 89 } 90 91 static void of_bus_pci_count_cells(struct device_node *np, 92 int *addrc, int *sizec) 93 { 94 if (addrc) 95 *addrc = 3; 96 if (sizec) 97 *sizec = 2; 98 } 99 100 static int of_bus_pci_map(u32 *addr, const u32 *range, 101 int na, int ns, int pna) 102 { 103 u32 result[OF_MAX_ADDR_CELLS]; 104 int i; 105 106 /* Check address type match */ 107 if ((addr[0] ^ range[0]) & 0x03000000) 108 return -EINVAL; 109 110 if (of_out_of_range(addr + 1, range + 1, range + na + pna, 111 na - 1, ns)) 112 return -EINVAL; 113 114 /* Start with the parent range base. */ 115 memcpy(result, range + na, pna * 4); 116 117 /* Add in the child address offset, skipping high cell. */ 118 for (i = 0; i < na - 1; i++) 119 result[pna - 1 - i] += 120 (addr[na - 1 - i] - 121 range[na - 1 - i]); 122 123 memcpy(addr, result, pna * 4); 124 125 return 0; 126 } 127 128 static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags) 129 { 130 u32 w = addr[0]; 131 132 /* For PCI, we override whatever child busses may have used. */ 133 flags = 0; 134 switch((w >> 24) & 0x03) { 135 case 0x01: 136 flags |= IORESOURCE_IO; 137 break; 138 139 case 0x02: /* 32 bits */ 140 case 0x03: /* 64 bits */ 141 flags |= IORESOURCE_MEM; 142 break; 143 } 144 if (w & 0x40000000) 145 flags |= IORESOURCE_PREFETCH; 146 return flags; 147 } 148 149 /* 150 * FHC/Central bus specific translator. 151 * 152 * This is just needed to hard-code the address and size cell 153 * counts. 'fhc' and 'central' nodes lack the #address-cells and 154 * #size-cells properties, and if you walk to the root on such 155 * Enterprise boxes all you'll get is a #size-cells of 2 which is 156 * not what we want to use. 157 */ 158 static int of_bus_fhc_match(struct device_node *np) 159 { 160 return !strcmp(np->name, "fhc") || 161 !strcmp(np->name, "central"); 162 } 163 164 #define of_bus_fhc_count_cells of_bus_sbus_count_cells 165 166 /* 167 * Array of bus specific translators 168 */ 169 170 static struct of_bus of_busses[] = { 171 /* PCI */ 172 { 173 .name = "pci", 174 .addr_prop_name = "assigned-addresses", 175 .match = of_bus_pci_match, 176 .count_cells = of_bus_pci_count_cells, 177 .map = of_bus_pci_map, 178 .get_flags = of_bus_pci_get_flags, 179 }, 180 /* SIMBA */ 181 { 182 .name = "simba", 183 .addr_prop_name = "assigned-addresses", 184 .match = of_bus_simba_match, 185 .count_cells = of_bus_pci_count_cells, 186 .map = of_bus_simba_map, 187 .get_flags = of_bus_pci_get_flags, 188 }, 189 /* SBUS */ 190 { 191 .name = "sbus", 192 .addr_prop_name = "reg", 193 .match = of_bus_sbus_match, 194 .count_cells = of_bus_sbus_count_cells, 195 .map = of_bus_default_map, 196 .get_flags = of_bus_default_get_flags, 197 }, 198 /* FHC */ 199 { 200 .name = "fhc", 201 .addr_prop_name = "reg", 202 .match = of_bus_fhc_match, 203 .count_cells = of_bus_fhc_count_cells, 204 .map = of_bus_default_map, 205 .get_flags = of_bus_default_get_flags, 206 }, 207 /* Default */ 208 { 209 .name = "default", 210 .addr_prop_name = "reg", 211 .match = NULL, 212 .count_cells = of_bus_default_count_cells, 213 .map = of_bus_default_map, 214 .get_flags = of_bus_default_get_flags, 215 }, 216 }; 217 218 static struct of_bus *of_match_bus(struct device_node *np) 219 { 220 int i; 221 222 for (i = 0; i < ARRAY_SIZE(of_busses); i ++) 223 if (!of_busses[i].match || of_busses[i].match(np)) 224 return &of_busses[i]; 225 BUG(); 226 return NULL; 227 } 228 229 static int __init build_one_resource(struct device_node *parent, 230 struct of_bus *bus, 231 struct of_bus *pbus, 232 u32 *addr, 233 int na, int ns, int pna) 234 { 235 const u32 *ranges; 236 int rone, rlen; 237 238 ranges = of_get_property(parent, "ranges", &rlen); 239 if (ranges == NULL || rlen == 0) { 240 u32 result[OF_MAX_ADDR_CELLS]; 241 int i; 242 243 memset(result, 0, pna * 4); 244 for (i = 0; i < na; i++) 245 result[pna - 1 - i] = 246 addr[na - 1 - i]; 247 248 memcpy(addr, result, pna * 4); 249 return 0; 250 } 251 252 /* Now walk through the ranges */ 253 rlen /= 4; 254 rone = na + pna + ns; 255 for (; rlen >= rone; rlen -= rone, ranges += rone) { 256 if (!bus->map(addr, ranges, na, ns, pna)) 257 return 0; 258 } 259 260 /* When we miss an I/O space match on PCI, just pass it up 261 * to the next PCI bridge and/or controller. 262 */ 263 if (!strcmp(bus->name, "pci") && 264 (addr[0] & 0x03000000) == 0x01000000) 265 return 0; 266 267 return 1; 268 } 269 270 static int __init use_1to1_mapping(struct device_node *pp) 271 { 272 /* If we have a ranges property in the parent, use it. */ 273 if (of_find_property(pp, "ranges", NULL) != NULL) 274 return 0; 275 276 /* If the parent is the dma node of an ISA bus, pass 277 * the translation up to the root. 278 * 279 * Some SBUS devices use intermediate nodes to express 280 * hierarchy within the device itself. These aren't 281 * real bus nodes, and don't have a 'ranges' property. 282 * But, we should still pass the translation work up 283 * to the SBUS itself. 284 */ 285 if (!strcmp(pp->name, "dma") || 286 !strcmp(pp->name, "espdma") || 287 !strcmp(pp->name, "ledma") || 288 !strcmp(pp->name, "lebuffer")) 289 return 0; 290 291 /* Similarly for all PCI bridges, if we get this far 292 * it lacks a ranges property, and this will include 293 * cases like Simba. 294 */ 295 if (!strcmp(pp->name, "pci")) 296 return 0; 297 298 return 1; 299 } 300 301 static int of_resource_verbose; 302 303 static void __init build_device_resources(struct of_device *op, 304 struct device *parent) 305 { 306 struct of_device *p_op; 307 struct of_bus *bus; 308 int na, ns; 309 int index, num_reg; 310 const void *preg; 311 312 if (!parent) 313 return; 314 315 p_op = to_of_device(parent); 316 bus = of_match_bus(p_op->node); 317 bus->count_cells(op->node, &na, &ns); 318 319 preg = of_get_property(op->node, bus->addr_prop_name, &num_reg); 320 if (!preg || num_reg == 0) 321 return; 322 323 /* Convert to num-cells. */ 324 num_reg /= 4; 325 326 /* Convert to num-entries. */ 327 num_reg /= na + ns; 328 329 /* Prevent overrunning the op->resources[] array. */ 330 if (num_reg > PROMREG_MAX) { 331 printk(KERN_WARNING "%s: Too many regs (%d), " 332 "limiting to %d.\n", 333 op->node->full_name, num_reg, PROMREG_MAX); 334 num_reg = PROMREG_MAX; 335 } 336 337 for (index = 0; index < num_reg; index++) { 338 struct resource *r = &op->resource[index]; 339 u32 addr[OF_MAX_ADDR_CELLS]; 340 const u32 *reg = (preg + (index * ((na + ns) * 4))); 341 struct device_node *dp = op->node; 342 struct device_node *pp = p_op->node; 343 struct of_bus *pbus, *dbus; 344 u64 size, result = OF_BAD_ADDR; 345 unsigned long flags; 346 int dna, dns; 347 int pna, pns; 348 349 size = of_read_addr(reg + na, ns); 350 memcpy(addr, reg, na * 4); 351 352 flags = bus->get_flags(addr, 0); 353 354 if (use_1to1_mapping(pp)) { 355 result = of_read_addr(addr, na); 356 goto build_res; 357 } 358 359 dna = na; 360 dns = ns; 361 dbus = bus; 362 363 while (1) { 364 dp = pp; 365 pp = dp->parent; 366 if (!pp) { 367 result = of_read_addr(addr, dna); 368 break; 369 } 370 371 pbus = of_match_bus(pp); 372 pbus->count_cells(dp, &pna, &pns); 373 374 if (build_one_resource(dp, dbus, pbus, addr, 375 dna, dns, pna)) 376 break; 377 378 flags = pbus->get_flags(addr, flags); 379 380 dna = pna; 381 dns = pns; 382 dbus = pbus; 383 } 384 385 build_res: 386 memset(r, 0, sizeof(*r)); 387 388 if (of_resource_verbose) 389 printk("%s reg[%d] -> %llx\n", 390 op->node->full_name, index, 391 result); 392 393 if (result != OF_BAD_ADDR) { 394 if (tlb_type == hypervisor) 395 result &= 0x0fffffffffffffffUL; 396 397 r->start = result; 398 r->end = result + size - 1; 399 r->flags = flags; 400 } 401 r->name = op->node->name; 402 } 403 } 404 405 static struct device_node * __init 406 apply_interrupt_map(struct device_node *dp, struct device_node *pp, 407 const u32 *imap, int imlen, const u32 *imask, 408 unsigned int *irq_p) 409 { 410 struct device_node *cp; 411 unsigned int irq = *irq_p; 412 struct of_bus *bus; 413 phandle handle; 414 const u32 *reg; 415 int na, num_reg, i; 416 417 bus = of_match_bus(pp); 418 bus->count_cells(dp, &na, NULL); 419 420 reg = of_get_property(dp, "reg", &num_reg); 421 if (!reg || !num_reg) 422 return NULL; 423 424 imlen /= ((na + 3) * 4); 425 handle = 0; 426 for (i = 0; i < imlen; i++) { 427 int j; 428 429 for (j = 0; j < na; j++) { 430 if ((reg[j] & imask[j]) != imap[j]) 431 goto next; 432 } 433 if (imap[na] == irq) { 434 handle = imap[na + 1]; 435 irq = imap[na + 2]; 436 break; 437 } 438 439 next: 440 imap += (na + 3); 441 } 442 if (i == imlen) { 443 /* Psycho and Sabre PCI controllers can have 'interrupt-map' 444 * properties that do not include the on-board device 445 * interrupts. Instead, the device's 'interrupts' property 446 * is already a fully specified INO value. 447 * 448 * Handle this by deciding that, if we didn't get a 449 * match in the parent's 'interrupt-map', and the 450 * parent is an IRQ translater, then use the parent as 451 * our IRQ controller. 452 */ 453 if (pp->irq_trans) 454 return pp; 455 456 return NULL; 457 } 458 459 *irq_p = irq; 460 cp = of_find_node_by_phandle(handle); 461 462 return cp; 463 } 464 465 static unsigned int __init pci_irq_swizzle(struct device_node *dp, 466 struct device_node *pp, 467 unsigned int irq) 468 { 469 const struct linux_prom_pci_registers *regs; 470 unsigned int bus, devfn, slot, ret; 471 472 if (irq < 1 || irq > 4) 473 return irq; 474 475 regs = of_get_property(dp, "reg", NULL); 476 if (!regs) 477 return irq; 478 479 bus = (regs->phys_hi >> 16) & 0xff; 480 devfn = (regs->phys_hi >> 8) & 0xff; 481 slot = (devfn >> 3) & 0x1f; 482 483 if (pp->irq_trans) { 484 /* Derived from Table 8-3, U2P User's Manual. This branch 485 * is handling a PCI controller that lacks a proper set of 486 * interrupt-map and interrupt-map-mask properties. The 487 * Ultra-E450 is one example. 488 * 489 * The bit layout is BSSLL, where: 490 * B: 0 on bus A, 1 on bus B 491 * D: 2-bit slot number, derived from PCI device number as 492 * (dev - 1) for bus A, or (dev - 2) for bus B 493 * L: 2-bit line number 494 */ 495 if (bus & 0x80) { 496 /* PBM-A */ 497 bus = 0x00; 498 slot = (slot - 1) << 2; 499 } else { 500 /* PBM-B */ 501 bus = 0x10; 502 slot = (slot - 2) << 2; 503 } 504 irq -= 1; 505 506 ret = (bus | slot | irq); 507 } else { 508 /* Going through a PCI-PCI bridge that lacks a set of 509 * interrupt-map and interrupt-map-mask properties. 510 */ 511 ret = ((irq - 1 + (slot & 3)) & 3) + 1; 512 } 513 514 return ret; 515 } 516 517 static int of_irq_verbose; 518 519 static unsigned int __init build_one_device_irq(struct of_device *op, 520 struct device *parent, 521 unsigned int irq) 522 { 523 struct device_node *dp = op->node; 524 struct device_node *pp, *ip; 525 unsigned int orig_irq = irq; 526 int nid; 527 528 if (irq == 0xffffffff) 529 return irq; 530 531 if (dp->irq_trans) { 532 irq = dp->irq_trans->irq_build(dp, irq, 533 dp->irq_trans->data); 534 535 if (of_irq_verbose) 536 printk("%s: direct translate %x --> %x\n", 537 dp->full_name, orig_irq, irq); 538 539 goto out; 540 } 541 542 /* Something more complicated. Walk up to the root, applying 543 * interrupt-map or bus specific translations, until we hit 544 * an IRQ translator. 545 * 546 * If we hit a bus type or situation we cannot handle, we 547 * stop and assume that the original IRQ number was in a 548 * format which has special meaning to it's immediate parent. 549 */ 550 pp = dp->parent; 551 ip = NULL; 552 while (pp) { 553 const void *imap, *imsk; 554 int imlen; 555 556 imap = of_get_property(pp, "interrupt-map", &imlen); 557 imsk = of_get_property(pp, "interrupt-map-mask", NULL); 558 if (imap && imsk) { 559 struct device_node *iret; 560 int this_orig_irq = irq; 561 562 iret = apply_interrupt_map(dp, pp, 563 imap, imlen, imsk, 564 &irq); 565 566 if (of_irq_verbose) 567 printk("%s: Apply [%s:%x] imap --> [%s:%x]\n", 568 op->node->full_name, 569 pp->full_name, this_orig_irq, 570 (iret ? iret->full_name : "NULL"), irq); 571 572 if (!iret) 573 break; 574 575 if (iret->irq_trans) { 576 ip = iret; 577 break; 578 } 579 } else { 580 if (!strcmp(pp->name, "pci")) { 581 unsigned int this_orig_irq = irq; 582 583 irq = pci_irq_swizzle(dp, pp, irq); 584 if (of_irq_verbose) 585 printk("%s: PCI swizzle [%s] " 586 "%x --> %x\n", 587 op->node->full_name, 588 pp->full_name, this_orig_irq, 589 irq); 590 591 } 592 593 if (pp->irq_trans) { 594 ip = pp; 595 break; 596 } 597 } 598 dp = pp; 599 pp = pp->parent; 600 } 601 if (!ip) 602 return orig_irq; 603 604 irq = ip->irq_trans->irq_build(op->node, irq, 605 ip->irq_trans->data); 606 if (of_irq_verbose) 607 printk("%s: Apply IRQ trans [%s] %x --> %x\n", 608 op->node->full_name, ip->full_name, orig_irq, irq); 609 610 out: 611 nid = of_node_to_nid(dp); 612 if (nid != -1) { 613 cpumask_t numa_mask = *cpumask_of_node(nid); 614 615 irq_set_affinity(irq, &numa_mask); 616 } 617 618 return irq; 619 } 620 621 static struct of_device * __init scan_one_device(struct device_node *dp, 622 struct device *parent) 623 { 624 struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL); 625 const unsigned int *irq; 626 struct dev_archdata *sd; 627 int len, i; 628 629 if (!op) 630 return NULL; 631 632 sd = &op->dev.archdata; 633 sd->prom_node = dp; 634 sd->op = op; 635 636 op->node = dp; 637 638 op->clock_freq = of_getintprop_default(dp, "clock-frequency", 639 (25*1000*1000)); 640 op->portid = of_getintprop_default(dp, "upa-portid", -1); 641 if (op->portid == -1) 642 op->portid = of_getintprop_default(dp, "portid", -1); 643 644 irq = of_get_property(dp, "interrupts", &len); 645 if (irq) { 646 op->num_irqs = len / 4; 647 648 /* Prevent overrunning the op->irqs[] array. */ 649 if (op->num_irqs > PROMINTR_MAX) { 650 printk(KERN_WARNING "%s: Too many irqs (%d), " 651 "limiting to %d.\n", 652 dp->full_name, op->num_irqs, PROMINTR_MAX); 653 op->num_irqs = PROMINTR_MAX; 654 } 655 memcpy(op->irqs, irq, op->num_irqs * 4); 656 } else { 657 op->num_irqs = 0; 658 } 659 660 build_device_resources(op, parent); 661 for (i = 0; i < op->num_irqs; i++) 662 op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]); 663 664 op->dev.parent = parent; 665 op->dev.bus = &of_platform_bus_type; 666 if (!parent) 667 dev_set_name(&op->dev, "root"); 668 else 669 dev_set_name(&op->dev, "%08x", dp->node); 670 671 if (of_device_register(op)) { 672 printk("%s: Could not register of device.\n", 673 dp->full_name); 674 kfree(op); 675 op = NULL; 676 } 677 678 return op; 679 } 680 681 static void __init scan_tree(struct device_node *dp, struct device *parent) 682 { 683 while (dp) { 684 struct of_device *op = scan_one_device(dp, parent); 685 686 if (op) 687 scan_tree(dp->child, &op->dev); 688 689 dp = dp->sibling; 690 } 691 } 692 693 static void __init scan_of_devices(void) 694 { 695 struct device_node *root = of_find_node_by_path("/"); 696 struct of_device *parent; 697 698 parent = scan_one_device(root, NULL); 699 if (!parent) 700 return; 701 702 scan_tree(root->child, &parent->dev); 703 } 704 705 static int __init of_bus_driver_init(void) 706 { 707 int err; 708 709 err = of_bus_type_init(&of_platform_bus_type, "of"); 710 if (!err) 711 scan_of_devices(); 712 713 return err; 714 } 715 716 postcore_initcall(of_bus_driver_init); 717 718 static int __init of_debug(char *str) 719 { 720 int val = 0; 721 722 get_option(&str, &val); 723 if (val & 1) 724 of_resource_verbose = 1; 725 if (val & 2) 726 of_irq_verbose = 1; 727 return 1; 728 } 729 730 __setup("of_debug=", of_debug); 731